JPH10149514A - Magneto-resistance effect type magnetic head - Google Patents

Magneto-resistance effect type magnetic head

Info

Publication number
JPH10149514A
JPH10149514A JP30468496A JP30468496A JPH10149514A JP H10149514 A JPH10149514 A JP H10149514A JP 30468496 A JP30468496 A JP 30468496A JP 30468496 A JP30468496 A JP 30468496A JP H10149514 A JPH10149514 A JP H10149514A
Authority
JP
Japan
Prior art keywords
film
bias
permanent magnet
track width
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30468496A
Other languages
Japanese (ja)
Other versions
JP3756593B2 (en
Inventor
Keiko Kikuchi
慶子 菊地
Tetsuo Kawai
哲郎 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP30468496A priority Critical patent/JP3756593B2/en
Publication of JPH10149514A publication Critical patent/JPH10149514A/en
Application granted granted Critical
Publication of JP3756593B2 publication Critical patent/JP3756593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an output signal having good vertical symmetry in waveform even in a narrower track by making a dimension of a magneto- resistance effect(MR) film in its heightwise direction larger than a width of a track and impressing a lateral bias magnetic field upon the MR film by a permanent magnet film disposed in both end parts of the MR film in the widthwise direction of the track. SOLUTION: The MR film 1 is formed in its heightwise direction aligned with an axis of easy magnetization to be longer than the track width. The permanent magnet film 2 is disposed on both sides of the MR film in the direction of the track width, and magnetization 4 of the MR film 1 in its heightwise direction is inclined by the permanent magnet film 2. An electrode 3 is disposed on the permanent magnet film 2 for the purpose of supplying a sense electric current to the MR film 1. By such an MR element composed of the above structure, a magnetic signal can be read out of a recording medium 9. In this constitution, a required bias for a linear response can be impressed enough even on a narrower track.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は記録媒体から磁気信号を
読み取るための磁気抵抗効果型磁気ヘッドに関するもの
であって、特に高感度特性を有する横バイアス型のMR
素子に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistance effect type magnetic head for reading a magnetic signal from a recording medium, and more particularly to a lateral bias type MR having high sensitivity characteristics.
Related to element.

【0002】[0002]

【従来の技術】磁気抵抗効果型磁気ヘッド(以下、MR
ヘッドと称する)は、記録媒体に高密度で記録されてい
る磁気信号を読み取ることのできる磁気ヘッドとして従
来から知られている。このヘッドは、記録時と再生時と
でそれぞれ専用のヘッドを使用する録再分離型磁気ヘッ
ドの再生専用ヘッドとして広く用いられている。
2. Description of the Related Art A magnetoresistance effect type magnetic head (hereinafter referred to as MR)
Head) is conventionally known as a magnetic head capable of reading a magnetic signal recorded on a recording medium at high density. This head is widely used as a read-only head of a recording / re-separation type magnetic head that uses dedicated heads for recording and reproduction.

【0003】このヘッドは磁気抵抗効果を示す材料で作
られた磁気抵抗効果膜(以下、MR膜と称する)の電気
抵抗が、外部磁界の強度及び方向の関数として変化する
ことを利用して記録媒体からの磁気信号を検出するもの
である。様々な検出方法を用いるMRヘッドが開発され
ており、これらは従来用いられて記録再生装置の要件を
満たしていた。
[0003] This head records by utilizing the fact that the electric resistance of a magnetoresistive film (hereinafter referred to as MR film) made of a material exhibiting a magnetoresistive effect changes as a function of the strength and direction of an external magnetic field. It detects a magnetic signal from a medium. MR heads using various detection methods have been developed, and these have been conventionally used to satisfy the requirements of recording / reproducing devices.

【0004】MR膜が最適に動作するためには、方向の
異なる2種類のバイアス磁界が与えられなければならな
い。一つは外部磁界に対する応答が線形性を有するよう
に、MR膜の磁化を傾斜させるために印加する横バイア
ス磁界である。MRヘッドの出力信号は、センス電流と
MR膜の磁化とのなす角(バイアス角)が45°程度の
場合に、出力振幅が最大となり波形の上下対称性が最も
良好となる。
In order for the MR film to operate optimally, two types of bias magnetic fields having different directions must be applied. One is a lateral bias magnetic field applied to tilt the magnetization of the MR film so that the response to an external magnetic field has a linearity. When the angle (bias angle) between the sense current and the magnetization of the MR film is about 45 °, the output signal of the MR head has the maximum output amplitude and the best vertical symmetry of the waveform.

【0005】他のバイアス磁界は、MR膜における多磁
区構造によって生ずるバルクハウゼンノイズを抑止する
ための縦バイアス磁界である。MR膜は異方性磁界が弱
く磁区構造が不安定で、多磁区構造を取りやすい薄膜で
ある。MR膜の磁区構造を安定化させるためには、MR
膜の異方性磁界を強めるようにMR膜の磁化容易軸方向
に縦バイアス磁界を印加する。縦バイアス磁界を印加す
る代わりに、MR膜の形状異方性磁界を強めるように磁
化容易軸方向の寸法を他の寸法よりも大きくしても、M
R膜の多磁区は抑制される。
Another bias magnetic field is a longitudinal bias magnetic field for suppressing Barkhausen noise caused by a multi-domain structure in the MR film. The MR film is a thin film having a weak anisotropic magnetic field, an unstable magnetic domain structure, and a multi-domain structure. In order to stabilize the magnetic domain structure of the MR film, MR
A longitudinal bias magnetic field is applied in the easy axis direction of the MR film so as to increase the anisotropic magnetic field of the film. Instead of applying a longitudinal bias magnetic field, even if the dimension in the easy axis direction is made larger than other dimensions so as to strengthen the shape anisotropic magnetic field of the MR film, M
The multi-domain of the R film is suppressed.

【0006】横バイアス磁界を印加する手段として、特
開昭52−062417号公報には、図6のようにSA
Lバイアス法を用いたMRヘッドが開示されている。S
ALバイアス法はもっとも一般的に使用されているバイ
アス法である。図6では、MR膜1に非磁性膜21を介
して配置したSAL膜22の飽和磁化を利用してMR膜
1に横バイアス磁界を印加してMR膜1の磁化4を傾斜
させている。さらに、MR膜1に隣接する永久磁石膜2
からMR膜1の磁化容易軸方向に縦バイアス磁界を印加
して、MR膜の磁区構造を安定化させている。電極3は
永久磁石膜2を介してMR膜にセンス電流を供給する手
段である。このような構造で記録媒体9からの磁気信号
をMR膜1で読みとっている。
As means for applying a lateral bias magnetic field, Japanese Unexamined Patent Publication No. Sho 52-062417 discloses SA as shown in FIG.
An MR head using the L bias method is disclosed. S
The AL bias method is the most commonly used bias method. In FIG. 6, a lateral bias magnetic field is applied to the MR film 1 using the saturation magnetization of the SAL film 22 disposed on the MR film 1 via the non-magnetic film 21 to incline the magnetization 4 of the MR film 1. Further, the permanent magnet film 2 adjacent to the MR film 1
Thus, a longitudinal bias magnetic field is applied in the easy axis direction of the MR film 1 to stabilize the magnetic domain structure of the MR film. The electrode 3 is means for supplying a sense current to the MR film via the permanent magnet film 2. With such a structure, a magnetic signal from the recording medium 9 is read by the MR film 1.

【0007】一方、特開昭52−100217号公報に
は、図7のような永久磁石バイアス法によるMRヘッド
が開示されている。図7では、非磁性膜21を介してM
R膜1に積層させた永久磁石膜2の磁石磁界を利用して
横バイアス磁界を印加してMR膜1の磁化4を傾斜させ
ている。さらに、MR膜1に隣接する永久磁石膜2から
MR膜1の磁化容易軸方向に縦バイアス磁界を印加し
て、MR膜の磁区構造を安定化させている。
On the other hand, Japanese Patent Laying-Open No. 52-100217 discloses an MR head using a permanent magnet bias method as shown in FIG. In FIG. 7, the M
A lateral bias magnetic field is applied using the magnet magnetic field of the permanent magnet film 2 laminated on the R film 1 to incline the magnetization 4 of the MR film 1. Further, a longitudinal bias magnetic field is applied from the permanent magnet film 2 adjacent to the MR film 1 in the easy axis direction of the MR film 1 to stabilize the magnetic domain structure of the MR film.

【0008】記録再生装置には更に高い記録密度が要求
され、トラック幅がますます狭くなっている。しかし、
図6の従来SALバイアス法MR素子の立面図や図7の
従来永久磁石バイアス法MR素子の立面図に示す従来の
バイアス法ではより狭いトラック幅を有するMRヘッド
を得ることが困難になっている。
[0008] A higher recording density is required for the recording / reproducing apparatus, and the track width is becoming narrower. But,
The conventional bias method shown in the elevation view of the conventional SAL bias method MR element in FIG. 6 and the elevation view of the conventional permanent magnet bias MR element in FIG. 7 makes it difficult to obtain an MR head having a narrower track width. ing.

【0009】[0009]

【発明が解決しようとする課題】以下に従来のバイアス
法の問題点を述べる。図6のSALバイアス法は、セン
ス電流によってSAL膜の磁化を飽和させ、SAL膜か
らの漏洩磁界によりMR膜にバイアス磁界を印加する法
である。このため、センス電流の大きさによりバイアス
角が変化する。バイアス角とは、センス電流とMR膜の
磁化とのなす角である。従って、センス電流の大きさに
より出力の上下対称性が変動する。
The problems of the conventional bias method will be described below. The SAL bias method shown in FIG. 6 is a method in which the magnetization of the SAL film is saturated by a sense current, and a bias magnetic field is applied to the MR film by a leakage magnetic field from the SAL film. For this reason, the bias angle changes depending on the magnitude of the sense current. The bias angle is an angle between the sense current and the magnetization of the MR film. Therefore, the vertical symmetry of the output varies depending on the magnitude of the sense current.

【0010】しかし、高記録密度化に伴いMR膜高さが
低くなると、MR膜高さ方向の反磁界が増加し、充分な
横バイアス磁界の印加のためにより大きなセンス電流を
流す必要がある。一方、より大きなセンス電流を流す
と、ジュール発熱によりMR素子の素子温度が上昇しM
R膜の抵抗変化率が減少し、MRヘッドの出力信号も減
少してしまう。以上の理由により、高記録密度ではSA
Lバイアス法を用いて線形応答に必要なバイアス磁界を
印加することが困難となる。
However, when the height of the MR film decreases with an increase in the recording density, the demagnetizing field in the height direction of the MR film increases, and it is necessary to flow a larger sense current for applying a sufficient lateral bias magnetic field. On the other hand, when a larger sense current is passed, the element temperature of the MR element rises due to Joule heat and M
The rate of change in resistance of the R film decreases, and the output signal of the MR head also decreases. For the above reasons, at high recording densities, SA
It becomes difficult to apply a bias magnetic field required for linear response using the L bias method.

【0011】一方、温度上昇抑制のために2×107
/cm2程度のセンス電流を流した場合、トラック幅が
狭くなる程バイアス磁界が不十分となり、出力信号が減
少する。MRヘッドの出力信号としては、振幅が大きい
だけでなく波形の上下対称性が良いことが要求される。
バイアス角が45°からはずれると記録媒体の磁界に対
するMRヘッドの応答が非線形になり、正負いずれかの
信号に対応する振幅が他方より大きくなり、上下対称性
が悪化する。MRヘッドの出力信号検出以後の電気回路
による増幅処理などで信号として処理するためには、こ
の正負の振幅差が平均振幅の20%程度以内であること
が必要である。ところが、温度上昇抑制のために2×1
7A/cm2程度のセンス電流を流した場合、トラック
幅が狭くなる程バイアス磁界が不十分となり、上下対称
性が悪化してしまう。
On the other hand, to suppress the temperature rise, 2 × 10 7 A
When a sense current of about / cm 2 flows, the bias magnetic field becomes insufficient as the track width becomes narrower, and the output signal decreases. The output signal of the MR head is required not only to have a large amplitude but also to have good vertical symmetry.
If the bias angle deviates from 45 °, the response of the MR head to the magnetic field of the recording medium becomes non-linear, the amplitude corresponding to one of the positive and negative signals becomes larger than the other, and the vertical symmetry deteriorates. In order to process the signal as a signal in an amplification process by an electric circuit after the detection of the output signal of the MR head, the difference between the positive and negative amplitudes needs to be within about 20% of the average amplitude. However, to suppress the temperature rise, 2 × 1
In passing the 0 7 A / cm 2 about the sense current, the bias magnetic field larger the track width is narrowed becomes insufficient, vertical symmetry is deteriorated.

【0012】先行技術に開示されているもう一つのバイ
アス法は、図7のように非磁性膜21を介してMR膜1
に積層させた永久磁石膜2の磁石磁界を利用して横バイ
アス磁界を印加する永久磁石バイアス法である。狭トラ
ック化しても上述のSALバイアス法のようなジュール
発熱による素子温度上昇の問題が生じないという利点が
ある。
Another bias method disclosed in the prior art is as follows. As shown in FIG.
This is a permanent magnet bias method in which a lateral bias magnetic field is applied using the magnet magnetic field of the permanent magnet film 2 laminated on the substrate. Even if the track is narrowed, there is an advantage that there is no problem of a rise in element temperature due to Joule heat as in the SAL bias method described above.

【0013】ただし、従来の永久磁石バイアス法はSA
Lバイアス法に比べて出力信号が小さいという問題点が
あった。図7では、MR膜1の磁化容易軸方向がほぼト
ラック幅方向に、永久磁石膜の磁化容易軸がほぼMR膜
高さ方向に向くように成膜される。そのため、記録媒体
磁界の最も大きい浮上面近傍でのMR膜の磁化4が、永
久磁石膜2によって強く固定され、SALバイアス法に
比べて出力信号が小さくなってしまう。
However, the conventional permanent magnet bias method is SA
There is a problem that the output signal is small as compared with the L bias method. In FIG. 7, the film is formed such that the easy axis of the MR film 1 is oriented substantially in the track width direction and the easy axis of the permanent magnet film is oriented substantially in the height direction of the MR film. Therefore, the magnetization 4 of the MR film in the vicinity of the air bearing surface where the magnetic field of the recording medium is largest is strongly fixed by the permanent magnet film 2, and the output signal becomes smaller than in the SAL bias method.

【0014】したがって、本発明は、狭トラック化して
も、線形応答に必要なバイアス磁界を充分に印加でき、
出力信号波形の上下対称性が良好な出力信号が得られる
MRヘッドを提供するものである。
Therefore, according to the present invention, even if the track is narrowed, a bias magnetic field necessary for a linear response can be sufficiently applied.
An object of the present invention is to provide an MR head capable of obtaining an output signal having good vertical symmetry of an output signal waveform.

【0015】[0015]

【課題を解決するための手段】本発明のMRヘッドは、
MR膜高さ方向の寸法をトラック幅より大きくして、M
R膜のトラック幅方向両端部に配置する永久磁石膜によ
り、MR膜に横バイアス磁界を印加することを特徴とす
る。
An MR head according to the present invention comprises:
By making the dimension of the MR film in the height direction larger than the track width, M
A lateral bias magnetic field is applied to the MR film by permanent magnet films disposed at both ends in the track width direction of the R film.

【0016】また、本発明のMRヘッドは、前記MR膜
の磁化容易軸をほぼMR膜高さ方向、前記永久磁石膜の
磁化容易軸をほぼトラック幅方向とすることにより、M
R膜に横バイアス磁界を印加することを特徴とする。
Further, in the MR head of the present invention, the easy axis of the MR film is substantially in the height direction of the MR film, and the easy axis of the permanent magnet film is substantially in the track width direction.
A lateral bias magnetic field is applied to the R film.

【0017】また、本発明のMRヘッドは、前記MR膜
の全面もしくは一部に反強磁性膜を配置することによ
り、MR膜の磁区構造を安定化しつつ、横バイアス磁界
を印加することを特徴とする。
Further, the MR head of the present invention is characterized in that an antiferromagnetic film is disposed on the entire surface or a part of the MR film, thereby applying a lateral bias magnetic field while stabilizing the magnetic domain structure of the MR film. And

【0018】また、本発明のMRヘッドは、MR膜高さ
を電極高さより高くすることにより、磁区構造が安定で
波形の上下対称性のよい出力信号が得られることを特徴
とする。
Further, the MR head according to the present invention is characterized in that by setting the height of the MR film higher than the height of the electrodes, an output signal having a stable magnetic domain structure and good vertical symmetry of the waveform can be obtained.

【0019】以下に本発明の作用を説明する。本発明に
よる永久磁石バイアス法は、MR膜のトラック幅方向両
端部に永久磁石膜を配置して横バイアス磁界を印加する
ことにより、MR膜の浮上面近傍部分の磁化を回転しや
すくして、従来の永久磁石バイアス法に比べて振幅の大
きな出力信号が得られる。
The operation of the present invention will be described below. In the permanent magnet bias method according to the present invention, by arranging permanent magnet films at both ends in the track width direction of the MR film and applying a lateral bias magnetic field, it is easy to rotate the magnetization near the air bearing surface of the MR film, An output signal having a larger amplitude than that of the conventional permanent magnet bias method can be obtained.

【0020】MR膜の磁区構造は、磁化容易軸方向の寸
法(ここではMR膜高さ7)が他の寸法(ここではトラ
ック幅6と膜厚)よりも大きい程安定となる。一方、記
録媒体の磁界はMR膜高さ方向に急激に減衰するので、
MR膜1の抵抗変化が出力信号電圧の差として検出され
る領域のMR膜高さ(ここでは電極高さ8)が小さい方
が、より高い出力信号電圧が得られる。従って、図1の
ようにMR膜高さ7を電極高さ8より高くすると、磁区
構造が安定で出力信号の高いMRヘッドが得られる。
The magnetic domain structure of the MR film becomes more stable as the dimension in the easy axis direction (here, the height of the MR film 7) is larger than the other dimensions (here, the track width 6 and the film thickness). On the other hand, the magnetic field of the recording medium rapidly attenuates in the height direction of the MR film.
A higher output signal voltage is obtained when the MR film height (here, the electrode height 8) in the region where the resistance change of the MR film 1 is detected as a difference between the output signal voltages is smaller. Accordingly, when the MR film height 7 is higher than the electrode height 8 as shown in FIG. 1, an MR head having a stable magnetic domain structure and a high output signal can be obtained.

【0021】よって、本発明では図1のようにMR膜高
さ7をトラック幅6に比べて充分大きくするとMR膜1
の磁区構造が安定となり、磁区構造安定化のための縦バ
イアス磁界は不要である。
Therefore, in the present invention, when the MR film height 7 is made sufficiently larger than the track width 6 as shown in FIG.
The magnetic domain structure is stabilized, and a longitudinal bias magnetic field for stabilizing the magnetic domain structure is unnecessary.

【0022】以下では、本発明による永久磁石バイアス
法と従来例のSALバイアス法との特性を比較した。
The characteristics of the permanent magnet bias method according to the present invention and the characteristics of the conventional SAL bias method are compared below.

【0023】図3に、本発明による永久磁石膜を用いた
バイアス法、及び従来のSALバイアス法について、ト
ラック幅Twを変化させた場合のバイアス角のシミュレ
ーション結果を示す。ここで、電極高さは各トラック幅
の60%として計算した。線形応答に望ましいバイアス
角は、図にグレー領域で示したように45°程度であ
る。
FIG. 3 shows a simulation result of a bias angle when the track width Tw is changed for the bias method using the permanent magnet film according to the present invention and the conventional SAL bias method. Here, the electrode height was calculated as 60% of each track width. A desirable bias angle for a linear response is on the order of 45 ° as shown in the gray area in the figure.

【0024】従来のSALバイアス法は○印で示す。S
AL膜の飽和磁化等の条件によって異なるが、MR膜高
さ1.0μm程度以下ではMR膜高さ方向の反磁界が急
増し、線形応答に必要なバイアス磁界を印加するために
流すセンス電流も急増してしまう。例えば、10GB/
in2相当(トラック幅0.5μm、MR膜高さ0.3
μm)のMR膜に必要なバイアス磁界を印加するために
は、SALバイアス法では2×108A/cm2程度のセ
ンス電流を流さなければならない。
The conventional SAL bias method is indicated by a circle. S
Depending on the conditions such as the saturation magnetization of the AL film, the demagnetizing field in the direction of the MR film sharply increases when the MR film height is about 1.0 μm or less, and the sense current flowing to apply the bias magnetic field necessary for linear response is also large. It will increase rapidly. For example, 10GB /
in 2 equivalent (Track width 0.5 μm, MR film height 0.3
In order to apply the necessary bias magnetic field to the MR film of μm), a sense current of about 2 × 10 8 A / cm 2 has to flow in the SAL bias method.

【0025】MRヘッドに流すセンス電流を増加した場
合、ジュール発熱により素子温度が上昇しMR膜の抵抗
変化率が減少し、MRヘッドの出力信号も抵抗変化率に
比例して減少してしまうという問題点がある。ジュール
発熱はセンス電流密度の2乗に比例し、一般に温度上昇
を摂氏15度程度以下に抑えるために、センス電流の上
限は2×107A/cm2、望ましくは1×107A/c
2程度とされている。従って、SALバイアス法で1
0GB/in2相当のMR膜に必要バイアスを印加する
と、発熱に依る出力信号低下に加え、摂氏1000度近
い温度上昇によるMR素子の溶断を招く。
When the sense current flowing to the MR head is increased, the element temperature rises due to Joule heat, the rate of change in resistance of the MR film decreases, and the output signal of the MR head also decreases in proportion to the rate of change in resistance. There is a problem. Joule heat is proportional to the square of the sense current density. Generally, the upper limit of the sense current is 2 × 10 7 A / cm 2 , preferably 1 × 10 7 A / c in order to suppress the temperature rise to about 15 degrees Celsius or less.
m 2 . Therefore, 1
When a necessary bias is applied to an MR film equivalent to 0 GB / in 2 , in addition to a decrease in an output signal due to heat generation, a fusion of the MR element is caused by a temperature rise of about 1000 degrees Celsius.

【0026】一方、温度上昇抑制のために2×107
/cm2程度のセンス電流を流した場合、トラック幅が
狭くなる程横バイアス磁界が不十分となり、10GB/
in2相当では10°程度しかバイアスを印加できな
い。
On the other hand, to suppress the temperature rise, 2 × 10 7 A
/ Cm 2, the lateral bias magnetic field becomes insufficient as the track width becomes narrower, and 10 GB / cm 2
In the case of in 2 , a bias can be applied only about 10 °.

【0027】これに対し、●印で示す本発明は10GB
/in2相当のMR膜に必要なバイアス磁界を印加でき
る。本発明は永久磁石膜による磁界で横バイアスを印加
する法であり、図3から明らかなようにバイアス角はセ
ンス電流の大きさに依らない。従って、SALバイアス
法ではセンス電流の大きさに依り出力信号波形の上下対
称性が変動するが、本発明では上下対称性がセンス電流
に依存しないという特長を持つ。
On the other hand, the present invention indicated by the mark
The required bias magnetic field can be applied to the MR film corresponding to / in 2 . The present invention is a method in which a lateral bias is applied by a magnetic field generated by a permanent magnet film. As is apparent from FIG. 3, the bias angle does not depend on the magnitude of the sense current. Therefore, in the SAL bias method, the vertical symmetry of the output signal waveform fluctuates depending on the magnitude of the sense current, but the present invention has an advantage that the vertical symmetry does not depend on the sense current.

【0028】また、SALバイアス法ではジュール熱が
主として膜厚方向にのみ放熱するのに比べ、本発明では
MR膜のMR膜高さが大きいためMR膜高さ方向にも放
熱できる。このため、5×107A/cm2という高セン
ス電流密度で使用しても素子の温度上昇は摂氏15度弱
に抑えられた。
In the SAL bias method, Joule heat is radiated mainly only in the film thickness direction. On the other hand, in the present invention, since the MR film of the MR film is large, heat can also be radiated in the MR film height direction. For this reason, even when used at a high sense current density of 5 × 10 7 A / cm 2 , the temperature rise of the device was suppressed to a little less than 15 degrees Celsius.

【0029】ただし、本発明ではトラック幅が広くなる
程MR膜中央付近への磁石膜による漏洩磁界は減少し、
MR膜の磁化は磁化容易軸であるMR膜高さ方向を向き
易くなる。図3からはトラック幅4μm以上で、この傾
向が見られる。従って、本発明によるヘッドで線形応答
に望ましいバイアス角を得るためには、トラック幅が狭
い領域(図3からはトラック幅2μm以下)で用いるこ
とが望ましい。
However, in the present invention, as the track width increases, the leakage magnetic field due to the magnet film near the center of the MR film decreases.
The magnetization of the MR film tends to be oriented in the height direction of the MR film, which is the axis of easy magnetization. FIG. 3 shows this tendency when the track width is 4 μm or more. Therefore, in order to obtain a desired bias angle for a linear response in the head according to the present invention, it is desirable to use the head in a region having a narrow track width (2 μm or less in FIG. 3).

【0030】本発明の構造に対し、MR膜の一部に反強
磁性膜を図2のように積層させると、トラック幅やセン
ス電流密度に依らず線形応答に望ましいバイアス角が得
られた。これは、上述の永久磁石膜による磁界に加え
て、反強磁性膜とMR膜との交換相互作用により横バイ
アス磁界が印加されたためである。
In the structure of the present invention, when an antiferromagnetic film is laminated on a part of the MR film as shown in FIG. 2, a desirable bias angle for a linear response was obtained irrespective of the track width and the sense current density. This is because a lateral bias magnetic field was applied by the exchange interaction between the antiferromagnetic film and the MR film in addition to the magnetic field generated by the permanent magnet film.

【0031】図4に、従来SALバイアス法及び本発明
による実施例のMRヘッドによる再生出力信号振幅のト
ラック幅Tw依存性を示す。ここで、センス電流は従来
法、本発明法についてそれぞれ5×107A/cm2、2
×107A/cm2とした。
FIG. 4 shows the track width Tw dependency of the amplitude of the reproduction output signal by the conventional SAL bias method and the MR head of the embodiment according to the present invention. Here, the sense current is 5 × 10 7 A / cm 2 for the conventional method and the method of the present invention, respectively.
× 10 7 A / cm 2 .

【0032】両法とも、出力信号はトラック幅にほぼ比
例している。トラック幅4μmの場合を除いて、本発明
の方が従来例より出力信号が大きい。また、従来例はト
ラック幅2μm未満で出力信号が急減した。
In both methods, the output signal is approximately proportional to the track width. Except for the case where the track width is 4 μm, the output signal of the present invention is larger than that of the conventional example. In the conventional example, the output signal sharply decreased when the track width was less than 2 μm.

【0033】出力信号は磁気抵抗変化を示すMR膜に流
れるセンス電流に比例する。本発明ではMR膜単層でバ
イアスを印加することが可能であるため、SALバイア
ス法のような(SAL膜及び非磁性膜への)センス電流
の分流に起因する効率の低下がなく、高感度なヘッドが
実現できる。また、本発明ではMR膜のMR膜高さが高
いため放熱性が良く、SALバイアス法の2.5倍の高
センス電流密度で使用しても温度上昇は同程度に抑制で
きる。さらに、MRヘッドの出力信号はバイアス角が4
5°程度の場合に出力信号振幅が最大となるが、従来例
ではトラック幅が0.5μmまで狭くなるとバイアスが
10°程度しか印加できない。この3点から、本発明は
従来のSALバイアス法より出力信号が大きくなる。
The output signal is proportional to the sense current flowing in the MR film showing a change in magnetoresistance. In the present invention, since a bias can be applied with a single layer of the MR film, the efficiency does not decrease due to the shunting of the sense current (to the SAL film and the non-magnetic film) as in the SAL bias method, and the sensitivity is high. Head can be realized. Further, in the present invention, since the height of the MR film is high, the heat dissipation is good, and the temperature rise can be suppressed to the same degree even when the MR film is used at a high sense current density 2.5 times that of the SAL bias method. Further, the output signal of the MR head has a bias angle of 4
The output signal amplitude becomes maximum when the track width is about 5 °, but in the conventional example, when the track width is reduced to 0.5 μm, only a bias of about 10 ° can be applied. From these three points, the output signal of the present invention is larger than that of the conventional SAL bias method.

【0034】永久磁石膜のみを用いた実施例1でトラッ
ク幅3μm以上で出力信号が減少したのは、図3に示し
たように、トラック幅が広くなるとバイアスがかかり過
ぎてしまうためである。これに対し反強磁性膜も併用し
た実施例2は、従来SALバイアス法および実施例1よ
り出力信号が大きく、トラック幅3μm以上でもほぼト
ラック幅に比例して出力信号が増加する。
In Example 1 using only the permanent magnet film, the output signal was reduced when the track width was 3 μm or more, as shown in FIG. 3, because the bias was applied too much when the track width was wide. On the other hand, the output signal of the second embodiment using the antiferromagnetic film is larger than that of the conventional SAL bias method and the first embodiment, and the output signal increases almost in proportion to the track width even when the track width is 3 μm or more.

【0035】これは、反強磁性膜も併用した実施例2で
は図3に示したように、反強磁性膜とMR膜との交換相
互作用により、広いトラック幅でも線形応答に望ましい
バイアス角が得られるためである。また、永久磁石膜の
みの実施例1では、永久磁石膜近傍でのMR膜の磁化が
永久磁石膜によって強く固定され、出力信号が小さくな
ってしまう。これに対し、反強磁性膜も併用した実施例
2は、実施例1より弱い永久磁石膜でも充分横バイアス
磁界が印加でき、実施例1より出力信号が増加した。反
強磁性膜をMR膜の全面に積層させた場合には、さらに
弱い永久磁石膜でも充分横バイアス磁界が印加できる。
しかし全面に積層させると、記録媒体の磁界の最も大き
い浮上面近傍でもMR膜の磁化が反強磁性膜によって強
く固定され、実施例1に比べて出力信号が小さくなって
しまう。このため、反強磁性膜を併用する場合には、図
2のようにセンス電流のほとんど流れない領域、あるい
は浮上面から離れていて記録媒体の磁界が弱い領域にパ
ターニング積層させることが望ましい。
As shown in FIG. 3, in the second embodiment in which an antiferromagnetic film is also used, a bias angle which is desirable for a linear response even in a wide track width is obtained due to the exchange interaction between the antiferromagnetic film and the MR film. It is because it can be obtained. Further, in the first embodiment having only the permanent magnet film, the magnetization of the MR film near the permanent magnet film is strongly fixed by the permanent magnet film, and the output signal is reduced. On the other hand, in Example 2 in which the antiferromagnetic film was also used, a lateral bias magnetic field could be sufficiently applied even with a weaker permanent magnet film than in Example 1, and the output signal increased compared to Example 1. When an antiferromagnetic film is laminated on the entire surface of the MR film, a lateral bias magnetic field can be sufficiently applied even with a weaker permanent magnet film.
However, when laminated on the entire surface, the magnetization of the MR film is strongly fixed by the antiferromagnetic film even in the vicinity of the air bearing surface where the magnetic field of the recording medium is the largest, and the output signal is smaller than in the first embodiment. For this reason, when an antiferromagnetic film is used together, it is desirable to perform patterning and lamination in a region where a sense current hardly flows as shown in FIG. 2 or in a region away from the air bearing surface and where the magnetic field of the recording medium is weak.

【0036】MRヘッドの出力信号としては、振幅が大
きいだけでなく波形の上下対称性が良いことが要求され
る。MRヘッドの信号検出以後の電気回路による増幅処
理などで信号として処理するためには、この正負の振幅
差が平均振幅の20%程度以内であることが必要であ
る。この上下対称性の基準を満たすトラック巾の範囲
は、永久磁石膜のみを用いた実施例1では3μm以下、
反強磁性膜も併用した実施例2では検討した全範囲、S
ALバイアス法では2μm以上であった。この範囲は図
3にグレー領域で示した範囲にほぼ対応し、バイアス角
45°程度でMRヘッドは磁界に対しての線形応答性が
良好である。
The output signal of the MR head is required not only to have a large amplitude but also to have good vertical symmetry of the waveform. In order to process as a signal by an amplification process or the like by an electric circuit after the signal detection of the MR head, the difference between the positive and negative amplitudes needs to be within about 20% of the average amplitude. The range of the track width that satisfies the vertical symmetry criterion is 3 μm or less in the first embodiment using only the permanent magnet film.
In Example 2 where an antiferromagnetic film was also used, the entire range studied, S
In the AL bias method, it was 2 μm or more. This range substantially corresponds to the range indicated by the gray region in FIG. 3, and the MR head has a good linear response to a magnetic field at a bias angle of about 45 °.

【0037】また、上下対称性のセンス電流依存性を調
べるために、各法についてセンス電流を0.2×107
A/cm2増加させて上下対称性の変動を測定した。そ
の結果、本発明法ではいずれも変動が2%以内であった
が、SALバイアス法では20%近く変動した。
In order to examine the sense current dependency of the vertical symmetry, the sense current was set to 0.2 × 10 7 for each method.
The variation in vertical symmetry was measured by increasing A / cm 2 . As a result, in the method of the present invention, the variation was within 2% in all cases, but in the SAL bias method, the variation was nearly 20%.

【0038】[0038]

【実施例】以下、本発明を実施例を参照しながら詳細に
説明する。 (実施例1)図1に本発明による永久磁石バイアス法の
MR素子の立面図を示す。MR膜1はMR膜高さ方向に
磁化容易軸方向をあわせて、且つトラック幅より長く形
成する。MR膜1のトラック幅方向の両側に永久磁石膜
1を配置して、MR膜高さ方向を向いているMR膜の磁
化4を前記永久磁石膜により傾斜させる。MR膜1にセ
ンス電流を供給するために永久磁石2上に電極3を配置
する。以上の構造からなるMR素子で記録媒体9からの
磁気信号を読みとることができる。尚、図1にかかるM
R素子のMRヘッドにおける配置を図5に示す。図5に
録再分離型ヘッドの立面図、およびMR素子の拡大図2
0とを示す。録再分離型ヘッドは、基板19上に薄膜誘
導型記録ヘッド15と磁気抵抗効果型再生ヘッド16と
を積層したものである。薄膜誘導型記録ヘッド15は上
部磁極17と連結する下部磁極兼上部シールド膜12を
コイル18で励磁して記録媒体に磁気情報の書き込みを
行う。また、磁気抵抗効果型再生ヘッド16は下部磁極
兼上部シールド膜12と下部シールド膜13の間に本発
明のMR素子20を有する。各部位の間には絶縁膜14
を設けるが図5では記載を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments. (Embodiment 1) FIG. 1 is an elevational view of an MR element using a permanent magnet bias method according to the present invention. The MR film 1 is formed so that the direction of the axis of easy magnetization is aligned with the height direction of the MR film and longer than the track width. The permanent magnet film 1 is arranged on both sides of the MR film 1 in the track width direction, and the magnetization 4 of the MR film facing the MR film height direction is inclined by the permanent magnet film. An electrode 3 is arranged on a permanent magnet 2 to supply a sense current to the MR film 1. A magnetic signal from the recording medium 9 can be read by the MR element having the above structure. Note that M shown in FIG.
FIG. 5 shows the arrangement of the R element in the MR head. FIG. 5 is an elevational view of the recording / reproducing separation type head and an enlarged view of the MR element 2.
0 is shown. The recording / reproducing separation type head is obtained by laminating a thin film induction type recording head 15 and a magnetoresistive effect type reproducing head 16 on a substrate 19. The thin-film inductive recording head 15 writes magnetic information on a recording medium by exciting the lower magnetic pole and upper shield film 12 connected to the upper magnetic pole 17 with the coil 18. The magnetoresistive read head 16 has the MR element 20 of the present invention between the lower magnetic pole / upper shield film 12 and the lower shield film 13. Insulating film 14 between each part
, But the description is omitted in FIG.

【0039】MR素子20は、MR膜1のトラック幅方
向の両端に永久磁石膜2を配置して、前記永久磁石膜2
上に電極Mo3を配置して、MR膜の膜面に反強磁性膜
10を配置構造からなる。ここでMR膜1はNiFe
で、永久磁石膜2はCoPtで、電極3はMoで形成す
る。
The MR element 20 has the permanent magnet film 2 disposed at both ends of the MR film 1 in the track width direction.
An electrode Mo3 is arranged thereon, and an antiferromagnetic film 10 is arranged on the surface of the MR film. Here, the MR film 1 is made of NiFe
The permanent magnet film 2 is formed of CoPt, and the electrode 3 is formed of Mo.

【0040】この時、トラック幅、即ち電極間隔は0.
5〜4.0μmになるように形成する。MR膜のMR膜
高さ7は20μm膜厚は25nmとした。上下のシール
ド膜の間隔(ギャップ長)は、従来法、本発明それぞれ
0.25μm、0.23μmとした。磁石膜の膜厚は、
従来法、本発明それぞれ50nm、25nmである。磁
石膜の飽和磁化はいずれも0.7Tである。センス電流
を流す領域はトラック両端の電極の高さ8で規定する。
MR素子20の抵抗は図8のような素子抵抗の電極高さ
依存性を示すので、MR素子とは別に設けたRLG素子
(Resistance Lapping Guide
素子、抵抗をモニターして素子高さを規制してラッピン
グするための素子)を使用して素子抵抗を測定し、電極
高さがトラック幅の60%となるように加工した。
At this time, the track width, that is, the electrode interval is 0.1 mm.
It is formed to have a thickness of 5 to 4.0 μm. The MR film height 7 of the MR film was 20 μm and the film thickness was 25 nm. The distance (gap length) between the upper and lower shield films was 0.25 μm and 0.23 μm, respectively, for the conventional method and the present invention. The thickness of the magnet film is
The conventional method and the present invention are 50 nm and 25 nm, respectively. The saturation magnetization of each of the magnet films is 0.7T. The region where the sense current flows is defined by the height 8 of the electrodes at both ends of the track.
Since the resistance of the MR element 20 shows the electrode height dependence of the element resistance as shown in FIG. 8, a resistance lapping guide (RLG element) provided separately from the MR element is provided.
The element resistance was measured using an element and an element for monitoring the resistance and controlling the element height to perform lapping, and processing was performed so that the electrode height was 60% of the track width.

【0041】実際にMR素子上に形成した誘導型ヘッド
15を用いて記録媒体に記録し、MR素子20の再生特
性を検討した。このとき、誘導型ヘッドとしてはトラッ
ク幅3μm幅のヘッドを用いた。センス電流密度は、従
来ヘッドは2×107A/cm2に本発明ヘッドは5×1
7A/cm2とした。各トラック幅に対してサンプルヘ
ッドを20セット作製し、薄膜誘導型記録ヘッドに記録
電流0.3ATを印加して測定を行い、平均値を図4に
示した。
Recording was performed on a recording medium using the inductive head 15 actually formed on the MR element, and the reproduction characteristics of the MR element 20 were examined. At this time, a head having a track width of 3 μm was used as the inductive head. The sense current density is 2 × 10 7 A / cm 2 for the conventional head and 5 × 1 for the head of the present invention.
0 7 A / cm 2 . Twenty sets of sample heads were prepared for each track width, and a measurement was performed by applying a recording current of 0.3 AT to the thin film induction type recording head, and the average value was shown in FIG.

【0042】この結果、図4に示すように、両法とも出
力信号はトラック幅にほぼ比例している。トラック幅4
μmの場合を除いて、本発明ヘッドの方が従来法より出
力信号が大きい。また、従来法はトラック幅2μm未満
で出力信号が急減した。
As a result, as shown in FIG. 4, the output signal is almost proportional to the track width in both methods. Track width 4
Except in the case of μm, the output signal of the head of the present invention is larger than that of the conventional method. In the conventional method, the output signal sharply decreased when the track width was less than 2 μm.

【0043】出力信号は磁気抵抗変化を示すMR膜に流
れるセンス電流に比例する。本発明法ではMR膜単層で
バイアスを印加することが可能であるため、SALバイ
アス法のような(SAL膜及び非磁性膜への)センス電
流の分流に起因する効率の低下がなく、高感度なヘッド
が実現できる。また、本発明法ではMR膜のMR膜高さ
が高いため放熱性が良く、SALバイアス法の2.5倍
の高センス電流密度で使用しても温度上昇は同程度に抑
制できる。さらに、MRヘッドの信号はバイアス角が4
5°程度の場合に出力信号振幅が最大となるが、従来法
ではトラック幅が0.5μmまで狭くなるとバイアスが
10°程度しか印加できない。この3点から、本発明法
は従来SALバイアス法より出力信号が大きくなった。
The output signal is proportional to the sense current flowing in the MR film showing a change in magnetoresistance. In the method of the present invention, it is possible to apply a bias with a single layer of the MR film, so that there is no reduction in efficiency due to the shunting of the sense current (to the SAL film and the non-magnetic film) as in the SAL bias method. A sensitive head can be realized. Further, in the method of the present invention, since the MR film has a high height, the heat dissipation is good, and the temperature rise can be suppressed to the same degree even when used at a high sense current density 2.5 times that of the SAL bias method. Further, the signal of the MR head has a bias angle of 4
When the track width is as small as 0.5 μm, the bias can be applied only to about 10 ° when the track width is reduced to 0.5 μm. From these three points, the output signal of the method of the present invention is larger than that of the conventional SAL bias method.

【0044】本発明で、トラック幅3μm以上で出力信
号が減少したのは、図3に示したように、トラック幅が
広くなるとバイアスがかかり過ぎてしまったためであ
る。
In the present invention, the output signal is reduced when the track width is 3 μm or more, as shown in FIG. 3, because the bias is applied too much when the track width is wide.

【0045】MRヘッドの出力信号としては、振幅が大
きいだけでなく波形の上下対称性が良いことが要求され
る。MRヘッドの信号検出以後の電気回路による増幅処
理などで信号として処理するためには、この正負の振幅
差が平均振幅の20%程度であることが必要である。こ
の上下対称性の基準を満たすトラック巾の範囲は、本発
明法では3μm以下SALバイアス法では2μm以上で
あった。バイアス角をシミュレーションで予測した図3
と比較すると、この範囲はグレー領域で示した範囲にほ
ぼ対応し、バイアス角45°程度でMRヘッドは磁界に
対しての線形応答性が良好である。
The output signal of the MR head is required not only to have a large amplitude but also to have good vertical symmetry of the waveform. In order to process as a signal by an amplification process by an electric circuit after the signal detection of the MR head, the difference between the positive and negative amplitudes needs to be about 20% of the average amplitude. The range of the track width satisfying the criterion of the vertical symmetry was 3 μm or less in the method of the present invention and 2 μm or more in the SAL bias method. FIG. 3 in which the bias angle is predicted by simulation
When compared with this range, this range substantially corresponds to the range indicated by the gray region, and the MR head has a good linear response to a magnetic field at a bias angle of about 45 °.

【0046】次に、上下対称性のセンス電流依存性を調
べるために、各法についてセンス電流を0.2×107
A/cm2増加させて上下対称性の変動を測定した。そ
の結果、本発明法では変動は2%以内であったが、SA
Lバイアス法では20%近く変動した。
Next, in order to examine the sense current dependency of the vertical symmetry, the sense current was set to 0.2 × 10 7 for each method.
The variation in vertical symmetry was measured by increasing A / cm 2 . As a result, in the method of the present invention, the variation was within 2%,
In the L bias method, it fluctuated by almost 20%.

【0047】また、本発明法でもMR素子における多磁
区構造に起因するバルクハウゼンノイズは観測されなか
った。これは、磁化容易軸方向の寸法であるMR膜高さ
が20μmと他の寸法(トラック巾0.5〜4μm、M
R膜厚25nm)よりも充分大きく、MR膜が単磁区状
態に保たれたためである。
In the method of the present invention, Barkhausen noise caused by the multi-domain structure in the MR element was not observed. This is because the MR film height, which is a dimension in the easy axis direction, is 20 μm and other dimensions (track width 0.5 to 4 μm, M
This is because the MR film was maintained in a single magnetic domain state.

【0048】このように、本実施例では狭トラック化し
ても、線形応答に必要なバイアスが充分印加でき、従来
のヘッドに比べ出力信号の振幅が大きく波形の上下対称
性が良好な出力信号が得られる。これは、本発明法では
MR膜単層でバイアスを印加することが可能であるた
め、SALバイアス法のようなセンス電流の分流に起因
する効率の低下がなく、高感度なヘッドが実現できる。
As described above, in this embodiment, even if the track is narrowed, a bias necessary for a linear response can be sufficiently applied, and an output signal having a large amplitude of the output signal and a good vertical symmetry of the waveform as compared with the conventional head can be obtained. can get. This is because, in the method of the present invention, a bias can be applied with a single layer of the MR film, so that a high-sensitivity head can be realized without a decrease in efficiency due to a shunt of a sense current unlike the SAL bias method.

【0049】(実施例2)図2に本発明による永久磁石
バイアス法のMR素子の立面図を示す。実施例1に対し
て、図2はMR膜1の一部に反強磁性膜10をパターニ
ング積層させたMR素子を作成した。ここで、永久磁石
膜2は飽和磁化0.4TのCoNi系磁石膜を用いた。
また、反強磁性膜としてFeMnを用いた。
(Embodiment 2) FIG. 2 is an elevational view of an MR element using a permanent magnet bias method according to the present invention. In contrast to Example 1, FIG. 2 shows an MR element in which an antiferromagnetic film 10 is patterned and laminated on a part of the MR film 1. Here, as the permanent magnet film 2, a CoNi-based magnet film having a saturation magnetization of 0.4T was used.
In addition, FeMn was used as the antiferromagnetic film.

【0050】この結果、図3に示したように反強磁性膜
も併用した実施例2は、従来SALバイアス法および実
施例1より出力信号が増加した。また、永久磁石膜のみ
を用いた実施例1ではトラック幅3μm以上で出力信号
が減少したが、反強磁性膜も併用した実施例2ではトラ
ック幅3μm以上でもほぼトラック幅に比例して出力信
号が増加した。
As a result, as shown in FIG. 3, the output signal of the embodiment 2 in which the antiferromagnetic film is also used is larger than that of the conventional SAL bias method and the embodiment 1. In the first embodiment using only the permanent magnet film, the output signal decreased when the track width was 3 μm or more. In the second embodiment using the antiferromagnetic film, the output signal was almost proportional to the track width even when the track width was 3 μm or more. increased.

【0051】これは、図3に示したように、反強磁性膜
10とMR膜1との交換相互作用により、広いトラック
幅でも線形応答に望ましいバイアス角が得られるためで
ある。また、永久磁石膜2のみを用いた実施例1では、
永久磁石膜近傍でのMR膜の磁化が永久磁石膜によって
強く固定され、出力信号が小さくなってしまう。これに
対し、反強磁性膜10も併用した実施例2は、実施例1
より弱い永久磁石膜でも充分横バイアス磁界が印加で
き、実施例1より出力信号が増加した。
This is because, as shown in FIG. 3, due to the exchange interaction between the antiferromagnetic film 10 and the MR film 1, a desired bias angle for linear response can be obtained even with a wide track width. In the first embodiment using only the permanent magnet film 2,
The magnetization of the MR film near the permanent magnet film is strongly fixed by the permanent magnet film, and the output signal is reduced. On the other hand, the second embodiment in which the antiferromagnetic film 10 is also used is the first embodiment.
Even with a weaker permanent magnet film, a sufficient lateral bias magnetic field could be applied, and the output signal increased compared to Example 1.

【0052】反強磁性膜をMR膜の全面に積層させた場
合には、さらに弱い永久磁石膜でも充分横バイアス磁界
が印加できる。しかし全面に積層させると、記録媒体の
磁界の最も大きい浮上面近傍でもMR膜の磁化が反強磁
性膜によって強く固定され、実施例1に比べて出力信号
が小さくなってしまう。このため、反強磁性膜を併用す
る場合には、図2のようにセンス電流の流れない領域に
パターニング積層させることが望ましい。
When the antiferromagnetic film is laminated on the entire surface of the MR film, a lateral bias magnetic field can be sufficiently applied even with a weaker permanent magnet film. However, when laminated on the entire surface, the magnetization of the MR film is strongly fixed by the antiferromagnetic film even in the vicinity of the air bearing surface where the magnetic field of the recording medium is the largest, and the output signal is smaller than in the first embodiment. For this reason, when an antiferromagnetic film is used together, it is desirable to pattern and laminate in a region where no sense current flows as shown in FIG.

【0053】MRヘッドの出力信号としては、振幅が大
きいだけでなく波形の上下対称性が良いことが要求され
る。MRヘッドの信号検出以後の電気回路による増幅処
理などで信号として処理するためには、この正負の振幅
差が平均振幅の20%程度以内であることが必要であ
る。この上下対称性の基準を満たすトラック巾の範囲
は、永久磁石膜のみを用いた実施例1では3μm以下、
反強磁性膜も併用した実施例2では検討した全範囲、S
ALバイアス法では2μm以上であった。この範囲は図
3にグレー領域で示した範囲にほぼ対応し、バイアス角
45°程度でMRヘッドは磁界に対しての線形応答性が
良好である。
The output signal of the MR head is required not only to have a large amplitude but also to have good vertical symmetry of the waveform. In order to process as a signal by an amplification process or the like by an electric circuit after the signal detection of the MR head, the difference between the positive and negative amplitudes needs to be within about 20% of the average amplitude. The range of the track width that satisfies the vertical symmetry criterion is 3 μm or less in the first embodiment using only the permanent magnet film.
In Example 2 where an antiferromagnetic film was also used, the entire range studied, S
In the AL bias method, it was 2 μm or more. This range substantially corresponds to the range indicated by the gray region in FIG. 3, and the MR head has a good linear response to a magnetic field at a bias angle of about 45 °.

【0054】また、上下対称性のセンス電流依存性を調
べるために、各法についてセンス電流を0.2×107
A/cm2増加させて上下対称性の変動を測定した。そ
の結果、本発明法ではいずれも変動が2%以内であった
が、SALバイアス法では20%近く変動した。これ
は、SALバイアス法は、センス電流によってSAL膜
を飽和させ、SAL膜からの漏洩磁界によりMR膜にバ
イアスを印加する法であり、センス電流の大きさにより
バイアス角が変化するためである。この結果、図4に示
すように、両法とも出力信号はトラック幅にほぼ比例し
ている。トラック幅4μmの場合を除いて、本発明ヘッ
ドの方が従来法より出力信号が大きい。また、従来法は
トラック幅2μm未満で出力信号が急減した。
Further, in order to examine the sense current dependency of the vertical symmetry, the sense current was set to 0.2 × 10 7 for each method.
The variation in vertical symmetry was measured by increasing A / cm 2 . As a result, in the method of the present invention, the variation was within 2% in all cases, but in the SAL bias method, the variation was nearly 20%. This is because the SAL bias method is a method in which the SAL film is saturated by the sense current and a bias is applied to the MR film by a leakage magnetic field from the SAL film, and the bias angle changes depending on the magnitude of the sense current. As a result, as shown in FIG. 4, the output signal is almost proportional to the track width in both methods. Except for a track width of 4 μm, the head of the present invention has a larger output signal than the conventional method. In the conventional method, the output signal sharply decreased when the track width was less than 2 μm.

【0055】また、本発明法でもMR素子における多磁
区構造に起因するバルクハウゼンノイズは観測されな
い。これは、磁化容易軸方向の寸法であるMR膜高さが
20μmと他の寸法(トラック巾0.5〜4μm、MR
膜厚25nm)よりも充分大きく、MR膜が単磁区状態
に保たれたためである。
Also, according to the method of the present invention, Barkhausen noise caused by the multi-domain structure in the MR element is not observed. This is because the MR film height, which is the dimension in the easy axis direction, is 20 μm and other dimensions (track width 0.5 to 4 μm, MR
This is because the MR film was maintained in a single magnetic domain state.

【0056】このように、本実施例では狭トラック化し
ても、線形応答に必要なバイアスが充分印加でき、従来
のヘッドに比べ出力信号の振幅が大きく波形の上下対称
性が良好な出力信号が得られる。これは、本発明法では
MR膜単層でバイアスを印加することが可能であるた
め、SALバイアス法のような多層膜におけるセンス電
流の分流に起因する効率の低下がなく、高感度なヘッド
が実現できる。
As described above, in this embodiment, even if the track is narrowed, a bias necessary for a linear response can be sufficiently applied, and an output signal having a large amplitude of the output signal and a good vertical symmetry of the waveform as compared with the conventional head can be obtained. can get. This is because the bias can be applied with a single layer of the MR film in the method of the present invention, so that the efficiency does not decrease due to the shunt of the sense current in the multilayer film as in the SAL bias method, and a high-sensitivity head can be used. realizable.

【発明の効果】本発明によれば、狭トラック化しても、
線形応答に必要なバイアスが充分印加でき、従来のヘッ
ドに比べ出力信号の振幅が大きく波形の上下対称性が良
好な出力信号が得られる。
According to the present invention, even if the track is narrowed,
The bias required for the linear response can be sufficiently applied, and an output signal having a larger amplitude of the output signal and a good vertical symmetry of the waveform as compared with the conventional head can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による永久磁石バイアス法のMR素子の
立面図
FIG. 1 is an elevation view of an MR element using a permanent magnet bias method according to the present invention.

【図2】本発明による永久磁石バイアス法のMR素子の
立面図
FIG. 2 is an elevation view of a permanent magnet bias method MR element according to the present invention.

【図3】本発明による永久磁石膜を用いたバイアス法、
及び従来のSALバイアス法について、トラック幅Tw
を変化させた場合のバイアス角
FIG. 3 shows a bias method using a permanent magnet film according to the present invention;
And the conventional SAL bias method, the track width Tw
Bias angle when changing

【図4】本発明による実施例のMRヘッドによる再生出
力信号振幅のトラック幅Tw依存性
FIG. 4 shows the dependence of the amplitude of a reproduction output signal from the MR head of the embodiment of the present invention on the track width Tw.

【図5】録再分離型ヘッドの立面図、およびMR素子の
拡大図
FIG. 5 is an elevation view of a recording / reproducing separation type head and an enlarged view of an MR element.

【図6】従来SALバイアス法MR素子の立面図FIG. 6 is an elevation view of a conventional SAL bias method MR element.

【図7】従来永久磁石バイアス法MR素子の立面図FIG. 7 is an elevation view of a conventional permanent magnet bias method MR element.

【図8】素子抵抗の電極高さ依存性FIG. 8: Dependence of element resistance on electrode height

【符号の説明】[Explanation of symbols]

1 MR膜、2 永久磁石膜、3 電極、4 MR膜の
磁化方向、6 MR素子のトラック幅、7 MR膜高
さ、8 電極高さ、9 記録媒体、10 反強磁性膜、
11 反強磁性膜の磁化容易軸 12 下部磁極兼上部
シールド膜、13 下部シールド膜、14 絶縁膜、1
5 薄膜誘導型記録ヘッド、16 磁気抵抗効果型再生
ヘッド、17 上部磁極、18 コイル、19 基板、
20 MR素子、21 非磁性膜、22 SAL膜。
1 MR film, 2 permanent magnet film, 3 electrodes, 4 MR film magnetization direction, 6 MR element track width, 7 MR film height, 8 electrode height, 9 recording medium, 10 antiferromagnetic film,
11 Easy magnetization axis of antiferromagnetic film 12 Lower pole / upper shield film, 13 Lower shield film, 14 Insulating film, 1
5 thin film induction type recording head, 16 magnetoresistive effect reproducing head, 17 upper magnetic pole, 18 coil, 19 substrate,
20 MR element, 21 non-magnetic film, 22 SAL film.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 MR膜のトラック幅方向両端部に永久磁
石膜を配置する構成の磁気抵抗効果型磁気ヘッドにおい
て、MR膜高さ方向の寸法をトラック幅より大きくし
て、前記永久磁石膜を用いて横バイアス磁界を印加する
ことを特徴とする磁気抵抗効果型磁気ヘッド。
In a magnetoresistive head having a configuration in which permanent magnet films are arranged at both ends in the track width direction of an MR film, a dimension in a height direction of the MR film is made larger than a track width to form the permanent magnet film. A magnetoresistance effect type magnetic head characterized by applying a lateral bias magnetic field by using the same.
【請求項2】 請求項1に記載の磁気抵抗効果型磁気ヘ
ッドにおいて、前記MR膜の磁化容易軸はほぼMR膜高
さ方向であり、前記永久磁石膜の磁化容易軸はほぼトラ
ック幅方向であることを特徴とする磁気抵抗効果型磁気
ヘッド。
2. The magnetoresistive head according to claim 1, wherein the easy axis of the MR film is substantially in the direction of the height of the MR film, and the easy axis of the permanent magnet film is substantially in the direction of the track width. A magneto-resistance effect type magnetic head, characterized in that:
【請求項3】 請求項1および2のいずれかに記載の磁
気抵抗効果型磁気ヘッドにおいて、前記MR膜の全面も
しくは一部に反強磁性膜を配置することを特徴とする磁
気抵抗効果型磁気ヘッド。
3. The magneto-resistance effect type magnetic head according to claim 1, wherein an anti-ferromagnetic film is disposed on the entire surface or a part of the MR film. head.
JP30468496A 1996-11-15 1996-11-15 Magnetoresistive magnetic head Expired - Fee Related JP3756593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30468496A JP3756593B2 (en) 1996-11-15 1996-11-15 Magnetoresistive magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30468496A JP3756593B2 (en) 1996-11-15 1996-11-15 Magnetoresistive magnetic head

Publications (2)

Publication Number Publication Date
JPH10149514A true JPH10149514A (en) 1998-06-02
JP3756593B2 JP3756593B2 (en) 2006-03-15

Family

ID=17935983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30468496A Expired - Fee Related JP3756593B2 (en) 1996-11-15 1996-11-15 Magnetoresistive magnetic head

Country Status (1)

Country Link
JP (1) JP3756593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7441324B2 (en) * 2003-03-21 2008-10-28 Headway Technologies, Inc. Method for preventing magnetic damage to a GMR head during back-end processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7441324B2 (en) * 2003-03-21 2008-10-28 Headway Technologies, Inc. Method for preventing magnetic damage to a GMR head during back-end processing

Also Published As

Publication number Publication date
JP3756593B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
US6392849B2 (en) Magnetic head with dual spin valve element for differential operation
JP2005203063A (en) Magnetic head and magnetic recording/reproducing device
US20110050211A1 (en) Trapezoidal reader for ultra high density magnetic recording
JP2003303406A (en) Magneto-resistive effect head and magnetic head
US6765770B2 (en) Apparatus and method of making a stabilized MR/GMR spin valve read element using longitudinal ferromagnetic exchange interactions
JP2003296907A (en) Magnetic disk unit using magnetic head having magneto- resistive effect film
US6917499B2 (en) Magnetoresistive magnetic sensor and magnetic storage apparatus
US6327123B1 (en) Magnetic head employing magnetoresistive sensor and magnetic storage and retrieval system
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
JPH0845030A (en) Magneto-resistive magnetic head
JP3756593B2 (en) Magnetoresistive magnetic head
JP2000011331A (en) Magnetoresistive element and thin film magnetic head
US6219213B1 (en) Magnetic head with magnetic tunnel element in which induced magnetic field changes relative angle of magnetization which affects tunnel current
JPH1196505A (en) Magnetic recording/reproducing method and device
JP2000076629A (en) Magnetoresistive effect type head, its manufacture and magnetic storage device
JP3581051B2 (en) Magnetic head and magnetic recording / reproducing apparatus using the same
JPH08203032A (en) Magneto-resistance effect reproducing head
JPH1027317A (en) Magnetic head
JP2008130112A (en) Magnetoresistance effect type reproduction magnetic head and magnetic recording device using the same
JPH11203634A (en) Magneto-resistive head
JP2838942B2 (en) Magnetoresistive head
JPH10222817A (en) Magneto-resistive sensor
JPH07169024A (en) Magneto-resistance effect type head and recording/ reproducing apparatus employing the same
JPH06215333A (en) Magnetic resistant effective type head and recording and reproducing device using the same
JPH09115114A (en) Magnetoresistance element, and magnetic head and magnetic recording and reproducing device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Effective date: 20050221

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050301

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050427

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Effective date: 20051222

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100106

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees