JP3756593B2 - Magnetoresistive magnetic head - Google Patents

Magnetoresistive magnetic head Download PDF

Info

Publication number
JP3756593B2
JP3756593B2 JP30468496A JP30468496A JP3756593B2 JP 3756593 B2 JP3756593 B2 JP 3756593B2 JP 30468496 A JP30468496 A JP 30468496A JP 30468496 A JP30468496 A JP 30468496A JP 3756593 B2 JP3756593 B2 JP 3756593B2
Authority
JP
Japan
Prior art keywords
film
bias
track width
permanent magnet
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30468496A
Other languages
Japanese (ja)
Other versions
JPH10149514A (en
Inventor
慶子 菊地
哲郎 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP30468496A priority Critical patent/JP3756593B2/en
Publication of JPH10149514A publication Critical patent/JPH10149514A/en
Application granted granted Critical
Publication of JP3756593B2 publication Critical patent/JP3756593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)

Description

【0001】
【産業上の利用分野】
本発明は記録媒体から磁気信号を読み取るための磁気抵抗効果型磁気ヘッドに関するものであって、特に高感度特性を有する横バイアス型のMR素子に係わる。
【0002】
【従来の技術】
磁気抵抗効果型磁気ヘッド(以下、MRヘッドと称する)は、記録媒体に高密度で記録されている磁気信号を読み取ることのできる磁気ヘッドとして従来から知られている。このヘッドは、記録時と再生時とでそれぞれ専用のヘッドを使用する録再分離型磁気ヘッドの再生専用ヘッドとして広く用いられている。
【0003】
このヘッドは磁気抵抗効果を示す材料で作られた磁気抵抗効果膜(以下、MR膜と称する)の電気抵抗が、外部磁界の強度及び方向の関数として変化することを利用して記録媒体からの磁気信号を検出するものである。様々な検出方法を用いるMRヘッドが開発されており、これらは従来用いられて記録再生装置の要件を満たしていた。
【0004】
MR膜が最適に動作するためには、方向の異なる2種類のバイアス磁界が与えられなければならない。一つは外部磁界に対する応答が線形性を有するように、MR膜の磁化を傾斜させるために印加する横バイアス磁界である。MRヘッドの出力信号は、センス電流とMR膜の磁化とのなす角(バイアス角)が45°程度の場合に、出力振幅が最大となり波形の上下対称性が最も良好となる。
【0005】
他のバイアス磁界は、MR膜における多磁区構造によって生ずるバルクハウゼンノイズを抑止するための縦バイアス磁界である。MR膜は異方性磁界が弱く磁区構造が不安定で、多磁区構造を取りやすい薄膜である。MR膜の磁区構造を安定化させるためには、MR膜の異方性磁界を強めるようにMR膜の磁化容易軸方向に縦バイアス磁界を印加する。縦バイアス磁界を印加する代わりに、MR膜の形状異方性磁界を強めるように磁化容易軸方向の寸法を他の寸法よりも大きくしても、MR膜の多磁区は抑制される。
【0006】
横バイアス磁界を印加する手段として、特開昭52−062417号公報には、図6のようにSALバイアス法を用いたMRヘッドが開示されている。SALバイアス法はもっとも一般的に使用されているバイアス法である。図6では、MR膜1に非磁性膜21を介して配置したSAL膜22の飽和磁化を利用してMR膜1に横バイアス磁界を印加してMR膜1の磁化4を傾斜させている。さらに、MR膜1に隣接する永久磁石膜2からMR膜1の磁化容易軸方向に縦バイアス磁界を印加して、MR膜の磁区構造を安定化させている。電極3は永久磁石膜2を介してMR膜にセンス電流を供給する手段である。このような構造で記録媒体9からの磁気信号をMR膜1で読みとっている。
【0007】
一方、特開昭52−100217号公報には、図7のような永久磁石バイアス法によるMRヘッドが開示されている。図7では、非磁性膜21を介してMR膜1に積層させた永久磁石膜2の磁石磁界を利用して横バイアス磁界を印加してMR膜1の磁化4を傾斜させている。さらに、MR膜1に隣接する永久磁石膜2からMR膜1の磁化容易軸方向に縦バイアス磁界を印加して、MR膜の磁区構造を安定化させている。
【0008】
記録再生装置には更に高い記録密度が要求され、トラック幅がますます狭くなっている。しかし、図6の従来SALバイアス法MR素子の立面図や図7の従来永久磁石バイアス法MR素子の立面図に示す従来のバイアス法ではより狭いトラック幅を有するMRヘッドを得ることが困難になっている。
【0009】
【発明が解決しようとする課題】
以下に従来のバイアス法の問題点を述べる。図6のSALバイアス法は、センス電流によってSAL膜の磁化を飽和させ、SAL膜からの漏洩磁界によりMR膜にバイアス磁界を印加する法である。このため、センス電流の大きさによりバイアス角が変化する。バイアス角とは、センス電流とMR膜の磁化とのなす角である。従って、センス電流の大きさにより出力の上下対称性が変動する。
【0010】
しかし、高記録密度化に伴いMR膜高さが低くなると、MR膜高さ方向の反磁界が増加し、充分な横バイアス磁界の印加のためにより大きなセンス電流を流す必要がある。一方、より大きなセンス電流を流すと、ジュール発熱によりMR素子の素子温度が上昇しMR膜の抵抗変化率が減少し、MRヘッドの出力信号も減少してしまう。以上の理由により、高記録密度ではSALバイアス法を用いて線形応答に必要なバイアス磁界を印加することが困難となる。
【0011】
一方、温度上昇抑制のために2×107A/cm2程度のセンス電流を流した場合、トラック幅が狭くなる程バイアス磁界が不十分となり、出力信号が減少する。
MRヘッドの出力信号としては、振幅が大きいだけでなく波形の上下対称性が良いことが要求される。バイアス角が45°からはずれると記録媒体の磁界に対するMRヘッドの応答が非線形になり、正負いずれかの信号に対応する振幅が他方より大きくなり、上下対称性が悪化する。MRヘッドの出力信号検出以後の電気回路による増幅処理などで信号として処理するためには、この正負の振幅差が平均振幅の20%程度以内であることが必要である。ところが、温度上昇抑制のために2×107A/cm2程度のセンス電流を流した場合、トラック幅が狭くなる程バイアス磁界が不十分となり、上下対称性が悪化してしまう。
【0012】
先行技術に開示されているもう一つのバイアス法は、図7のように非磁性膜21を介してMR膜1に積層させた永久磁石膜2の磁石磁界を利用して横バイアス磁界を印加する永久磁石バイアス法である。狭トラック化しても上述のSALバイアス法のようなジュール発熱による素子温度上昇の問題が生じないという利点がある。
【0013】
ただし、従来の永久磁石バイアス法はSALバイアス法に比べて出力信号が小さいという問題点があった。図7では、MR膜1の磁化容易軸方向がほぼトラック幅方向に、永久磁石膜の磁化容易軸がほぼMR膜高さ方向に向くように成膜される。そのため、記録媒体磁界の最も大きい浮上面近傍でのMR膜の磁化4が、永久磁石膜2によって強く固定され、SALバイアス法に比べて出力信号が小さくなってしまう。
【0014】
したがって、本発明は、狭トラック化しても、線形応答に必要なバイアス磁界を充分に印加でき、出力信号波形の上下対称性が良好な出力信号が得られるMRヘッドを提供するものである。
【0015】
【課題を解決するための手段】
本発明は、MR膜のトラック幅方向両端部に、電極及び永久磁石膜を配置し、前記MR膜のトラック幅方向に電流を流す構成の磁気抵抗効果型磁気ヘッドにおいて、前記MR膜の磁化容易軸はMR膜高さ方向であり、MR膜高さ方向の寸法を前記MR膜のトラック幅より大きくかつ前記電極高さよりも大きくし、前記永久磁石膜の磁化容易軸はトラック幅方向で、この永久磁石膜を用いて横バイアス磁界を印加することを特徴とするものである。
【0017】
また、本発明のMRヘッドは、前記MR膜の全面もしくは一部に反強磁性膜を配置することにより、MR膜の磁区構造を安定化しつつ、横バイアス磁界を印加することを特徴とする。
本発明では、前記反強磁性膜は、センス電流のほとんど流れない領域、あるいは浮上面から離れていて記録媒体の磁界が弱い領域に設けられていることが好ましい。
さらに、前記MR膜のトラック幅が2μm以下であることが好ましい。
【0018】
また、本発明のMRヘッドは、MR膜高さを電極高さより高くすることにより、磁区構造が安定で波形の上下対称性のよい出力信号が得られることを特徴とする。
【0019】
以下に本発明の作用を説明する。本発明による永久磁石バイアス法は、MR膜のトラック幅方向両端部に永久磁石膜を配置して横バイアス磁界を印加することにより、MR膜の浮上面近傍部分の磁化を回転しやすくして、従来の永久磁石バイアス法に比べて振幅の大きな出力信号が得られる。
【0020】
MR膜の磁区構造は、磁化容易軸方向の寸法(ここではMR膜高さ7)が他の寸法(ここではトラック幅6と膜厚)よりも大きい程安定となる。一方、記録媒体の磁界はMR膜高さ方向に急激に減衰するので、MR膜1の抵抗変化が出力信号電圧の差として検出される領域のMR膜高さ(ここでは電極高さ8)が小さい方が、より高い出力信号電圧が得られる。従って、図1のようにMR膜高さ7を電極高さ8より高くすると、磁区構造が安定で出力信号の高いMRヘッドが得られる。
【0021】
よって、本発明では図1のようにMR膜高さ7をトラック幅6に比べて充分大きくするとMR膜1の磁区構造が安定となり、磁区構造安定化のための縦バイアス磁界は不要である。
【0022】
以下では、本発明による永久磁石バイアス法と従来例のSALバイアス法との特性を比較した。
【0023】
図3に、本発明による永久磁石膜を用いたバイアス法、及び従来のSALバイアス法について、トラック幅Twを変化させた場合のバイアス角のシミュレーション結果を示す。ここで、電極高さは各トラック幅の60%として計算した。線形応答に望ましいバイアス角は、図にグレー領域で示したように45°程度である。
【0024】
従来のSALバイアス法は○印で示す。SAL膜の飽和磁化等の条件によって異なるが、MR膜高さ1.0μm程度以下ではMR膜高さ方向の反磁界が急増し、線形応答に必要なバイアス磁界を印加するために流すセンス電流も急増してしまう。例えば、10GB/in2相当(トラック幅0.5μm、MR膜高さ0.3μm)のMR膜に必要なバイアス磁界を印加するためには、SALバイアス法では2×108A/cm2程度のセンス電流を流さなければならない。
【0025】
MRヘッドに流すセンス電流を増加した場合、ジュール発熱により素子温度が上昇しMR膜の抵抗変化率が減少し、MRヘッドの出力信号も抵抗変化率に比例して減少してしまうという問題点がある。ジュール発熱はセンス電流密度の2乗に比例し、一般に温度上昇を摂氏15度程度以下に抑えるために、センス電流の上限は2×107A/cm2、望ましくは1×107A/cm2程度とされている。従って、SALバイアス法で10GB/in2相当のMR膜に必要バイアスを印加すると、発熱に依る出力信号低下に加え、摂氏1000度近い温度上昇によるMR素子の溶断を招く。
【0026】
一方、温度上昇抑制のために2×107A/cm2程度のセンス電流を流した場合、トラック幅が狭くなる程横バイアス磁界が不十分となり、10GB/in2相当では10°程度しかバイアスを印加できない。
【0027】
これに対し、●印で示す本発明は10GB/in2相当のMR膜に必要なバイアス磁界を印加できる。本発明は永久磁石膜による磁界で横バイアスを印加する法であり、図3から明らかなようにバイアス角はセンス電流の大きさに依らない。従って、SALバイアス法ではセンス電流の大きさに依り出力信号波形の上下対称性が変動するが、本発明では上下対称性がセンス電流に依存しないという特長を持つ。
【0028】
また、SALバイアス法ではジュール熱が主として膜厚方向にのみ放熱するのに比べ、本発明ではMR膜のMR膜高さが大きいためMR膜高さ方向にも放熱できる。このため、5×107A/cm2という高センス電流密度で使用しても素子の温度上昇は摂氏15度弱に抑えられた。
【0029】
ただし、本発明ではトラック幅が広くなる程MR膜中央付近への磁石膜による漏洩磁界は減少し、MR膜の磁化は磁化容易軸であるMR膜高さ方向を向き易くなる。図3からはトラック幅4μm以上で、この傾向が見られる。従って、本発明によるヘッドで線形応答に望ましいバイアス角を得るためには、トラック幅が狭い領域(図3からはトラック幅2μm以下)で用いることが望ましい。
【0030】
本発明の構造に対し、MR膜の一部に反強磁性膜を図2のように積層させると、トラック幅やセンス電流密度に依らず線形応答に望ましいバイアス角が得られた。これは、上述の永久磁石膜による磁界に加えて、反強磁性膜とMR膜との交換相互作用により横バイアス磁界が印加されたためである。
【0031】
図4に、従来SALバイアス法及び本発明による実施例のMRヘッドによる再生出力信号振幅のトラック幅Tw依存性を示す。ここで、センス電流は従来法、本発明法についてそれぞれ5×107A/cm2、2×107A/cm2とした。
【0032】
両法とも、出力信号はトラック幅にほぼ比例している。トラック幅4μmの場合を除いて、本発明の方が従来例より出力信号が大きい。また、従来例はトラック幅2μm未満で出力信号が急減した。
【0033】
出力信号は磁気抵抗変化を示すMR膜に流れるセンス電流に比例する。本発明ではMR膜単層でバイアスを印加することが可能であるため、SALバイアス法のような(SAL膜及び非磁性膜への)センス電流の分流に起因する効率の低下がなく、高感度なヘッドが実現できる。また、本発明ではMR膜のMR膜高さが高いため放熱性が良く、SALバイアス法の2.5倍の高センス電流密度で使用しても温度上昇は同程度に抑制できる。
さらに、MRヘッドの出力信号はバイアス角が45°程度の場合に出力信号振幅が最大となるが、従来例ではトラック幅が0.5μmまで狭くなるとバイアスが10°程度しか印加できない。この3点から、本発明は従来のSALバイアス法より出力信号が大きくなる。
【0034】
永久磁石膜のみを用いた実施例1でトラック幅3μm以上で出力信号が減少したのは、図3に示したように、トラック幅が広くなるとバイアスがかかり過ぎてしまうためである。これに対し反強磁性膜も併用した実施例2は、従来SALバイアス法および実施例1より出力信号が大きく、トラック幅3μm以上でもほぼトラック幅に比例して出力信号が増加する。
【0035】
これは、反強磁性膜も併用した実施例2では図3に示したように、反強磁性膜とMR膜との交換相互作用により、広いトラック幅でも線形応答に望ましいバイアス角が得られるためである。また、永久磁石膜のみの実施例1では、永久磁石膜近傍でのMR膜の磁化が永久磁石膜によって強く固定され、出力信号が小さくなってしまう。これに対し、反強磁性膜も併用した実施例2は、実施例1より弱い永久磁石膜でも充分横バイアス磁界が印加でき、実施例1より出力信号が増加した。反強磁性膜をMR膜の全面に積層させた場合には、さらに弱い永久磁石膜でも充分横バイアス磁界が印加できる。しかし全面に積層させると、記録媒体の磁界の最も大きい浮上面近傍でもMR膜の磁化が反強磁性膜によって強く固定され、実施例1に比べて出力信号が小さくなってしまう。このため、反強磁性膜を併用する場合には、図2のようにセンス電流のほとんど流れない領域、あるいは浮上面から離れていて記録媒体の磁界が弱い領域にパターニング積層させることが望ましい。
【0036】
MRヘッドの出力信号としては、振幅が大きいだけでなく波形の上下対称性が良いことが要求される。MRヘッドの信号検出以後の電気回路による増幅処理などで信号として処理するためには、この正負の振幅差が平均振幅の20%程度以内であることが必要である。
この上下対称性の基準を満たすトラック巾の範囲は、永久磁石膜のみを用いた実施例1では3μm以下、反強磁性膜も併用した実施例2では検討した全範囲、SALバイアス法では2μm以上であった。この範囲は図3にグレー領域で示した範囲にほぼ対応し、バイアス角45°程度でMRヘッドは磁界に対しての線形応答性が良好である。
【0037】
また、上下対称性のセンス電流依存性を調べるために、各法についてセンス電流を0.2×107A/cm2増加させて上下対称性の変動を測定した。その結果、本発明法ではいずれも変動が2%以内であったが、SALバイアス法では20%近く変動した。
【0038】
【実施例】
以下、本発明を実施例を参照しながら詳細に説明する。
(実施例1)
図1に本発明による永久磁石バイアス法のMR素子の立面図を示す。MR膜1はMR膜高さ方向に磁化容易軸方向をあわせて、且つトラック幅より長く形成する。MR膜1のトラック幅方向の両側に永久磁石膜1を配置して、MR膜高さ方向を向いているMR膜の磁化4を前記永久磁石膜により傾斜させる。MR膜1にセンス電流を供給するために永久磁石2上に電極3を配置する。以上の構造からなるMR素子で記録媒体9からの磁気信号を読みとることができる。尚、図1にかかるMR素子のMRヘッドにおける配置を図5に示す。
図5に録再分離型ヘッドの立面図、およびMR素子の拡大図20とを示す。録再分離型ヘッドは、基板19上に薄膜誘導型記録ヘッド15と磁気抵抗効果型再生ヘッド16とを積層したものである。
薄膜誘導型記録ヘッド15は上部磁極17と連結する下部磁極兼上部シールド膜12をコイル18で励磁して記録媒体に磁気情報の書き込みを行う。また、磁気抵抗効果型再生ヘッド16は下部磁極兼上部シールド膜12と下部シールド膜13の間に本発明のMR素子20を有する。各部位の間には絶縁膜14を設けるが図5では記載を省略する。
【0039】
MR素子20は、MR膜1のトラック幅方向の両端に永久磁石膜2を配置して、前記永久磁石膜2上に電極Mo3を配置して、MR膜の膜面に反強磁性膜10を配置構造からなる。ここでMR膜1はNiFeで、永久磁石膜2はCoPtで、電極3はMoで形成する。
【0040】
この時、トラック幅、即ち電極間隔は0.5〜4.0μmになるように形成する。MR膜のMR膜高さ7は20μm膜厚は25nmとした。上下のシールド膜の間隔(ギャップ長)は、従来法、本発明それぞれ0.25μm、0.23μmとした。磁石膜の膜厚は、従来法、本発明それぞれ50nm、25nmである。磁石膜の飽和磁化はいずれも0.7Tである。
センス電流を流す領域はトラック両端の電極の高さ8で規定する。MR素子20の抵抗は図8のような素子抵抗の電極高さ依存性を示すので、MR素子とは別に設けたRLG素子(Resistance Lapping Guide素子、抵抗をモニターして素子高さを規制してラッピングするための素子)を使用して素子抵抗を測定し、電極高さがトラック幅の60%となるように加工した。
【0041】
実際にMR素子上に形成した誘導型ヘッド15を用いて記録媒体に記録し、MR素子20の再生特性を検討した。このとき、誘導型ヘッドとしてはトラック幅3μm幅のヘッドを用いた。
センス電流密度は、従来ヘッドは2×107A/cm2に本発明ヘッドは5×107A/cm2とした。
各トラック幅に対してサンプルヘッドを20セット作製し、薄膜誘導型記録ヘッドに記録電流0.3ATを印加して測定を行い、平均値を図4に示した。
【0042】
この結果、図4に示すように、両法とも出力信号はトラック幅にほぼ比例している。トラック幅4μmの場合を除いて、本発明ヘッドの方が従来法より出力信号が大きい。また、従来法はトラック幅2μm未満で出力信号が急減した。
【0043】
出力信号は磁気抵抗変化を示すMR膜に流れるセンス電流に比例する。本発明法ではMR膜単層でバイアスを印加することが可能であるため、SALバイアス法のような(SAL膜及び非磁性膜への)センス電流の分流に起因する効率の低下がなく、高感度なヘッドが実現できる。また、本発明法ではMR膜のMR膜高さが高いため放熱性が良く、SALバイアス法の2.5倍の高センス電流密度で使用しても温度上昇は同程度に抑制できる。
さらに、MRヘッドの信号はバイアス角が45°程度の場合に出力信号振幅が最大となるが、従来法ではトラック幅が0.5μmまで狭くなるとバイアスが10°程度しか印加できない。この3点から、本発明法は従来SALバイアス法より出力信号が大きくなった。
【0044】
本発明で、トラック幅3μm以上で出力信号が減少したのは、図3に示したように、トラック幅が広くなるとバイアスがかかり過ぎてしまったためである。
【0045】
MRヘッドの出力信号としては、振幅が大きいだけでなく波形の上下対称性が良いことが要求される。MRヘッドの信号検出以後の電気回路による増幅処理などで信号として処理するためには、この正負の振幅差が平均振幅の20%程度であることが必要である。
この上下対称性の基準を満たすトラック巾の範囲は、本発明法では3μm以下SALバイアス法では2μm以上であった。バイアス角をシミュレーションで予測した図3と比較すると、この範囲はグレー領域で示した範囲にほぼ対応し、バイアス角45°程度でMRヘッドは磁界に対しての線形応答性が良好である。
【0046】
次に、上下対称性のセンス電流依存性を調べるために、各法についてセンス電流を0.2×107A/cm2増加させて上下対称性の変動を測定した。その結果、本発明法では変動は2%以内であったが、SALバイアス法では20%近く変動した。
【0047】
また、本発明法でもMR素子における多磁区構造に起因するバルクハウゼンノイズは観測されなかった。これは、磁化容易軸方向の寸法であるMR膜高さが20μmと他の寸法(トラック巾0.5〜4μm、MR膜厚25nm)よりも充分大きく、MR膜が単磁区状態に保たれたためである。
【0048】
このように、本実施例では狭トラック化しても、線形応答に必要なバイアスが充分印加でき、従来のヘッドに比べ出力信号の振幅が大きく波形の上下対称性が良好な出力信号が得られる。これは、本発明法ではMR膜単層でバイアスを印加することが可能であるため、SALバイアス法のようなセンス電流の分流に起因する効率の低下がなく、高感度なヘッドが実現できる。
【0049】
(実施例2)
図2に本発明による永久磁石バイアス法のMR素子の立面図を示す。実施例1に対して、図2はMR膜1の一部に反強磁性膜10をパターニング積層させたMR素子を作成した。ここで、永久磁石膜2は飽和磁化0.4TのCoNi系磁石膜を用いた。また、反強磁性膜としてFeMnを用いた。
【0050】
この結果、図3に示したように反強磁性膜も併用した実施例2は、従来SALバイアス法および実施例1より出力信号が増加した。また、永久磁石膜のみを用いた実施例1ではトラック幅3μm以上で出力信号が減少したが、反強磁性膜も併用した実施例2ではトラック幅3μm以上でもほぼトラック幅に比例して出力信号が増加した。
【0051】
これは、図3に示したように、反強磁性膜10とMR膜1との交換相互作用により、広いトラック幅でも線形応答に望ましいバイアス角が得られるためである。また、永久磁石膜2のみを用いた実施例1では、永久磁石膜近傍でのMR膜の磁化が永久磁石膜によって強く固定され、出力信号が小さくなってしまう。これに対し、反強磁性膜10も併用した実施例2は、実施例1より弱い永久磁石膜でも充分横バイアス磁界が印加でき、実施例1より出力信号が増加した。
【0052】
反強磁性膜をMR膜の全面に積層させた場合には、さらに弱い永久磁石膜でも充分横バイアス磁界が印加できる。しかし全面に積層させると、記録媒体の磁界の最も大きい浮上面近傍でもMR膜の磁化が反強磁性膜によって強く固定され、実施例1に比べて出力信号が小さくなってしまう。このため、反強磁性膜を併用する場合には、図2のようにセンス電流の流れない領域にパターニング積層させることが望ましい。
【0053】
MRヘッドの出力信号としては、振幅が大きいだけでなく波形の上下対称性が良いことが要求される。MRヘッドの信号検出以後の電気回路による増幅処理などで信号として処理するためには、この正負の振幅差が平均振幅の20%程度以内であることが必要である。
この上下対称性の基準を満たすトラック巾の範囲は、永久磁石膜のみを用いた実施例1では3μm以下、反強磁性膜も併用した実施例2では検討した全範囲、SALバイアス法では2μm以上であった。この範囲は図3にグレー領域で示した範囲にほぼ対応し、バイアス角45°程度でMRヘッドは磁界に対しての線形応答性が良好である。
【0054】
また、上下対称性のセンス電流依存性を調べるために、各法についてセンス電流を0.2×107A/cm2増加させて上下対称性の変動を測定した。その結果、本発明法ではいずれも変動が2%以内であったが、SALバイアス法では20%近く変動した。これは、SALバイアス法は、センス電流によってSAL膜を飽和させ、SAL膜からの漏洩磁界によりMR膜にバイアスを印加する法であり、センス電流の大きさによりバイアス角が変化するためである。
この結果、図4に示すように、両法とも出力信号はトラック幅にほぼ比例している。トラック幅4μmの場合を除いて、本発明ヘッドの方が従来法より出力信号が大きい。また、従来法はトラック幅2μm未満で出力信号が急減した。
【0055】
また、本発明法でもMR素子における多磁区構造に起因するバルクハウゼンノイズは観測されない。これは、磁化容易軸方向の寸法であるMR膜高さが20μmと他の寸法(トラック巾0.5〜4μm、MR膜厚25nm)よりも充分大きく、MR膜が単磁区状態に保たれたためである。
【0056】
このように、本実施例では狭トラック化しても、線形応答に必要なバイアスが充分印加でき、従来のヘッドに比べ出力信号の振幅が大きく波形の上下対称性が良好な出力信号が得られる。これは、本発明法ではMR膜単層でバイアスを印加することが可能であるため、SALバイアス法のような多層膜におけるセンス電流の分流に起因する効率の低下がなく、高感度なヘッドが実現できる。
【発明の効果】
本発明によれば、狭トラック化しても、線形応答に必要なバイアスが充分印加でき、従来のヘッドに比べ出力信号の振幅が大きく波形の上下対称性が良好な出力信号が得られる。
【図面の簡単な説明】
【図1】本発明による永久磁石バイアス法のMR素子の立面図
【図2】本発明による永久磁石バイアス法のMR素子の立面図
【図3】本発明による永久磁石膜を用いたバイアス法、及び従来のSALバイアス法について、トラック幅Twを変化させた場合のバイアス角
【図4】本発明による実施例のMRヘッドによる再生出力信号振幅のトラック幅Tw依存性
【図5】録再分離型ヘッドの立面図、およびMR素子の拡大図
【図6】従来SALバイアス法MR素子の立面図
【図7】従来永久磁石バイアス法MR素子の立面図
【図8】素子抵抗の電極高さ依存性
【符号の説明】
1 MR膜、2 永久磁石膜、3 電極、4 MR膜の磁化方向、
6 MR素子のトラック幅、7 MR膜高さ、
8 電極高さ、9 記録媒体、10 反強磁性膜、
11 反強磁性膜の磁化容易軸 12 下部磁極兼上部シールド膜、
13 下部シールド膜、14 絶縁膜、15 薄膜誘導型記録ヘッド、
16 磁気抵抗効果型再生ヘッド、17 上部磁極、18 コイル、
19 基板、20 MR素子、21 非磁性膜、22 SAL膜。
[0001]
[Industrial application fields]
The present invention relates to a magnetoresistive head for reading a magnetic signal from a recording medium, and more particularly to a laterally biased MR element having high sensitivity characteristics.
[0002]
[Prior art]
A magnetoresistive head (hereinafter referred to as an MR head) is conventionally known as a magnetic head capable of reading a magnetic signal recorded on a recording medium at a high density. This head is widely used as a read-only head of a recording / playback separation type magnetic head that uses a dedicated head for recording and playback.
[0003]
This head utilizes the fact that the electrical resistance of a magnetoresistive film (hereinafter referred to as MR film) made of a material exhibiting a magnetoresistive effect changes as a function of the intensity and direction of an external magnetic field. A magnetic signal is detected. MR heads using various detection methods have been developed, and these have been used in the past to satisfy the requirements of the recording / reproducing apparatus.
[0004]
In order for the MR film to operate optimally, two types of bias magnetic fields having different directions must be applied. One is a lateral bias magnetic field applied to tilt the magnetization of the MR film so that the response to the external magnetic field has linearity. When the angle (bias angle) between the sense current and the magnetization of the MR film is about 45 °, the output amplitude of the MR head has the maximum output amplitude and the best vertical symmetry of the waveform.
[0005]
The other bias magnetic field is a longitudinal bias magnetic field for suppressing Barkhausen noise caused by the multi-domain structure in the MR film. The MR film is a thin film in which the anisotropic magnetic field is weak and the magnetic domain structure is unstable, and a multi-domain structure is easily obtained. In order to stabilize the magnetic domain structure of the MR film, a longitudinal bias magnetic field is applied in the direction of the easy axis of magnetization of the MR film so as to increase the anisotropic magnetic field of the MR film. Even if the dimension in the easy magnetization axis direction is made larger than the other dimensions so as to increase the shape anisotropic magnetic field of the MR film instead of applying the longitudinal bias magnetic field, the multi-domain of the MR film is suppressed.
[0006]
As means for applying a lateral bias magnetic field, Japanese Patent Laid-Open No. 52-062417 discloses an MR head using the SAL bias method as shown in FIG. The SAL bias method is the most commonly used bias method. In FIG. 6, the magnetization 4 of the MR film 1 is tilted by applying a lateral bias magnetic field to the MR film 1 using the saturation magnetization of the SAL film 22 disposed on the MR film 1 via the nonmagnetic film 21. Further, a longitudinal bias magnetic field is applied in the direction of the easy axis of the MR film 1 from the permanent magnet film 2 adjacent to the MR film 1 to stabilize the magnetic domain structure of the MR film. The electrode 3 is a means for supplying a sense current to the MR film via the permanent magnet film 2. With such a structure, the magnetic signal from the recording medium 9 is read by the MR film 1.
[0007]
On the other hand, Japanese Patent Application Laid-Open No. 52-100197 discloses an MR head using a permanent magnet bias method as shown in FIG. In FIG. 7, the magnetization 4 of the MR film 1 is tilted by applying a lateral bias magnetic field using the magnetic field of the permanent magnet film 2 laminated on the MR film 1 via the nonmagnetic film 21. Further, a longitudinal bias magnetic field is applied in the direction of the easy axis of the MR film 1 from the permanent magnet film 2 adjacent to the MR film 1 to stabilize the magnetic domain structure of the MR film.
[0008]
The recording / reproducing apparatus is required to have a higher recording density, and the track width is becoming narrower. However, it is difficult to obtain an MR head having a narrower track width by the conventional bias method shown in the elevation view of the conventional SAL bias MR element in FIG. 6 or the elevation view of the conventional permanent magnet bias MR element in FIG. It has become.
[0009]
[Problems to be solved by the invention]
The problems of the conventional bias method are described below. The SAL bias method in FIG. 6 is a method in which the magnetization of the SAL film is saturated by a sense current and a bias magnetic field is applied to the MR film by a leakage magnetic field from the SAL film. For this reason, the bias angle changes depending on the magnitude of the sense current. The bias angle is an angle formed by the sense current and the magnetization of the MR film. Therefore, the vertical symmetry of the output varies depending on the magnitude of the sense current.
[0010]
However, when the MR film height decreases as the recording density increases, the demagnetizing field in the MR film height direction increases, and it is necessary to flow a larger sense current in order to apply a sufficient lateral bias magnetic field. On the other hand, when a larger sense current is passed, the element temperature of the MR element rises due to Joule heat generation, the resistance change rate of the MR film decreases, and the output signal of the MR head also decreases. For the above reasons, it is difficult to apply a bias magnetic field necessary for linear response using the SAL bias method at a high recording density.
[0011]
On the other hand, 2 × 10 for temperature rise suppression7A / cm2When a sense current of a certain level is applied, the bias magnetic field becomes insufficient and the output signal decreases as the track width becomes narrower.
The output signal of the MR head is required not only to have a large amplitude but also to have a good vertical symmetry of the waveform. When the bias angle deviates from 45 °, the response of the MR head to the magnetic field of the recording medium becomes nonlinear, the amplitude corresponding to either positive or negative signal becomes larger than the other, and the vertical symmetry deteriorates. In order to process it as a signal by amplification processing by an electric circuit after detection of the output signal of the MR head, it is necessary that this positive / negative amplitude difference is within about 20% of the average amplitude. However, 2 × 10 to suppress temperature rise7A / cm2When a sense current of a certain level is applied, the bias magnetic field becomes insufficient as the track width becomes narrower, and the vertical symmetry deteriorates.
[0012]
As another bias method disclosed in the prior art, a lateral bias magnetic field is applied using a magnetic field of a permanent magnet film 2 laminated on an MR film 1 via a nonmagnetic film 21 as shown in FIG. This is a permanent magnet bias method. Even if the track is narrowed, there is an advantage that the problem of an increase in element temperature due to Joule heat generation as in the above-described SAL bias method does not occur.
[0013]
However, the conventional permanent magnet bias method has a problem that the output signal is smaller than that of the SAL bias method. In FIG. 7, the MR film 1 is formed so that the easy axis direction of the MR film 1 is substantially in the track width direction and the easy axis of the permanent magnet film is substantially in the MR film height direction. Therefore, the magnetization 4 of the MR film in the vicinity of the air bearing surface where the magnetic field of the recording medium is the largest is strongly fixed by the permanent magnet film 2, and the output signal becomes smaller compared to the SAL bias method.
[0014]
Therefore, the present invention provides an MR head capable of sufficiently applying a bias magnetic field necessary for linear response even when the track is narrowed, and obtaining an output signal having excellent vertical symmetry of the output signal waveform.
[0015]
[Means for Solving the Problems]
  In the present invention, both ends of the MR film in the track width direction are, Electrodes andPlace a permanent magnet film,Current flows in the track width direction of the MR film.In the magnetoresistive effect type magnetic head having the configuration,The easy axis of magnetization of the MR film is the MR film height direction,MR film height direction dimensionOf the MR filmGreater than track widthAnd the axis of easy magnetization of the permanent magnet film is in the track width direction.A lateral bias magnetic field is applied using a permanent magnet film.
[0017]
  The MR head of the present invention is characterized in that a transverse bias magnetic field is applied while stabilizing the magnetic domain structure of the MR film by disposing an antiferromagnetic film on the entire surface or a part of the MR film.
  In the present invention, it is preferable that the antiferromagnetic film is provided in a region where the sense current hardly flows or a region away from the air bearing surface and having a weak magnetic field of the recording medium.
  Furthermore, the track width of the MR film is preferably 2 μm or less.
[0018]
The MR head according to the present invention is characterized in that an output signal having a stable magnetic domain structure and good waveform vertical symmetry can be obtained by making the MR film height higher than the electrode height.
[0019]
The operation of the present invention will be described below. In the permanent magnet bias method according to the present invention, the permanent magnet film is disposed on both ends of the MR film in the track width direction and a lateral bias magnetic field is applied, thereby facilitating rotation of the magnetization in the vicinity of the air bearing surface of the MR film, Compared with the conventional permanent magnet bias method, an output signal having a large amplitude can be obtained.
[0020]
The magnetic domain structure of the MR film becomes more stable as the dimension in the easy axis direction (here, MR film height 7) is larger than the other dimensions (here, track width 6 and film thickness). On the other hand, since the magnetic field of the recording medium is abruptly attenuated in the MR film height direction, the MR film height (here, the electrode height 8) in the region where the resistance change of the MR film 1 is detected as a difference in output signal voltage is obtained. A smaller value provides a higher output signal voltage. Accordingly, when the MR film height 7 is made higher than the electrode height 8 as shown in FIG. 1, an MR head having a stable magnetic domain structure and a high output signal can be obtained.
[0021]
Therefore, in the present invention, when the MR film height 7 is sufficiently larger than the track width 6 as shown in FIG. 1, the magnetic domain structure of the MR film 1 becomes stable, and a longitudinal bias magnetic field for stabilizing the magnetic domain structure is unnecessary.
[0022]
Hereinafter, the characteristics of the permanent magnet bias method according to the present invention and the conventional SAL bias method are compared.
[0023]
FIG. 3 shows a simulation result of the bias angle when the track width Tw is changed in the bias method using the permanent magnet film according to the present invention and the conventional SAL bias method. Here, the electrode height was calculated as 60% of each track width. A desirable bias angle for the linear response is about 45 ° as shown in the gray region in the figure.
[0024]
The conventional SAL bias method is indicated by a circle. Although it depends on conditions such as the saturation magnetization of the SAL film, the demagnetizing field in the MR film height direction increases rapidly when the MR film height is about 1.0 μm or less, and the sense current that flows to apply the bias magnetic field necessary for linear response is also It will increase rapidly. For example, 10GB / in2In order to apply a necessary bias magnetic field to a corresponding MR film (track width 0.5 μm, MR film height 0.3 μm), the SAL bias method uses 2 × 108A / cm2About a sense current must be passed.
[0025]
When the sense current passed through the MR head is increased, the element temperature rises due to Joule heating, the resistance change rate of the MR film decreases, and the output signal of the MR head also decreases in proportion to the resistance change rate. is there. Joule heat generation is proportional to the square of the sense current density, and generally the upper limit of the sense current is 2 × 10 in order to suppress the temperature rise to about 15 degrees Celsius or less.7A / cm2, Preferably 1 × 107A / cm2It is said to be about. Therefore, 10 GB / in by the SAL bias method2When a necessary bias is applied to a considerable MR film, in addition to a decrease in output signal due to heat generation, the MR element is blown by a temperature increase of nearly 1000 degrees Celsius.
[0026]
On the other hand, 2 × 10 for temperature rise suppression7A / cm2When a sense current of a certain level is applied, the lateral bias magnetic field becomes insufficient as the track width becomes narrower, and 10 GB / in2The bias can be applied only about 10 °.
[0027]
On the other hand, the present invention indicated by ● is 10 GB / in.2A necessary bias magnetic field can be applied to the corresponding MR film. The present invention is a method of applying a lateral bias with a magnetic field generated by a permanent magnet film, and as is apparent from FIG. 3, the bias angle does not depend on the magnitude of the sense current. Therefore, although the vertical symmetry of the output signal waveform varies depending on the magnitude of the sense current in the SAL bias method, the present invention has a feature that the vertical symmetry does not depend on the sense current.
[0028]
In the SAL bias method, Joule heat is mainly dissipated only in the film thickness direction. In the present invention, since the MR film has a large MR film height, the heat can also be dissipated in the MR film height direction. For this reason, 5 × 107A / cm2Even when used at such a high sense current density, the temperature rise of the device was suppressed to less than 15 degrees Celsius.
[0029]
However, in the present invention, as the track width becomes wider, the leakage magnetic field due to the magnet film near the center of the MR film decreases, and the magnetization of the MR film tends to point in the MR film height direction, which is the easy axis of magnetization. FIG. 3 shows this tendency when the track width is 4 μm or more. Therefore, in order to obtain a desired bias angle for linear response with the head according to the present invention, it is desirable to use it in a region where the track width is narrow (the track width is 2 μm or less from FIG. 3).
[0030]
When an antiferromagnetic film is laminated on a part of the MR film as shown in FIG. 2 with respect to the structure of the present invention, a desirable bias angle for a linear response is obtained regardless of the track width and sense current density. This is because a lateral bias magnetic field is applied by the exchange interaction between the antiferromagnetic film and the MR film in addition to the magnetic field generated by the permanent magnet film.
[0031]
FIG. 4 shows the track width Tw dependence of the reproduction output signal amplitude by the MR head of the conventional SAL bias method and the embodiment according to the present invention. Here, the sense current is 5 × 10 for the conventional method and the method of the present invention.7A / cm22 × 107A / cm2It was.
[0032]
In both methods, the output signal is approximately proportional to the track width. Except for the case where the track width is 4 μm, the present invention has a larger output signal than the conventional example. In the conventional example, the output signal sharply decreased when the track width was less than 2 μm.
[0033]
The output signal is proportional to the sense current flowing through the MR film showing the magnetoresistance change. In the present invention, since it is possible to apply a bias with a single MR film layer, there is no reduction in efficiency due to the shunting of the sense current (to the SAL film and the nonmagnetic film) as in the SAL bias method, and high sensitivity. Can be realized. Further, in the present invention, the MR film height of the MR film is high, so that the heat dissipation is good, and even if it is used at a sense current density 2.5 times higher than that of the SAL bias method, the temperature rise can be suppressed to the same extent.
Further, the output signal amplitude of the MR head output signal becomes maximum when the bias angle is about 45 °, but in the conventional example, when the track width is narrowed to 0.5 μm, the bias can be applied only about 10 °. From these three points, the output signal of the present invention is larger than that of the conventional SAL bias method.
[0034]
In Example 1 using only the permanent magnet film, the output signal decreased when the track width was 3 μm or more, as shown in FIG. 3, because the bias was applied too much when the track width was widened. On the other hand, in Example 2, which also uses an antiferromagnetic film, the output signal is larger than that in the conventional SAL bias method and Example 1, and the output signal increases almost in proportion to the track width even when the track width is 3 μm or more.
[0035]
This is because, in Example 2, which also uses an antiferromagnetic film, as shown in FIG. 3, a desirable bias angle for linear response can be obtained even with a wide track width due to the exchange interaction between the antiferromagnetic film and the MR film. It is. Further, in Example 1 with only the permanent magnet film, the magnetization of the MR film in the vicinity of the permanent magnet film is strongly fixed by the permanent magnet film, and the output signal becomes small. On the other hand, in Example 2, which also used an antiferromagnetic film, a lateral bias magnetic field could be applied sufficiently even with a weaker permanent magnet film than in Example 1, and the output signal increased compared to Example 1. When the antiferromagnetic film is laminated on the entire surface of the MR film, a lateral bias magnetic field can be sufficiently applied even with a weaker permanent magnet film. However, when laminated on the entire surface, the magnetization of the MR film is strongly fixed by the antiferromagnetic film even in the vicinity of the air bearing surface where the magnetic field of the recording medium is the largest, and the output signal becomes smaller than in the first embodiment. Therefore, when an antiferromagnetic film is used in combination, it is desirable to pattern and laminate in a region where the sense current hardly flows as shown in FIG. 2 or a region away from the air bearing surface and where the magnetic field of the recording medium is weak.
[0036]
The output signal of the MR head is required not only to have a large amplitude but also to have a good vertical symmetry of the waveform. In order to process it as a signal by an amplification process by an electric circuit after the signal detection of the MR head, it is necessary that this positive / negative amplitude difference is within about 20% of the average amplitude.
The range of the track width that satisfies this criterion of vertical symmetry is 3 μm or less in Example 1 using only a permanent magnet film, the entire range studied in Example 2 that also uses an antiferromagnetic film, and 2 μm or more in the SAL bias method. Met. This range substantially corresponds to the range shown by the gray area in FIG. 3, and the MR head has a good linear response to a magnetic field at a bias angle of about 45 °.
[0037]
In addition, in order to investigate the dependence of vertical symmetry on the sense current, the sense current is set to 0.2 × 10 4 for each method.7A / cm2Increasing and measuring the variation of vertical symmetry. As a result, in all the methods of the present invention, the variation was within 2%, but in the SAL bias method, the variation was nearly 20%.
[0038]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
(Example 1)
FIG. 1 is an elevation view of an MR element of the permanent magnet bias method according to the present invention. The MR film 1 is formed longer than the track width with the easy axis direction aligned with the MR film height direction. The permanent magnet film 1 is disposed on both sides of the MR film 1 in the track width direction, and the magnetization 4 of the MR film facing the MR film height direction is tilted by the permanent magnet film. An electrode 3 is disposed on the permanent magnet 2 in order to supply a sense current to the MR film 1. A magnetic signal from the recording medium 9 can be read by the MR element having the above structure. The arrangement of the MR element according to FIG. 1 in the MR head is shown in FIG.
FIG. 5 shows an elevation view of the recording / reproducing separation type head and an enlarged view 20 of the MR element. The recording / reproducing head has a thin film induction recording head 15 and a magnetoresistive reproducing head 16 laminated on a substrate 19.
The thin film induction type recording head 15 excites a lower magnetic pole / upper shield film 12 connected to the upper magnetic pole 17 with a coil 18 to write magnetic information on a recording medium. The magnetoresistive read head 16 has the MR element 20 of the present invention between the lower magnetic pole / upper shield film 12 and the lower shield film 13. An insulating film 14 is provided between each part, but the description is omitted in FIG.
[0039]
In the MR element 20, the permanent magnet film 2 is disposed on both ends of the MR film 1 in the track width direction, the electrode Mo3 is disposed on the permanent magnet film 2, and the antiferromagnetic film 10 is disposed on the film surface of the MR film. It consists of an arrangement structure. Here, the MR film 1 is made of NiFe, the permanent magnet film 2 is made of CoPt, and the electrode 3 is made of Mo.
[0040]
At this time, the track width, that is, the electrode interval is formed to be 0.5 to 4.0 μm. The MR film height 7 of the MR film was 20 μm and the film thickness was 25 nm. The distance (gap length) between the upper and lower shield films was 0.25 μm and 0.23 μm, respectively, in the conventional method and the present invention. The thickness of the magnet film is 50 nm and 25 nm, respectively, in the conventional method and the present invention. The saturation magnetization of each magnet film is 0.7T.
The region through which the sense current flows is defined by the height 8 of the electrodes at both ends of the track. Since the resistance of the MR element 20 shows the electrode height dependency of the element resistance as shown in FIG. 8, an RLG element (Resistance Lapping Guide element provided separately from the MR element, which monitors the resistance and regulates the element height. The element resistance was measured using an element for lapping, and the electrode height was processed to be 60% of the track width.
[0041]
Recording was performed on a recording medium using the induction head 15 actually formed on the MR element, and the reproduction characteristics of the MR element 20 were examined. At this time, a head having a track width of 3 μm was used as the induction head.
The sense current density is 2 × 10 for the conventional head7A / cm2The head of the present invention is 5 × 107A / cm2It was.
20 sets of sample heads were prepared for each track width, measurement was performed by applying a recording current of 0.3 AT to the thin film induction recording head, and the average value is shown in FIG.
[0042]
As a result, as shown in FIG. 4, the output signal is approximately proportional to the track width in both methods. Except for the case where the track width is 4 μm, the head of the present invention has a larger output signal than the conventional method. In the conventional method, the output signal sharply decreased when the track width was less than 2 μm.
[0043]
The output signal is proportional to the sense current flowing through the MR film showing the magnetoresistance change. In the method of the present invention, since it is possible to apply a bias with a single layer of the MR film, there is no reduction in efficiency due to the shunting of the sense current (to the SAL film and the nonmagnetic film) as in the SAL bias method. A sensitive head can be realized. Further, in the method of the present invention, the MR film height of the MR film is high, so the heat dissipation is good, and even when used at a sense current density 2.5 times higher than that of the SAL bias method, the temperature rise can be suppressed to the same extent.
Further, the MR head signal has the maximum output signal amplitude when the bias angle is about 45 °, but the conventional method can only apply a bias of about 10 ° when the track width is narrowed to 0.5 μm. From these three points, the output signal of the method of the present invention is larger than that of the conventional SAL bias method.
[0044]
In the present invention, the reason why the output signal is decreased when the track width is 3 μm or more is that, as shown in FIG. 3, the bias is excessively applied when the track width is widened.
[0045]
The output signal of the MR head is required not only to have a large amplitude but also to have a good vertical symmetry of the waveform. In order to process it as a signal in an amplification process by an electric circuit after signal detection of the MR head, it is necessary that this positive / negative amplitude difference is about 20% of the average amplitude.
The range of the track width satisfying this vertical symmetry criterion was 3 μm or less in the method of the present invention and 2 μm or more in the SAL bias method. Compared with FIG. 3 in which the bias angle is predicted by simulation, this range substantially corresponds to the range indicated by the gray region, and the MR head has a good linear response to a magnetic field at a bias angle of about 45 °.
[0046]
Next, in order to investigate the dependence of the vertical symmetry on the sense current, the sense current is set to 0.2 × 10 10 for each method.7A / cm2Increasing and measuring the variation of vertical symmetry. As a result, in the method of the present invention, the variation was within 2%, but in the SAL bias method, the variation was nearly 20%.
[0047]
In the method of the present invention, Barkhausen noise due to the multi-domain structure in the MR element was not observed. This is because the MR film height, which is the dimension in the direction of the easy axis of magnetization, is 20 μm, which is sufficiently larger than other dimensions (track width 0.5 to 4 μm, MR film thickness 25 nm), and the MR film is maintained in a single magnetic domain state. It is.
[0048]
As described above, in this embodiment, even if the track is narrowed, a bias necessary for the linear response can be sufficiently applied, and an output signal having a larger amplitude of the output signal and better waveform vertical symmetry than the conventional head can be obtained. This is because, in the method of the present invention, it is possible to apply a bias with a single layer of MR film, so that there is no decrease in efficiency due to the shunting of the sense current as in the SAL bias method, and a highly sensitive head can be realized.
[0049]
(Example 2)
FIG. 2 shows an elevation view of the MR element of the permanent magnet bias method according to the present invention. In contrast to Example 1, FIG. 2 produced an MR element in which an antiferromagnetic film 10 was patterned and laminated on a part of the MR film 1. Here, the permanent magnet film 2 is a CoNi magnet film having a saturation magnetization of 0.4 T. Further, FeMn was used as the antiferromagnetic film.
[0050]
As a result, as shown in FIG. 3, the output signal of Example 2 which also uses the antiferromagnetic film was increased compared to the conventional SAL bias method and Example 1. In Example 1 using only the permanent magnet film, the output signal decreased at a track width of 3 μm or more. In Example 2 using an antiferromagnetic film, the output signal was almost proportional to the track width even at a track width of 3 μm or more. increased.
[0051]
This is because, as shown in FIG. 3, the exchange angle between the antiferromagnetic film 10 and the MR film 1 provides a bias angle desirable for linear response even with a wide track width. In Example 1 using only the permanent magnet film 2, the magnetization of the MR film in the vicinity of the permanent magnet film is strongly fixed by the permanent magnet film, and the output signal becomes small. On the other hand, in Example 2 in which the antiferromagnetic film 10 was also used, a transverse bias magnetic field could be applied sufficiently even with a weaker permanent magnet film than in Example 1, and the output signal increased compared to Example 1.
[0052]
When the antiferromagnetic film is laminated on the entire surface of the MR film, a lateral bias magnetic field can be sufficiently applied even with a weaker permanent magnet film. However, when laminated on the entire surface, the magnetization of the MR film is strongly fixed by the antiferromagnetic film even in the vicinity of the air bearing surface where the magnetic field of the recording medium is the largest, and the output signal becomes smaller than in the first embodiment. Therefore, when an antiferromagnetic film is used in combination, it is desirable to pattern and laminate in a region where no sense current flows as shown in FIG.
[0053]
The output signal of the MR head is required not only to have a large amplitude but also to have a good vertical symmetry of the waveform. In order to process it as a signal by an amplification process by an electric circuit after the signal detection of the MR head, it is necessary that this positive / negative amplitude difference is within about 20% of the average amplitude.
The range of the track width that satisfies this criterion of vertical symmetry is 3 μm or less in Example 1 using only a permanent magnet film, the entire range studied in Example 2 that also uses an antiferromagnetic film, and 2 μm or more in the SAL bias method. Met. This range substantially corresponds to the range shown by the gray area in FIG. 3, and the MR head has a good linear response to a magnetic field at a bias angle of about 45 °.
[0054]
In addition, in order to investigate the dependence of vertical symmetry on the sense current, the sense current is set to 0.2 × 10 4 for each method.7A / cm2Increasing and measuring the variation of vertical symmetry. As a result, in all the methods of the present invention, the variation was within 2%, but in the SAL bias method, the variation was nearly 20%. This is because the SAL bias method is a method in which the SAL film is saturated by a sense current and a bias is applied to the MR film by a leakage magnetic field from the SAL film, and the bias angle changes depending on the magnitude of the sense current.
As a result, as shown in FIG. 4, the output signal is approximately proportional to the track width in both methods. Except for the case where the track width is 4 μm, the head of the present invention has a larger output signal than the conventional method. In the conventional method, the output signal sharply decreased when the track width was less than 2 μm.
[0055]
In the method of the present invention, Barkhausen noise due to the multi-domain structure in the MR element is not observed. This is because the MR film height, which is the dimension in the direction of the easy axis of magnetization, is 20 μm, which is sufficiently larger than other dimensions (track width 0.5 to 4 μm, MR film thickness 25 nm), and the MR film is maintained in a single magnetic domain state. It is.
[0056]
As described above, in this embodiment, even if the track is narrowed, a bias necessary for the linear response can be sufficiently applied, and an output signal having a larger amplitude of the output signal and better waveform vertical symmetry than the conventional head can be obtained. This is because, in the method of the present invention, it is possible to apply a bias with an MR film single layer, so that there is no reduction in efficiency due to sense current shunting in a multilayer film as in the SAL bias method, and a highly sensitive head can be obtained. realizable.
【The invention's effect】
According to the present invention, even if the track is narrowed, a bias necessary for linear response can be sufficiently applied, and an output signal having a large amplitude of the output signal and a good waveform vertical symmetry as compared with the conventional head can be obtained.
[Brief description of the drawings]
FIG. 1 is an elevation view of a permanent magnet bias MR element according to the present invention.
FIG. 2 is an elevation view of a permanent magnet bias MR element according to the present invention.
FIG. 3 shows a bias angle when a track width Tw is changed in a bias method using a permanent magnet film according to the present invention and a conventional SAL bias method.
FIG. 4 shows the dependency of the reproduction output signal amplitude by the MR head of the embodiment according to the present invention on the track width Tw.
FIG. 5 is an elevation view of a recording / reproducing separation type head and an enlarged view of an MR element;
FIG. 6 is an elevation view of a conventional SAL bias MR element.
FIG. 7 is an elevation view of a conventional permanent magnet bias method MR element.
FIG. 8: Dependence of element resistance on electrode height
[Explanation of symbols]
1 MR film, 2 permanent magnet film, 3 electrode, 4 magnetization direction of MR film,
6 MR element track width, 7 MR film height,
8 electrode height, 9 recording medium, 10 antiferromagnetic film,
11 Easy axis of antiferromagnetic film 12 Lower magnetic pole and upper shield film,
13 Lower shield film, 14 Insulating film, 15 Thin film induction type recording head,
16 magnetoresistive read head, 17 upper magnetic pole, 18 coil,
19 substrate, 20 MR element, 21 nonmagnetic film, 22 SAL film.

Claims (4)

MR膜のトラック幅方向両端部に、電極及び永久磁石膜を配置し、前記MR膜のトラック幅方向に電流を流す構成の磁気抵抗効果型磁気ヘッドにおいて、前記MR膜の磁化容易軸はMR膜高さ方向であり、MR膜高さ方向の寸法を前記MR膜のトラック幅より大きくかつ前記電極高さよりも大きくし、前記永久磁石膜の磁化容易軸はトラック幅方向で、この永久磁石膜を用いて横バイアス磁界を印加することを特徴とする磁気抵抗効果型磁気ヘッド。In a magnetoresistive head having a configuration in which an electrode and a permanent magnet film are arranged at both ends of the MR film in the track width direction, and current flows in the track width direction of the MR film, the easy axis of magnetization of the MR film is the MR film. a height direction, the dimensions of the MR film height direction is larger than larger than the track width and the electrode height of the MR film, the easy magnetization axis of the permanent magnet film in the track width direction, the permanent magnet film A magnetoresistive effect type magnetic head characterized in that a lateral bias magnetic field is applied. 前記MR膜の全面もしくは一部に反強磁性膜を配置する請求項1記載の磁気抵抗効果型磁気ヘッド。2. The magnetoresistive head according to claim 1, wherein an antiferromagnetic film is disposed on the entire surface or a part of the MR film. 前記反強磁性膜は、センス電流のほとんど流れない領域、あるいは浮上面から離れていて記録媒体の磁界が弱い領域に設けられている請求項2記載の磁気抵抗効果型磁気ヘッド。3. The magnetoresistive head according to claim 2, wherein the antiferromagnetic film is provided in a region where almost no sense current flows or in a region separated from the air bearing surface and having a weak magnetic field of the recording medium. 前記MR膜のトラック幅が2μm以下である請求項1ないし3のいずれかに記載の磁気抵抗効果型磁気ヘッド。4. The magnetoresistive head according to claim 1, wherein the track width of the MR film is 2 [mu] m or less.
JP30468496A 1996-11-15 1996-11-15 Magnetoresistive magnetic head Expired - Fee Related JP3756593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30468496A JP3756593B2 (en) 1996-11-15 1996-11-15 Magnetoresistive magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30468496A JP3756593B2 (en) 1996-11-15 1996-11-15 Magnetoresistive magnetic head

Publications (2)

Publication Number Publication Date
JPH10149514A JPH10149514A (en) 1998-06-02
JP3756593B2 true JP3756593B2 (en) 2006-03-15

Family

ID=17935983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30468496A Expired - Fee Related JP3756593B2 (en) 1996-11-15 1996-11-15 Magnetoresistive magnetic head

Country Status (1)

Country Link
JP (1) JP3756593B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922884B2 (en) * 2003-03-21 2005-08-02 Headway Technologies, Inc. Method for preventing magnetic damage to a GMR head during back-end processing

Also Published As

Publication number Publication date
JPH10149514A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
US20110051294A1 (en) Non rectangular reader for ultra high density magnetic recording
KR19980079613A (en) Anti-parallel fixed spin valve with symmetrical readout signal
US20110050211A1 (en) Trapezoidal reader for ultra high density magnetic recording
JPH10269531A (en) Magneto-resistive playback head
JP2003303406A (en) Magneto-resistive effect head and magnetic head
JP3576145B2 (en) Magnetic disk drive using a magnetic head having a magnetoresistive film
JP2006277864A (en) Magnetic disk drive
JP2010049755A (en) Cpp magnetoresistive effect head
JP3756593B2 (en) Magnetoresistive magnetic head
JP3639603B2 (en) Magnetic disk unit
JPS6227449B2 (en)
JP2000011331A (en) Magnetoresistive element and thin film magnetic head
KR100449850B1 (en) Magnetoresistive head and magnetic recording/reproducing apparatus using the same
US7019948B2 (en) Thin film magnetic head, magnetic head device and magnetic recording/reproducing device
JPH08203032A (en) Magneto-resistance effect reproducing head
JPH1027317A (en) Magnetic head
JPH11203634A (en) Magneto-resistive head
JP2008130112A (en) Magnetoresistance effect type reproduction magnetic head and magnetic recording device using the same
JP2000182222A (en) Magnetoresistive magnetic head
JPH05101342A (en) Magneto-resistance effect type head
JPH10222817A (en) Magneto-resistive sensor
JPH06215333A (en) Magnetic resistant effective type head and recording and reproducing device using the same
JP2838942B2 (en) Magnetoresistive head
JPH07169024A (en) Magneto-resistance effect type head and recording/ reproducing apparatus employing the same
JP2001067626A (en) Spin valve element and magnetic head using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees