JPH09115114A - Magnetoresistance element, and magnetic head and magnetic recording and reproducing device using the same - Google Patents

Magnetoresistance element, and magnetic head and magnetic recording and reproducing device using the same

Info

Publication number
JPH09115114A
JPH09115114A JP7269721A JP26972195A JPH09115114A JP H09115114 A JPH09115114 A JP H09115114A JP 7269721 A JP7269721 A JP 7269721A JP 26972195 A JP26972195 A JP 26972195A JP H09115114 A JPH09115114 A JP H09115114A
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetoresistive effect
magnetic field
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7269721A
Other languages
Japanese (ja)
Inventor
Chiaki Ishikawa
千明 石川
Yasutaro Kamisaka
保太郎 上坂
Kazuhisa Fujimoto
和久 藤本
Ken Sugita
愃 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7269721A priority Critical patent/JPH09115114A/en
Publication of JPH09115114A publication Critical patent/JPH09115114A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high reproduction output even when a longitudinal bias magnetic field is applied by setting the angle between the easy magnetization axis of a magnetoresistance film and the magnetization direction at the time of bias magnetic field application within a specific range, and setting the strength of an anisotropic magnetic field above a specific value. SOLUTION: On a substrate 5, a lower shield film 10, an insulating film 20 for magnetic gap formation, a soft magnetic film 30, a nonmagnetic conductive film 40, and a magnetoresistance film 50 are laminated. Then, an organic resist film is laminated and then patterned in a desired shape. Further, a permanent magnet film 60 is laminated and processed into an electrode 70, and an insulating film 80 for magnetic gap formation and an upper shield film 90 are laminated and processed to obtain a magnetic head. When the magnetoresistance film 50 is formed, the film is slanted at 60-120 deg. to its length direction and the strength of the anisotropic magnetic field of the magnetoresistance film 50 is set above 70e.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気抵抗効果素子
及びそれを用いた磁気ヘッド、磁気記録再生装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect element, a magnetic head using the same, and a magnetic recording / reproducing apparatus.

【0002】[0002]

【従来の技術】従来、磁気抵抗効果(MR)センサまた
はヘッドと呼ばれる磁気読み取り変換器が知られてい
る。このMRセンサは、磁気抵抗効果材料から作った読
み取り素子の抵抗変化を利用して、磁気信号を素子が感
知する磁束の量及び方向の関数として検出するもので、
従来のインダクティブヘッドを用いた場合にくらべて、
より大きな再生出力を得ることができる。
2. Description of the Related Art Conventionally, a magnetic read transducer called a magnetoresistive effect (MR) sensor or head is known. The MR sensor utilizes the resistance change of a read element made of a magnetoresistive material to detect a magnetic signal as a function of the amount and direction of magnetic flux sensed by the element.
Compared with the case of using the conventional inductive head,
A larger reproduction output can be obtained.

【0003】MR素子の動作を最適化するためには、M
R素子に2種類のバイアス磁界をかける必要がある。第
1のバイアス磁界は横バイアス磁界と呼ばれるもので、
磁気記録媒体からの磁束に対する応答を線形にするため
に印加される。横バイアス磁界は、磁気記録媒体の面に
垂直で平坦なMR素子の表面に平行である。横バイアス
磁界印加法には電流バイアス法、シャントバイアス法、
ソフトバイアス法、ソフトアジェイセントレーヤ(SA
L)バイアス法等、種々の方法がある。これらの横方向
バイアス磁界は、MR素子をR−H特性曲線の最も直線
的な範囲にバイアスさせるのに十分なレベルで発生され
る。
In order to optimize the operation of the MR element, M
It is necessary to apply two types of bias magnetic fields to the R element. The first bias magnetic field is called the lateral bias magnetic field,
It is applied to make the response to the magnetic flux from the magnetic recording medium linear. The lateral bias magnetic field is perpendicular to the surface of the magnetic recording medium and parallel to the flat surface of the MR element. Current bias method, shunt bias method,
Soft bias method, Soft Ajacent Layer (SA
L) There are various methods such as the bias method. These lateral bias fields are generated at a level sufficient to bias the MR element into the most linear range of the RH characteristic curve.

【0004】MR素子の動作を最適化するための第2の
バイアス磁界は縦バイアス磁界と呼ばれるもので、磁気
記録媒体の表面に平行、かつ、MR素子の長手方向に平
行に印加される。縦バイアスの機能は、MR素子内の多
磁区構造から生じるバルクハウゼンノイズを抑えること
である。
The second bias magnetic field for optimizing the operation of the MR element is called a longitudinal bias magnetic field and is applied parallel to the surface of the magnetic recording medium and parallel to the longitudinal direction of the MR element. The function of the longitudinal bias is to suppress Barkhausen noise caused by the multi-domain structure in the MR element.

【0005】縦バイアス磁界の印加方法には、特開昭6
2−40610号公報や特開昭63−117309号公
報あるいは特願平5−33036に示されている反強磁
性膜を用いる方法や、特開平2−220213号公報や
特開平4−78826号公報に示されている永久磁石膜
を用いる方法がある。日本応用磁気学会誌第16巻サプ
リメントS1号85ペ−ジ(1992年)に示されてい
るように、反強磁性膜を用いる方法は永久磁石膜を用い
る方法に比べて大きな再生出力を得ることが出来るが、
バルクハウゼンノイズを充分抑えることができないとい
う問題がある。横バイアス磁界印加法としてソフトアジ
ェイセントレーヤバイアス法を用い、縦バイアス磁界印
加法として反強磁性膜を用い、しかもバルクハウゼンノ
イズを抑えるひとつの方法として、特開平3−1780
18号公報に示されているように、MR膜の磁化容易軸
を長手方向から所定の角度傾け、しかも横バイアス磁界
印加用軟磁性膜(SAL)の磁化容易軸をMR膜の磁化
容易軸方向とは反対側に傾ける方法がある。この方法は
バルクハウゼンノイズを抑える上である程度の有効性を
有するものの、MR膜の磁化容易軸方向とSALの磁化
容易軸方向を長手方向に対し、互いに逆向きにするとい
う点で、作製プロセス上の困難および歩留まりの悪さと
いう問題を残す。
A method for applying a longitudinal bias magnetic field is disclosed in Japanese Patent Laid-Open No.
No. 2-40610, Japanese Patent Application Laid-Open No. 63-117309, or Japanese Patent Application No. 5-33036, a method using an antiferromagnetic film, Japanese Patent Application Laid-Open No. 2-220213, and Japanese Patent Application Laid-Open No. 4-78826. There is a method using a permanent magnet film shown in. As shown in Journal of Applied Magnetics of Japan, Volume 16, Supplement S1, page 85 (1992), a method using an antiferromagnetic film can obtain a larger reproduction output than a method using a permanent magnet film. Can be done,
There is a problem that Barkhausen noise cannot be suppressed sufficiently. As one method for suppressing Barkhausen noise, a soft Ajacent layer bias method is used as a lateral bias magnetic field application method and an antiferromagnetic film is used as a longitudinal bias magnetic field application method.
As disclosed in Japanese Patent No. 18, the easy axis of magnetization of the MR film is tilted at a predetermined angle from the longitudinal direction, and the easy axis of the soft magnetic film (SAL) for transverse bias magnetic field application is set in the easy axis direction of the MR film. There is a way to tilt to the opposite side. Although this method has a certain degree of effectiveness in suppressing Barkhausen noise, in the manufacturing process, the easy axis direction of magnetization of the MR film and the easy axis direction of SAL are opposite to the longitudinal direction. Leave problems of difficulty and poor yield.

【0006】さらに、SALの磁化容易軸を長手方向か
ら所定の角度傾け、さらにMR膜の磁化容易軸もSAL
の磁化容易軸方向と同じ回転方向に傾ける方法が特開平
6−166854号に記載されている。この方法も、バ
ルクハウゼンノイズを抑制するのに効果的であることが
示されている。
Further, the easy axis of SAL is tilted at a predetermined angle from the longitudinal direction, and the easy axis of MR film is also SAL.
Japanese Patent Laid-Open No. 6-166854 describes a method of tilting in the same rotation direction as the direction of the easy magnetization axis. This method has also been shown to be effective in suppressing Barkhausen noise.

【0007】一方、再生出力を向上することを目的とし
て、縦バイアス磁界印加用の永久磁石膜の磁化方向を長
手方向から傾ける方法が、特開平7−44827号公報
に示されている。しかし、この方法においてはMR膜あ
るいはSALの磁化容易軸の方向についての配慮はなさ
れていない。
On the other hand, Japanese Patent Laid-Open No. 7-44827 discloses a method of inclining the magnetization direction of a permanent magnet film for applying a longitudinal bias magnetic field from the longitudinal direction for the purpose of improving the reproduction output. However, in this method, no consideration is given to the direction of the easy axis of magnetization of the MR film or SAL.

【0008】磁化容易軸を長手方向に向ける従来技術で
は、異方性磁界Hkを大きくしすぎると再生出力が低下
するため、Hkは5Oe前後が望ましいとされている。
In the prior art in which the easy axis of magnetization is oriented in the longitudinal direction, the reproduction output is lowered if the anisotropic magnetic field Hk is made too large, so that it is desirable that Hk be around 5 Oe.

【0009】[0009]

【発明が解決しようとする課題】以上示したように、M
R膜及びSALの磁化容易軸の方向を、膜の長手方向か
ら傾ける従来技術は、主としてバルクハウゼンノイズの
抑止を目的としたものであった。これらの従来技術にお
いては、バルクハウゼンノイズを抑止するために縦バイ
アス磁界を印加すると、再生出力が低下するという問題
があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The prior art in which the direction of the easy axis of magnetization of the R film and SAL is tilted from the longitudinal direction of the film was mainly aimed at suppressing Barkhausen noise. In these conventional techniques, when a longitudinal bias magnetic field is applied to suppress Barkhausen noise, there is a problem that the reproduction output is reduced.

【0010】本発明は、縦バイアス磁界を印加しても高
い再生出力を得ることのできるMRヘッドを提供するこ
とを目的とするものである。
An object of the present invention is to provide an MR head which can obtain a high reproduction output even when a longitudinal bias magnetic field is applied.

【0011】[0011]

【課題を解決するための手段】上記目的は、MR膜の磁
化容易軸の方向と、バイアス磁界印加時のMR膜中の磁
化の方向のなす角度が、60°〜120°となるよう
に、MR膜の磁化容易軸の方向を傾けた時、MR膜の異
方性磁界の大きさを7Oe以上、望ましくは10Oe〜
30Oeとすることにより達成される。ここで、磁化容
易軸とは結晶磁気異方性等により生じるものを意味し、
形状異方性によるものは含んでいない。すなわち、MR
膜中の磁化容易軸の方向はMR膜作製時の磁界印加方向
を意味する。
The above-mentioned object is to make the angle between the direction of the easy axis of magnetization of the MR film and the direction of magnetization in the MR film when a bias magnetic field is applied to be 60 ° to 120 °. When the direction of the easy axis of magnetization of the MR film is tilted, the magnitude of the anisotropic magnetic field of the MR film is 7 Oe or more, preferably 10 Oe
It is achieved by setting it to 30 Oe. Here, the easy axis of magnetization means that generated by magnetocrystalline anisotropy or the like,
It does not include those due to shape anisotropy. That is, MR
The direction of the easy axis of magnetization in the film means the direction in which a magnetic field is applied when the MR film is manufactured.

【0012】本発明による磁気抵抗効果素子は、磁気抵
抗効果膜と、磁気抵抗効果膜に電流を流すための一対の
電極と、磁気抵抗効果膜に横バイアス磁界を印加するた
めの手段と、磁気抵抗効果膜に縦バイアス磁界を印加す
るための手段とを含み、磁気抵抗効果膜の磁化容易軸の
方向とバイアス磁界印加時の磁化方向のなす角度が60
°〜120°で、磁気抵抗効果膜の異方性磁界の大きさ
が7Oe以上、望ましくは10Oe〜30Oeであるこ
とを特徴とする。
The magnetoresistive effect element according to the present invention comprises a magnetoresistive effect film, a pair of electrodes for passing a current through the magnetoresistive effect film, a means for applying a transverse bias magnetic field to the magnetoresistive effect film, and a magnetic element. And a means for applying a longitudinal bias magnetic field to the resistance effect film, wherein an angle formed by the direction of the easy axis of magnetization of the magnetoresistive effect film and the magnetization direction when the bias magnetic field is applied is 60.
It is characterized in that the anisotropic magnetic field of the magnetoresistive effect film has a magnitude of 7 Oe or more, preferably 10 Oe to 30 Oe at a temperature of 120 ° to 120 °.

【0013】横バイアス磁界は軟磁性膜を用いるSAL
バイアス法で印加するのが好ましく、縦バイアス磁界は
永久磁石又は反強磁性膜によって印加することができ
る。
The lateral bias magnetic field is SAL using a soft magnetic film.
The bias method is preferably applied, and the longitudinal bias magnetic field can be applied by a permanent magnet or an antiferromagnetic film.

【0014】磁気抵抗効果素子の具体的な構造として
は、(1)基板上に積層して設けられた横バイアス磁界
印加用の軟磁性膜、非磁性導電膜及び磁気抵抗効果膜、
前記磁気抵抗効果膜の長手方向両端部に設けられた縦バ
イアス磁界印加用の一対の永久磁石膜、並びに前記一対
の永久磁石膜上に設けられた一対の電極とを備える構
造、(2)基板上に積層して設けられた横バイアス磁界
印加用の軟磁性膜、非磁性導電膜及び磁気抵抗効果膜及
び前記磁気抵抗効果膜上に長手方向に離間して設けられ
た一対の反強磁性を含む多層膜と、前記多層膜の上に設
けられた一対の電極とを備え、前記一対の反強磁性膜は
電極の下方領域に設けられている構造、あるいは、
(3)基板上に積層して設けられた反強磁性膜、前記反
強磁性膜に長手方向両端部が接触するようにして積層さ
れた磁気抵抗効果膜、その上に積層された非磁性導電膜
及び横バイアス磁界印加用の軟磁性膜を含む多層膜と、
前記多層膜の上に設けられた一対の電極とを備える構造
等を採用することができる。
As a concrete structure of the magnetoresistive effect element, (1) a soft magnetic film for applying a lateral bias magnetic field, a non-magnetic conductive film and a magnetoresistive effect film, which are laminated on the substrate,
A structure including a pair of permanent magnet films for applying a longitudinal bias magnetic field provided at both ends of the magnetoresistive film in the longitudinal direction, and a pair of electrodes provided on the pair of permanent magnet films, (2) substrate A soft magnetic film for applying a lateral bias magnetic field, a non-magnetic conductive film, a magnetoresistive effect film, and a pair of antiferromagnetic films provided on the magnetoresistive effect film so as to be spaced apart in the longitudinal direction. A structure including a multi-layer film including, and a pair of electrodes provided on the multi-layer film, wherein the pair of antiferromagnetic films is provided in a region below the electrodes, or
(3) An antiferromagnetic film laminated on the substrate, a magnetoresistive film laminated so that both ends in the longitudinal direction contact the antiferromagnetic film, and a nonmagnetic conductive film laminated thereon. A multilayer film including a film and a soft magnetic film for applying a lateral bias magnetic field;
A structure including a pair of electrodes provided on the multilayer film can be adopted.

【0015】本発明の磁気抵抗効果素子は磁気ヘッドに
組み込むことができる。また、本発明の磁気抵抗効果型
再生ヘッドは、磁気記録用誘導型薄膜ヘッドと組み合わ
せて記録再生分離型磁気ヘッドを構成することができ
る。
The magnetoresistive effect element of the present invention can be incorporated in a magnetic head. The magnetoresistive effect reproducing head of the present invention can be combined with an inductive thin film head for magnetic recording to form a recording / reproducing separated type magnetic head.

【0016】MRヘッドの再生出力は、MR膜内の磁化
回転角θに対してcos2θに比例する。従って、媒体
からの磁界がMRヘッドに印加された時に変化するMR
膜内の磁化の回転角が大きいほど、再生出力は大きい。
The reproduction output of the MR head is proportional to cos 2 θ with respect to the magnetization rotation angle θ in the MR film. Therefore, the MR that changes when the magnetic field from the medium is applied to the MR head.
The larger the rotation angle of the magnetization in the film, the larger the reproduction output.

【0017】バイアス磁界印加時のMR膜の磁化の方向
と、磁化容易軸の方向のなす角度をほぼ90°とする
と、MR膜の磁化はほぼ磁化困難軸方向を向くことにな
るので、不安定な状態になる。この状態に媒体からの磁
界が印加されると、磁化は磁化容易方向へ向こうとする
ので、磁化の回転角が増加する。MR膜の異方性磁界を
大きくするほど、磁化が磁化容易方向へ向こうとする力
が大きくなるので、さらに回転角が増加して、再生出力
が上がる。
When the angle between the magnetization direction of the MR film when a bias magnetic field is applied and the direction of the easy axis of magnetization is set to about 90 °, the magnetization of the MR film is oriented in the direction of the hard axis, which is unstable. It will be in a state. When a magnetic field from the medium is applied in this state, the magnetization tends to move in the easy magnetization direction, so that the rotation angle of the magnetization increases. As the anisotropic magnetic field of the MR film is increased, the force of the magnetization toward the easy magnetization direction is increased, so that the rotation angle is further increased and the reproduction output is increased.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施例について詳
細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0019】(実施例1)図1は、本発明による磁気抵
抗効果(MR)素子を備える磁気ヘッドの一実施例の断
面図である。この磁気ヘッドの作製に当たっては、基板
5上に、厚さ2μmの下部シ−ルド膜(NiFe膜)1
0、厚さ0.2μmの磁気ギャップ形成用絶縁膜(Al
23膜)20、厚さ20nmの軟磁性膜(CoZrTa
膜)30、厚さ15nmの非磁性導電膜(Ta膜)4
0、厚さ20nmの磁気抵抗効果膜(NiFeCo膜)
50を積層した。次に、有機レジスト膜を積層した後、
所望の形状にパタ−ニングを行った。さらに、厚さ30
nmの永久磁石膜(CoCrPt膜)60を積層し所望
の形状に加工した後、Nb/Au/Nbを積層、加工し
電極70とした。さらに、厚さ0.155μmの磁気ギ
ャップ形成用絶縁膜(Al23膜)80、厚さ2μmの
上部シ−ルド膜(NiFe膜)90を積層し所望の形状
に加工して磁気ヘッドとした。
(Embodiment 1) FIG. 1 is a sectional view of an embodiment of a magnetic head having a magnetoresistive (MR) element according to the present invention. In manufacturing this magnetic head, a lower shield film (NiFe film) 1 having a thickness of 2 μm was formed on a substrate 5.
0, 0.2 μm thick insulating film for magnetic gap formation (Al
2 O 3 film) 20, 20 nm thick soft magnetic film (CoZrTa)
Film) 30 and a non-magnetic conductive film (Ta film) 4 having a thickness of 15 nm 4
0, 20 nm thick magnetoresistive film (NiFeCo film)
50 were laminated. Next, after laminating the organic resist film,
The pattern was formed into a desired shape. In addition, thickness 30
After a permanent magnet film (CoCrPt film) 60 nm having a thickness of 10 nm was laminated and processed into a desired shape, Nb / Au / Nb was laminated and processed to form an electrode 70. Further, an insulating film (Al 2 O 3 film) 80 having a thickness of 0.155 μm and an upper shield film (NiFe film) 90 having a thickness of 2 μm are laminated and processed into a desired shape to form a magnetic head. did.

【0020】MR膜を作製する際には、図2に示すMR
膜平面の長手方向xから−45°傾けた、矢印eで示す
方向に30Oeの磁界を印加して磁化容易軸をつけた。ま
たSALを作製する際にも、MR膜の磁化容易軸方向と
同方向に30Oeの磁界を印加して磁化容易軸をつけた。
さらに永久磁石膜を作製した後、矢印xの方向に着磁の
ための磁界を1000Oe印加した。
When manufacturing the MR film, the MR shown in FIG.
A magnetic field of 30 Oe was applied in the direction shown by arrow e, which was tilted at -45 ° from the longitudinal direction x of the film plane, and the easy axis of magnetization was attached. Further, also when the SAL was manufactured, a magnetic field of 30 Oe was applied in the same direction as the easy axis of magnetization of the MR film to attach the easy axis of magnetization.
Further, after the permanent magnet film was produced, a magnetic field for magnetization of 1000 Oe was applied in the direction of arrow x.

【0021】また、磁気抵抗効果膜の異方性磁界はCo
の添加量によって調節した。本実施例の磁気抵抗効果膜
は、Coを18%添加して異方性磁界を20Oeとし
た。
The anisotropic magnetic field of the magnetoresistive film is Co
It was adjusted by the addition amount of. In the magnetoresistive film of this example, 18% of Co was added and the anisotropic magnetic field was set to 20 Oe.

【0022】このMRヘッドに、MR膜に流れる電流が
1.5×107A/cm2となるようにセンス電流を流し、
バイアス磁界印加時の磁化Mの方向が長手方向xから約
+45°傾くようにした(第2図)。すなわち、磁化容
易軸の方向eとMのなす角θdが約90°になるように
した。ここで、バイアス磁界印加時の磁化方向の長手方
向xからの傾き角をバイアス角度θbとし、バイアス角
度は以下に示すように測定した。第3図は、横バイアス
磁界印加時のMRヘッドに外部から一様な磁界Hを印加
した時の、電圧の変化ΔVを測定した結果である。バイ
アス角度θbは、外部磁界がゼロの時の電圧変化ΔV
0と、電圧変化の最大値ΔVmaxをもとに、次の関係式か
ら求めた。
A sense current was passed through this MR head so that the current flowing through the MR film was 1.5 × 10 7 A / cm 2 .
The direction of the magnetization M when the bias magnetic field was applied was inclined about + 45 ° from the longitudinal direction x (Fig. 2). That is, the angle θd formed by the direction e of the easy magnetization axis and M is set to about 90 °. Here, the tilt angle from the longitudinal direction x when the bias magnetic field was applied was taken as the bias angle θb, and the bias angle was measured as shown below. FIG. 3 shows the results of measuring the voltage change ΔV when a uniform magnetic field H is applied to the MR head from the outside when a lateral bias magnetic field is applied. The bias angle θb is the voltage change ΔV when the external magnetic field is zero.
Based on 0 and the maximum value ΔVmax of voltage change, it was calculated from the following relational expression.

【0023】ΔV0/ΔVmax=cos2θb このヘッドの再生出力を測定し、MR膜の異方性磁界H
kが5Oeの従来ヘッドの再生出力と比較した結果、出
力が約2倍に向上するこが確かめられた。
ΔV 0 / ΔVmax = cos 2 θb The reproducing output of this head was measured and the anisotropic magnetic field H of the MR film was measured.
As a result of comparison with the reproduction output of the conventional head having k of 5 Oe, it was confirmed that the output was improved to about twice.

【0024】さらに、MR膜の異方性磁界Hkを5Oe
から50Oeまで変えて、図1に示す構造のヘッドを作
製して、再生出力を測定した。このとき、MRヘッドに
流す電流は一定で、MR膜の電流密度が1.5×107
A/cm2となるようにセンス電流を流した。図4に示す
ように、Hkを大きくするほど、再生出力は増加し、H
kが50Oeのヘッドの再生出力は従来の約4倍になっ
た。ただし、Hkが30Oeより大きいヘッドでは、再
生波形の変動が起こる場合があり、ヘッドの安定性に問
題があった。Hkが10Oe〜30Oeのヘッドは再生
出力が従来の1.5〜2.5倍になり、しかも安定に動
作する。
Further, the anisotropic magnetic field Hk of the MR film is set to 5 Oe.
To 50 Oe, a head having the structure shown in FIG. 1 was manufactured, and the reproduction output was measured. At this time, the current flowing through the MR head is constant, and the current density of the MR film is 1.5 × 10 7.
A sense current was passed so that the current became A / cm 2 . As shown in FIG. 4, the reproduction output increases as Hk increases,
The reproduction output of the head whose k is 50 Oe is about four times that of the conventional one. However, in a head having an Hk of more than 30 Oe, the reproduced waveform may fluctuate, and there is a problem in the stability of the head. A head having an Hk of 10 Oe to 30 Oe has a reproduction output 1.5 to 2.5 times that of the conventional head and operates stably.

【0025】(実施例2)図5に、本発明によるMR素
子を備える磁気抵抗効果型ヘッドの他の実施例の断面図
を示す。このヘッドの作製に当たっては、基板5上に、
厚さ2μmの下部シ−ルド膜(NiFe膜)10、厚さ
0.2μmの磁気ギャップ形成用絶縁膜(Al23膜)
20、厚さ20nmの軟磁性膜(CoTaZr膜)3
0、厚さ15nmの非磁性導電膜(Ta膜)40、厚さ
20nmの磁気抵抗効果膜(NiFeCo膜)50、厚
さ20nmの磁区制御用FeMn膜100を積層した
後、所望の形状に加工する。つぎに電極用Nb/Au/
Nb70を積層し、所望の形状に加工した後、厚さ0.
155μmの磁気ギャップ形成膜(Al23膜)80、
厚さ2μmの磁気シ−ルド膜(NiFe膜)90を積層
し所望の形状に加工して磁気ヘッドとした。このヘッド
のMR膜の磁化容易軸の方向eと、横バイアス磁界によ
って傾く平均的な磁化方向Mは、図2に示すようにθe
≒−45°、θd≒90°に設定した。また、MR膜の
Hkは20Oeとした。このヘッドで得た再生出力も、
MR膜の異方性磁界Hkが5Oeの従来ヘッドに比べ
て、約2倍向上した。
(Embodiment 2) FIG. 5 shows a sectional view of another embodiment of a magnetoresistive head having an MR element according to the present invention. In manufacturing this head, on the substrate 5,
Lower shield film (NiFe film) 10 having a thickness of 2 μm, insulating film for magnetic gap formation (Al 2 O 3 film) having a thickness of 0.2 μm
20, soft magnetic film (CoTaZr film) 3 having a thickness of 20 nm 3
0, a 15-nm-thick non-magnetic conductive film (Ta film) 40, a 20-nm-thick magnetoresistive film (NiFeCo film) 50, and a 20-nm-thick FeMn film 100 for controlling magnetic domains are laminated and then processed into a desired shape. To do. Next, Nb / Au / for electrodes
After laminating Nb70 and processing it into a desired shape, a thickness of 0.
155 μm magnetic gap forming film (Al 2 O 3 film) 80,
A magnetic shield film (NiFe film) 90 having a thickness of 2 μm was laminated and processed into a desired shape to obtain a magnetic head. The direction e of the easy axis of the MR film of this head and the average magnetization direction M inclined by the lateral bias magnetic field are θe as shown in FIG.
≅-45 ° and θd≅90 ° were set. The Hk of the MR film was 20 Oe. The playback output obtained with this head is also
The anisotropic magnetic field Hk of the MR film was improved about twice as compared with the conventional head having 5 Oe.

【0026】(実施例3)図6に、本発明によるMR素
子を備える磁気抵抗効果型ヘッドの他の実施例の断面図
を示す。このヘッドの作製に当たっては、基板5上に、
厚さ2μmの下部シ−ルド膜(NiFe膜)10、厚さ
0.2μmの磁気ギャップ形成用絶縁膜(Al23膜)
20、厚さ20nmの磁区制御用NiO膜100、厚さ
10nmの絶縁用Al23膜110を積層した後、厚さ
20nmの磁気抵抗効果膜(NiFeCo膜)50、厚
さ15nmの非磁性導電膜(Ta膜)40、厚さ20n
mの軟磁性膜(CoTaZr膜)30を積層して、所望
の形状に加工した。次に電極用Nb/Au/Nb70を
積層し、所望の形状に加工した後、厚さ0.155μm
の磁気ギャップ形成膜(Al23膜)80、厚さ2μm
の磁気シ−ルド膜(NiFe膜)90を積層し所望の形
状に加工して磁気ヘッドとした。
(Embodiment 3) FIG. 6 shows a sectional view of another embodiment of a magnetoresistive head having an MR element according to the present invention. In manufacturing this head, on the substrate 5,
Lower shield film (NiFe film) 10 having a thickness of 2 μm, insulating film for magnetic gap formation (Al 2 O 3 film) having a thickness of 0.2 μm
20, a magnetic domain control NiO film 100 having a thickness of 20 nm, and an insulating Al 2 O 3 film 110 having a thickness of 10 nm are laminated, and then a magnetoresistive effect film (NiFeCo film) 50 having a thickness of 20 nm and a nonmagnetic property having a thickness of 15 nm Conductive film (Ta film) 40, thickness 20n
m soft magnetic film (CoTaZr film) 30 was laminated and processed into a desired shape. Next, Nb / Au / Nb70 for electrodes is laminated and processed into a desired shape, and then the thickness is 0.155 μm.
Magnetic gap forming film (Al 2 O 3 film) 80 of 2 μm thick
Magnetic shield film (NiFe film) 90 was laminated and processed into a desired shape to obtain a magnetic head.

【0027】MR膜の磁化容易軸の方向eと横バイアス
磁界によって傾く磁化方向Mは、図2に示すようにθe
≒−45°、θd≒90°に設定した。また、MR膜の
Hkは20Oeとした。このヘッドで得た再生出力も、
MR膜の異方性磁界Hkが5Oeの従来ヘッドに比べ
て、約2倍向上した。
The direction e of the easy axis of magnetization of the MR film and the direction of magnetization M inclined by the transverse bias magnetic field are θe as shown in FIG.
≅-45 ° and θd≅90 ° were set. The Hk of the MR film was 20 Oe. The playback output obtained with this head is also
The anisotropic magnetic field Hk of the MR film was improved about twice as compared with the conventional head having 5 Oe.

【0028】(実施例4)本発明の磁気抵抗効果素子を
再生用ヘッドに用い、従来公知の誘導型薄膜ヘッドを記
録用ヘッドとして用いる記録再生分離型磁気ヘッドを作
製した。図7に、本実施例による記録再生分離型ヘッド
の一部分を切断した斜視図を示す。
(Example 4) The magnetoresistive effect element of the present invention was used as a reproducing head, and a recording / reproducing separated type magnetic head using a conventionally known inductive type thin film head as a recording head was manufactured. FIG. 7 shows a perspective view in which a part of the recording / reproducing separated type head according to the present embodiment is cut.

【0029】Al23・TiCを主成分とする焼結体を
スライダ用の基板5とした。前記実施例1に示した方法
により下部シ−ルド膜10形成し、その上に磁気ギャッ
プ形成用絶縁膜(Al23膜)、厚さ20nmの軟磁性
膜(NiFeNb膜)30、非磁性導電膜(Ta膜)4
0、磁気抵抗効果膜(NiFeCo膜)50、有機レジ
スト膜を積層した後、所望の形状にパタ−ニングを行
う。さらに、厚さ30nmの永久磁石膜(CoCrPt
膜)を積層し所望の形状に加工した後、Nb/Au/N
b70を積層、加工して電極とした。さらにその上に、
磁気ギャップ形成膜(Al23膜)、磁気シールド膜
(NiFe膜)90を形成した。以上の部分が再生ヘッ
ドとして働く。MR膜およびSALの磁化容易軸の方向
eは、図2に示すように、ほぼ−45°に設定し、永久
磁石膜の着磁方向は長手方向xに設定した。また、MR
膜のHkは20Oeとした。
A sintered body containing Al 2 O 3 .TiC as a main component was used as the substrate 5 for the slider. The lower shield film 10 is formed by the method shown in the first embodiment, and an insulating film (Al 2 O 3 film) for forming a magnetic gap, a soft magnetic film (NiFeNb film) 30 having a thickness of 20 nm, and a non-magnetic layer are formed on the lower shield film 10. Conductive film (Ta film) 4
0, a magnetoresistive film (NiFeCo film) 50, and an organic resist film are laminated, and then patterned into a desired shape. Furthermore, a permanent magnet film (CoCrPt) having a thickness of 30 nm is used.
Film) is laminated and processed into a desired shape, then Nb / Au / N
b70 was laminated and processed into an electrode. Further on that,
A magnetic gap forming film (Al 2 O 3 film) and a magnetic shield film (NiFe film) 90 were formed. The above part functions as a reproducing head. The direction e of the easy axis of magnetization of the MR film and SAL was set to approximately −45 °, and the magnetization direction of the permanent magnet film was set to the longitudinal direction x, as shown in FIG. Also, MR
The Hk of the film was 20 Oe.

【0030】次に、磁気記録用ヘッドとして、厚さ3μ
mのAl23からなる絶縁膜を形成した後、下部磁極1
20、上部磁極130およびコイル140からなる誘導
型薄膜ヘッドを形成した。下部磁極120、上部磁極1
30には、スパッタリング法で形成した膜厚3.0μm
のNi−20at%Fe合金を用いた。下部磁極120
および上部磁極130の間のギャップ層には、スパッタ
リング法で形成した膜厚0.2μmのAl23を用い
た。コイル140には、膜厚3.0μmのCuを使用し
た。下部磁極120と上部磁極130は磁気的に結合さ
れて磁気回路を構成し、コイル140はその磁気回路に
鎖交している。
Next, as a magnetic recording head, the thickness is 3 μm.
After forming an insulating film of Al 2 O 3 of m, the lower magnetic pole 1
An inductive thin film head composed of 20, the upper magnetic pole 130 and the coil 140 was formed. Lower magnetic pole 120, upper magnetic pole 1
30 has a film thickness of 3.0 μm formed by a sputtering method.
Ni-20 at% Fe alloy was used. Lower magnetic pole 120
For the gap layer between the upper magnetic pole 130 and the upper magnetic pole 130, Al 2 O 3 having a film thickness of 0.2 μm formed by the sputtering method was used. For the coil 140, Cu having a film thickness of 3.0 μm was used. The lower magnetic pole 120 and the upper magnetic pole 130 are magnetically coupled to form a magnetic circuit, and the coil 140 is linked to the magnetic circuit.

【0031】以上述べた構造の磁気ヘッドを用い、磁気
抵抗効果膜の平均的な磁化方向が、図2の矢印Mとほぼ
同じ方向(θd≒90°)になるように、センス電流
(MR膜の電流密度が1.5×107A/cm2)を流し
て記録再生実験を行った。この結果、MR膜の磁化容易
軸の方向が膜の長手方向に平行な従来の磁気ヘッドを用
いた場合に比べて、約2倍大きな出力値を得た。
Using the magnetic head having the structure described above, the sense current (MR film) is set so that the average magnetization direction of the magnetoresistive effect film is almost the same direction (θd≈90 °) as the arrow M in FIG. Recording / reproducing experiment was conducted by applying a current density of 1.5 × 10 7 A / cm 2 ). As a result, an output value about twice as large as that in the case of using the conventional magnetic head in which the direction of the easy axis of magnetization of the MR film is parallel to the longitudinal direction of the film was obtained.

【0032】(実施例5)前記実施例4で述べた磁気ヘ
ッドを用い、磁気ディスク装置を作製した。図8(a)
に磁気ディスク装置の概略平面図を、図8(b)にその
A−A’断面図を示す。
(Embodiment 5) Using the magnetic head described in Embodiment 4, a magnetic disk device was manufactured. FIG. 8 (a)
FIG. 8 is a schematic plan view of the magnetic disk device, and FIG. 8B is a sectional view taken along the line AA ′.

【0033】磁気記録媒体150には、残留磁束密度
0.75TのCo−Ni−Pt−Ta系合金からなる材
料を用いた。磁気記録媒体150は駆動部160によっ
て回転駆動される。磁気ヘッド170の記録ヘッドのト
ラック幅は2μm、再生ヘッドのトラック幅は1.5μ
mとした。磁気ヘッド170は、駆動部180によって
回転駆動されて磁気記録媒体150上のトラックを選択
できる。磁気ヘッド170による記録再生信号は記録再
生信号処理系190で処理される。
For the magnetic recording medium 150, a material made of a Co--Ni--Pt--Ta alloy having a residual magnetic flux density of 0.75T was used. The magnetic recording medium 150 is rotationally driven by the driving unit 160. The track width of the recording head of the magnetic head 170 is 2 μm, and the track width of the reproducing head is 1.5 μm.
m. The magnetic head 170 is rotationally driven by the drive unit 180 and can select a track on the magnetic recording medium 150. The recording / reproducing signal from the magnetic head 170 is processed by the recording / reproducing signal processing system 190.

【0034】磁気ヘッド170に用いた磁気抵抗効果素
子は、従来の構造の磁気抵抗効果素子の2.0倍の出力
を出すため、さらにトラック幅が狭く、記録密度の高い
磁気ディスク装置を作製することもできる。
The magnetoresistive effect element used in the magnetic head 170 produces 2.0 times the output of the magnetoresistive effect element of the conventional structure, so that a magnetic disk device having a narrower track width and a higher recording density is manufactured. You can also

【0035】[0035]

【発明の効果】本発明によると、磁気抵抗効果型再生ヘ
ッドにおける再生出力を増大させることが可能となる。
According to the present invention, it is possible to increase the reproduction output of the magnetoresistive reproducing head.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗効果素子の一実施例を示す断
面図である。
FIG. 1 is a sectional view showing an embodiment of a magnetoresistive effect element of the present invention.

【図2】本発明の磁気抵抗効果膜の磁化容易軸eの方向
と、バイアス磁界印加時の磁化方向Mとの関係を示す説
明図である。
FIG. 2 is an explanatory diagram showing the relationship between the direction of the easy axis e of the magnetoresistive film of the present invention and the magnetization direction M when a bias magnetic field is applied.

【図3】外部磁界Hと磁気ヘッドの電圧変化ΔVとの関
係を示す線図である。
FIG. 3 is a diagram showing a relationship between an external magnetic field H and a voltage change ΔV of a magnetic head.

【図4】磁気抵抗効果膜の異方性磁界Hkと再生出力と
の関係を示す線図である。
FIG. 4 is a diagram showing a relationship between an anisotropic magnetic field Hk of a magnetoresistive film and a reproduction output.

【図5】本発明の磁気抵抗効果素子のその他の一実施例
を示す断面図である。
FIG. 5 is a cross-sectional view showing another embodiment of the magnetoresistive effect element of the present invention.

【図6】本発明の磁気抵抗効果素子のその他の一実施例
を示す断面図である。
FIG. 6 is a cross-sectional view showing another embodiment of the magnetoresistive effect element of the present invention.

【図7】本発明の記録再生分離型磁気ヘッドの構造を示
す斜視図である。
FIG. 7 is a perspective view showing the structure of a recording / reproducing separated type magnetic head of the present invention.

【図8】本発明の磁気記録再生装置の概略図である。FIG. 8 is a schematic diagram of a magnetic recording / reproducing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

5…基板、10…下部シ−ルド膜、20…下部磁気ギャ
ップ形成用絶縁膜、30…軟磁性膜、40…非磁性導電
膜、50…磁気抵抗効果膜、60…永久磁石膜、70…
電極、80…上部磁気ギャップ形成用絶縁膜、90…上
部シ−ルド膜、100…磁区制御用反強磁性膜、110
…絶縁用Al23膜、120…記録ヘッド用下部磁極、
130…記録ヘッド用上部磁極、140…コイル、15
0…磁気記録媒体、160…磁気記録媒体駆動部、17
0…磁気ヘッド、180…磁気ヘッド駆動部、190…
記録再生信号処理系、x…磁気抵抗効果膜の長手方向、
e…磁化容易軸方向、M…磁化の平均的な方向、θe …
xとeのなす角、θd …eとMのなす角
5 ... Substrate, 10 ... Lower shield film, 20 ... Lower magnetic gap forming insulating film, 30 ... Soft magnetic film, 40 ... Nonmagnetic conductive film, 50 ... Magnetoresistive film, 60 ... Permanent magnet film, 70 ...
Electrode, 80 ... Insulating film for forming upper magnetic gap, 90 ... Upper shield film, 100 ... Anti-ferromagnetic film for controlling magnetic domain, 110
... Al 2 O 3 film for insulation, 120 ... Lower magnetic pole for recording head,
130 ... upper magnetic pole for recording head, 140 ... coil, 15
0 ... Magnetic recording medium, 160 ... Magnetic recording medium driving unit, 17
0 ... Magnetic head, 180 ... Magnetic head drive unit, 190 ...
Recording / reproducing signal processing system, x ... Longitudinal direction of magnetoresistive film,
e ... easy axis of magnetization, M ... average direction of magnetization, .theta.e ...
The angle formed by x and e, the angle formed by θd ... e and M

フロントページの続き (72)発明者 杉田 愃 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front Page Continuation (72) Inventor, Sugita 1-280, Higashi Koikekubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 磁気抵抗効果膜と、前記磁気抵抗効果膜
に電流を流すための一対の電極と、前記磁気抵抗効果膜
に横バイアス磁界を印加するための手段と、前記磁気抵
抗効果膜に縦バイアス磁界を印加するための手段とを含
み、前記磁気抵抗効果膜の磁化容易軸の方向とバイアス
磁界印加時の磁化方向のなす角度が60°〜120°
で、前記磁気抵抗効果膜の異方性磁界の大きさが7Oe
以上であることを特徴とする磁気抵抗効果素子。
1. A magnetoresistive effect film, a pair of electrodes for flowing a current through the magnetoresistive effect film, means for applying a lateral bias magnetic field to the magnetoresistive effect film, and the magnetoresistive effect film. Means for applying a longitudinal bias magnetic field, and the angle formed by the direction of the easy axis of magnetization of the magnetoresistive effect film and the magnetization direction when the bias magnetic field is applied is 60 ° to 120 °.
And the magnitude of the anisotropic magnetic field of the magnetoresistive film is 7 Oe.
The magnetoresistive effect element characterized by the above.
【請求項2】 磁気抵抗効果膜と、前記磁気抵抗効果膜
に電流を流すための一対の電極と、前記磁気抵抗効果膜
に横バイアス磁界を印加するための手段と、前記磁気抵
抗効果膜に縦バイアス磁界を印加するための手段とを含
み、前記磁気抵抗効果膜の磁化容易軸の方向とバイアス
磁界印加時の磁化方向のなす角度が60°〜120°
で、前記磁気抵抗効果膜の異方性磁界の大きさが10O
e〜30Oeであることを特徴とする磁気抵抗効果素
子。
2. A magnetoresistive effect film, a pair of electrodes for flowing a current through the magnetoresistive effect film, means for applying a lateral bias magnetic field to the magnetoresistive effect film, and the magnetoresistive effect film. Means for applying a longitudinal bias magnetic field, and the angle formed by the direction of the easy axis of magnetization of the magnetoresistive effect film and the magnetization direction when the bias magnetic field is applied is 60 ° to 120 °.
And the magnitude of the anisotropic magnetic field of the magnetoresistive film is 10 O
A magnetoresistive effect element characterized by being e to 30 Oe.
【請求項3】 基板上に積層して設けられた横バイアス
磁界印加用の軟磁性膜、非磁性導電膜及び磁気抵抗効果
膜、前記磁気抵抗効果膜の長手方向両端部に設けられた
縦バイアス磁界印加用の一対の永久磁石膜、並びに前記
一対の永久磁石膜上に設けられた一対の電極とを備える
ことを特徴とする請求項1又は2記載の磁気抵抗効果素
子。
3. A soft magnetic film for applying a lateral bias magnetic field, a non-magnetic conductive film and a magnetoresistive effect film, which are laminated on the substrate, and longitudinal biases provided at both longitudinal ends of the magnetoresistive effect film. The magnetoresistive effect element according to claim 1, further comprising a pair of permanent magnet films for applying a magnetic field, and a pair of electrodes provided on the pair of permanent magnet films.
【請求項4】 基板上に積層して設けられた横バイアス
磁界印加用の軟磁性膜、非磁性導電膜及び磁気抵抗効果
膜、前記磁気抵抗効果膜の長手方向に離間して設けられ
た一対の反強磁性を含む多層膜と、前記多層膜の上に設
けられた一対の電極とを備え、前記一対の反強磁性膜は
電極の下方領域に設けられていることを特徴とする請求
項1又は2記載の磁気抵抗効果素子。
4. A soft magnetic film for applying a lateral bias magnetic field, a non-magnetic conductive film and a magnetoresistive effect film, which are laminated on the substrate, and a pair of which are spaced apart from each other in the longitudinal direction of the magnetoresistive effect film. 7. A multilayer film including antiferromagnetism, and a pair of electrodes provided on the multilayer film, wherein the pair of antiferromagnetic films is provided in a region below the electrodes. The magnetoresistive effect element according to 1 or 2.
【請求項5】 基板上に積層して設けられた反強磁性
膜、前記反強磁性膜に長手方向両端部が接触するように
して積層された磁気抵抗効果膜、その上に積層された非
磁性導電膜及び横バイアス磁界印加用の軟磁性膜を含む
多層膜と、前記多層膜の上に設けられた一対の電極とを
備えることを特徴とする請求項1又は2記載の磁気抵抗
効果素子。
5. An antiferromagnetic film laminated on a substrate, a magnetoresistive effect film laminated such that both ends in the longitudinal direction of the antiferromagnetic film are in contact with the antiferromagnetic film, and a non-magnetic film laminated thereon. 3. The magnetoresistive effect element according to claim 1, further comprising a multilayer film including a magnetic conductive film and a soft magnetic film for applying a lateral bias magnetic field, and a pair of electrodes provided on the multilayer film. .
【請求項6】 請求項1〜5のいずれか1項記載の磁気
抵抗効果素子を備えることを特徴とする磁気ヘッド。
6. A magnetic head comprising the magnetoresistive effect element according to claim 1. Description:
【請求項7】 積層方向に離間して設けられた一対の磁
気シールド膜をさらに備え、前記磁気抵抗効果素子は前
記一対の磁気シールド膜の間に配置されていることを特
徴とする請求項6記載の磁気ヘッド。
7. A pair of magnetic shield films provided apart from each other in the stacking direction, the magnetoresistive effect element being arranged between the pair of magnetic shield films. The magnetic head described.
【請求項8】 一対の磁極、該一対の磁極を磁気的に結
合する磁気回路手段及び前記磁気回路に鎖交するコイル
を含む磁気記録用誘導型薄膜ヘッドと、前記請求項6又
は7記載の磁気ヘッドとを備えることを特徴とする記録
再生分離型磁気ヘッド。
8. An inductive thin film head for magnetic recording, comprising: a pair of magnetic poles, magnetic circuit means for magnetically coupling the pair of magnetic poles, and a coil interlinking with the magnetic circuit; A recording / reproducing separated type magnetic head comprising: a magnetic head.
【請求項9】 磁気記録媒体と、請求項6、7又は8の
いずれか1項に記載の磁気ヘッドと、前記磁気記録媒体
と前記ヘッドとを相対的に駆動する駆動手段と、前記磁
気ヘッドに接続された記録再生信号処理系とを含むこと
を特徴とする磁気記録再生装置。
9. A magnetic recording medium, the magnetic head according to claim 6, 7 or 8, drive means for relatively driving the magnetic recording medium and the head, and the magnetic head. And a recording and reproducing signal processing system connected to the magnetic recording and reproducing apparatus.
JP7269721A 1995-10-18 1995-10-18 Magnetoresistance element, and magnetic head and magnetic recording and reproducing device using the same Pending JPH09115114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7269721A JPH09115114A (en) 1995-10-18 1995-10-18 Magnetoresistance element, and magnetic head and magnetic recording and reproducing device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7269721A JPH09115114A (en) 1995-10-18 1995-10-18 Magnetoresistance element, and magnetic head and magnetic recording and reproducing device using the same

Publications (1)

Publication Number Publication Date
JPH09115114A true JPH09115114A (en) 1997-05-02

Family

ID=17476246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7269721A Pending JPH09115114A (en) 1995-10-18 1995-10-18 Magnetoresistance element, and magnetic head and magnetic recording and reproducing device using the same

Country Status (1)

Country Link
JP (1) JPH09115114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311686A (en) * 2003-04-07 2004-11-04 Alps Electric Co Ltd Magnetically sensitive element and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311686A (en) * 2003-04-07 2004-11-04 Alps Electric Co Ltd Magnetically sensitive element and its manufacturing method

Similar Documents

Publication Publication Date Title
US6141190A (en) Magnetoresistive effect head
KR960002612B1 (en) Magnetic head
KR20090031819A (en) Magnetic head and magnetic recording apparatus
JP2003303406A (en) Magneto-resistive effect head and magnetic head
JP2003296907A (en) Magnetic disk unit using magnetic head having magneto- resistive effect film
JPH09191142A (en) Magnetoresistance device and magnetic sensor
JPH05135332A (en) Magneto-resistance effect playback head and magnetic recording device using this head
US6545847B2 (en) Magnetoresistive effect head
JPH1186235A (en) Magnetic recording reproducing apparatus
JP2000011331A (en) Magnetoresistive element and thin film magnetic head
JPH1125431A (en) Magneto-resistance effect type reproducing head and magnetic recording and reproducing device
US6697235B2 (en) Magnetoresistive head and magnetic recoding/reproducing apparatus using the same
JPH09115114A (en) Magnetoresistance element, and magnetic head and magnetic recording and reproducing device using the same
JPH0877517A (en) Magneto-resistive head and its production
JP2897725B2 (en) Magnetoresistive head
JP3565925B2 (en) Magnetoresistive head
JPH0922511A (en) Magnetoresistance effect element and magnetic head and magnetic recording and reproducing device using that
JPH09251616A (en) Thin film magnetic head
JPH08124122A (en) Magnetoresistive reproducing head and magnetic recording/reproducing device
JPH0836715A (en) Magnetoresistance effect-type magnetic head
JPH08129718A (en) Magneto-resistance effect type magnetic sensor
JP2003208706A (en) Magnetic head
JPH0991630A (en) Magneto-resistive element and magnetic head and magnetic recording and reproducing device formed by using the same
WO1997011458A1 (en) Magnetoresistive head
JP2003263708A (en) Magneto-resistive effect type head