JPH05325960A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPH05325960A
JPH05325960A JP4124593A JP12459392A JPH05325960A JP H05325960 A JPH05325960 A JP H05325960A JP 4124593 A JP4124593 A JP 4124593A JP 12459392 A JP12459392 A JP 12459392A JP H05325960 A JPH05325960 A JP H05325960A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium battery
lithium
active material
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4124593A
Other languages
Japanese (ja)
Other versions
JP3176702B2 (en
Inventor
Masaharu Kamauchi
正治 鎌内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP12459392A priority Critical patent/JP3176702B2/en
Publication of JPH05325960A publication Critical patent/JPH05325960A/en
Application granted granted Critical
Publication of JP3176702B2 publication Critical patent/JP3176702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a lithium battery of high energy density having large electric capacity and generating high electromotive force and high discharge voltage. CONSTITUTION:In a lithium battery constituted of a negative electrode unit consisting of metal lithium or its alloy, positive electrode unit and an electrolyte, an active material of the positive electrode unit consists of lithium phosphorus compound oxide. Accordingly, an Li<+> amount fetched to the positive electrode unit can be increased, and since an Li<+> amount fetched per unit weight to the positive electrode unit can be increased, the lithium battery of high energy density having large electric capacity and further generating high electromotive force and high discharge voltage can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム電池に関し、
詳しくは高容量の正極体を有し、高起電力、高放電圧を
発生する高エネルギー密度のリチウム電池に関する。
The present invention relates to a lithium battery,
More specifically, it relates to a high energy density lithium battery having a high capacity positive electrode body and generating a high electromotive force and a high discharge voltage.

【0002】[0002]

【従来の技術】リチウム電池は、使用温度範囲が広く、
放電電圧が安定で、自己放電率が極めて小さいという数
々の長所を有する高エネルギー密度電池として知られて
いる。このような高エネルギー密度電池として、従来C
oO2 やλ−MnO2 を正極活物質とするLi+ 挿入型正
極体を用いたリチウム電池が知られている。また、上記
のCoO2 やλ−MnO2 よりも高い電圧を発生する黒
鉛層間化合物で正極体を形成し、これを用いたリチウム
電池が知られている。
2. Description of the Related Art Lithium batteries have a wide operating temperature range,
It is known as a high energy density battery having various advantages that the discharge voltage is stable and the self-discharge rate is extremely small. As such a high energy density battery, conventional C
A lithium battery using a Li + insertion type positive electrode body using oO 2 or λ-MnO 2 as a positive electrode active material is known. Further, there is known a lithium battery in which a positive electrode body is formed of a graphite intercalation compound that generates a voltage higher than that of CoO 2 or λ-MnO 2 , and the same is used.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記CoO
2 やλ−MnO2 を正極活物質とする正極体を用いたリ
チウム電池では、正極体の電気容量が小さく、また、放
電電圧も約4V程度であって、エネルギー密度も低い。
また、上記黒鉛層間化合物を正極活物質とする正極体を
用いたリチウム電池では、正極体においてClO4 - ,BF4
- 等のアニオンの移動が関与して、上記Li+ の移動が関
与するCoO2 やλ−MnO2 を正極活物質とする正極
体よりも電気容量が小さくなり、かえってエネルギー密
度が低下する。このように、従来のリチウム電池では、
エネルギー密度が低いので、市場で要求される高エネル
ギー密度のリチウム電池としては不十分である。
However, the above CoO
In a lithium battery using a positive electrode body having 2 or λ-MnO 2 as a positive electrode active material, the positive electrode body has a small electric capacity, a discharge voltage of about 4 V, and a low energy density.
Further, in the lithium battery using a positive electrode of the graphite intercalation compound as the positive electrode active material, ClO 4 in positive electrode -, BF 4
Since the movement of anions such as is involved, the electric capacity is smaller than that of the positive electrode body using CoO 2 or λ-MnO 2 which is involved in the movement of Li + as the positive electrode active material, and the energy density is rather lowered. Thus, in a conventional lithium battery,
The low energy density makes it unsatisfactory as a high energy density lithium battery required in the market.

【0004】本発明の目的は、上記の如き課題を解決
し、高起電力、高放電圧を発生する高エネルギー密度の
リチウム電池を提供することにある。
An object of the present invention is to solve the above problems and to provide a high energy density lithium battery which generates a high electromotive force and a high discharge voltage.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記課題を
解決するために種々研究を重ねた結果、正極活物質とし
てイオン半径が小さい物質を使用する程、起電力が高く
なる傾向があることを見出した。就中、リンが活物質材
として本来適した物性を備えていること、さらに起電力
をより高くし得ることが判明した。この理由は明らかで
はないが、本発明は上記知見に基づいて、従来のコバル
トやマンガンに替えてイオン半径が小さく、かつ、式量
の小さいリンをリチウムに複合した正極活物質を用いて
正極体を形成することで、上記目的を達成することに成
功し、本発明を完成した。
As a result of various studies to solve the above-mentioned problems, the present inventor has a tendency that the electromotive force tends to increase as a material having a smaller ionic radius is used as the positive electrode active material. I found that. In particular, it was found that phosphorus has the physical properties originally suitable as an active material and can further increase the electromotive force. Although the reason for this is not clear, the present invention is based on the above findings, a positive electrode body using a positive electrode active material in which lithium is compounded with a small ionic radius instead of conventional cobalt or manganese, and with a small formula weight. By forming the above, the above object was successfully achieved, and the present invention was completed.

【0006】即ち、本発明のリチウム電池は、金属リチ
ウムまたはその合金よりなる負極体と、正極体と、電解
質とで構成されるリチウム電池であって、上記正極体の
活物質がリチウム・リン複合酸化物よりなることを特徴
とする。
That is, the lithium battery of the present invention is a lithium battery composed of a negative electrode body made of metallic lithium or an alloy thereof, a positive electrode body, and an electrolyte, wherein the active material of the positive electrode body is a lithium-phosphorus composite. It is characterized by being made of an oxide.

【0007】[0007]

【作用】上記構成によれば、イオン半径が小さいリンを
リチウムに複合した正極活物質を用いるので、リチウム
電池の起電力や、放電電圧を高くすることができる。ま
た、式量が小さいリンを複合させた正極活物質を用いる
ので、正極体の質量を軽くできるため、正極体の単位重
量当りに取り込むLi+ 量が多くなり、正極体の容量を大
きくできる。したがって、リチウム電池の放電電圧、放
電容量を高くすることができ、リチウム電池を高エネル
ギー密度のものとすることができる。
According to the above structure, since the positive electrode active material in which phosphorus having a small ionic radius is combined with lithium is used, the electromotive force and discharge voltage of the lithium battery can be increased. Further, since the positive electrode active material in which phosphorus having a small formula weight is compounded is used, the mass of the positive electrode body can be reduced, so that the amount of Li + incorporated per unit weight of the positive electrode body can be increased and the capacity of the positive electrode body can be increased. Therefore, the discharge voltage and discharge capacity of the lithium battery can be increased, and the lithium battery can have a high energy density.

【0008】以下、本発明を図面に基づき詳細に説明す
る。図1はリチウム電池の基本構成を示す模式図であ
る。同図において、Dはリチウム電池で、正極2と負極
1との間にセパレータ3を介在させ、上記正極2の外側
面に圧着した集電体5aに接着する正極缶7と、負極1
の外側面に圧着した集電体5bに接着する負極キャップ
6とを絶縁体8で封止した構成としている。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram showing the basic configuration of a lithium battery. In the figure, D is a lithium battery, in which a separator 3 is interposed between a positive electrode 2 and a negative electrode 1, and a positive electrode can 7 adhered to a current collector 5a pressed onto the outer surface of the positive electrode 2 and a negative electrode 1
The negative electrode cap 6 adhered to the current collector 5b that is pressure-bonded to the outer surface of the is sealed with an insulator 8.

【0009】上記正極体2は、正極活物質と、アセチレ
ンブラックやケッチェンブラック等の導電材料と、ポリ
テトラフルオロエチレン、ポリエチレン等の結着剤とか
ら形成される。
The positive electrode body 2 is formed of a positive electrode active material, a conductive material such as acetylene black or Ketjen black, and a binder such as polytetrafluoroethylene or polyethylene.

【0010】本発明では、正極活物質として、リチウム
・リン複合酸化物を用いることを特徴とする。このリチ
ウム・リン複合酸化物は、従来正極活物質として知られ
ていない新規なものであって、一般式 LiPOx で表
され、この複合酸化物は非定量組成であって、xは1〜
3の範囲のものを含み、特にx=2のものが好ましい。
The present invention is characterized in that a lithium-phosphorus composite oxide is used as the positive electrode active material. This lithium-phosphorus composite oxide is a novel one not conventionally known as a positive electrode active material, and is represented by the general formula LiPO x , and this composite oxide has a non-quantitative composition, and x is 1 to
The range of 3 is included, and the range of x = 2 is particularly preferable.

【0011】上記、リチウム・リン複合酸化物として
は、LiPO,LiPO2,LiPO3などが挙げられ
る。
Examples of the lithium-phosphorus composite oxide include LiPO, LiPO 2 and LiPO 3 .

【0012】上記リチウム・リン複合酸化物は、従来の
セラミック合成法が用いられて、固相法、焼結法、ゾル
−ゲル法、CVD法、PVD法、溶射法、熱分解法等の
方法で製造される。
The above-mentioned lithium-phosphorus composite oxide is prepared by a conventional ceramic synthesis method, such as a solid phase method, a sintering method, a sol-gel method, a CVD method, a PVD method, a thermal spraying method and a thermal decomposition method. Manufactured in.

【0013】上記正極活物質は、イオン半径が小さいリ
ンをリチウムに複合させたので、起電力や、放電電圧を
高くできる。また、正極体2は上記正極活物質を主体に
含有するので、その質量が軽くなって単位重量当りに取
り込むLi+ 量を多くできる。
In the above positive electrode active material, since phosphorus having a small ionic radius is combined with lithium, electromotive force and discharge voltage can be increased. In addition, since the positive electrode body 2 mainly contains the positive electrode active material, the mass of the positive electrode body 2 is reduced, and the amount of Li + incorporated per unit weight can be increased.

【0014】上記正極体2は、前記正極体用組成物を圧
縮成形、ロール成形等の公知の適当な方法で任意の形
状、大きさに成形される。
The positive electrode body 2 is formed into an arbitrary shape and size by a known appropriate method such as compression molding or roll molding of the positive electrode composition.

【0015】一方、上記負極体1は、金属リチウムまた
はLi−Al,Li−Al−Mg,Li−C等のリチウ
ム合金を圧縮成形、ロール成形等の方法で任意の形状、
大きさに成形して使用される。
On the other hand, the negative electrode body 1 is made of metallic lithium or a lithium alloy such as Li-Al, Li-Al-Mg, and Li-C in any shape by compression molding, roll molding, or the like.
It is used after being molded into a size.

【0016】本発明では、電解質として塩類を有機溶媒
に溶解させた電解液や固体電解質が使用できる。電解質
が電解液の場合、この塩類としては、LiClO4 ,L
iBF4 ,LiPF6 ,LiAsF6 ,LiAlC
4 ,Li(CF3 SO2 2 N等が使用でき、エチレ
ンカーボネート,プロピレンカーボネート,ジメチルス
ルホキシド,スルホラン,γ−ブチロラクトン,1,2
−ジメトキシエタン,N,N−ジメチルホルムアミド,
テトラヒドロフラン,1,3−ジオキソラン,2−メチ
ルテトラヒドロフラン,ジエチルエーテルおよびこれら
の混合物等の有機溶媒に溶解させて濃度0.1〜3モル
/リットルに調製して使用される。
In the present invention, an electrolytic solution obtained by dissolving salts in an organic solvent or a solid electrolyte can be used as the electrolyte. When the electrolyte is an electrolytic solution, the salts include LiClO 4 , L
iBF 4, LiPF 6, LiAsF 6 , LiAlC
l 4 , Li (CF 3 SO 2 ) 2 N and the like can be used, and ethylene carbonate, propylene carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone, 1,2
-Dimethoxyethane, N, N-dimethylformamide,
It is used by dissolving it in an organic solvent such as tetrahydrofuran, 1,3-dioxolane, 2-methyltetrahydrofuran, diethyl ether and a mixture thereof to prepare a concentration of 0.1 to 3 mol / liter.

【0017】この電解液は、多孔性ポリマーやガラスフ
ィルタのようなセパレータ3に含浸あるいは充填させ
て、電解質として使用される。
This electrolytic solution is used as an electrolyte by impregnating or filling a separator 3 such as a porous polymer or a glass filter.

【0018】電解質が固体電解質の場合、上記塩類をポ
リエチレンオキシド,ポリプロピレンオキシド,ポリホ
スファゼン,ポリアジリジン,ポリエチレンスルフィド
等やこれらの誘導体、混合物、複合体等に混合して使用
される。この固体電解質は、正極2と負極1とのセパレ
ータ3を兼ねる。
When the electrolyte is a solid electrolyte, the above-mentioned salts are mixed with polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide and the like, their derivatives, mixtures and complexes. This solid electrolyte also serves as the separator 3 for the positive electrode 2 and the negative electrode 1.

【0019】上記構成とすることにより、リチウム電池
は、高起電力、高放電電圧を発生するものとなる。ま
た、エネルギー密度が高いものとなる。なお、本発明で
は、正極,セパレータ(あるいは固体電解質),負極等
をロール状に巻く構成とすることにより、さらに高電気
容量のリチウム電池を製造できる。
With the above structure, the lithium battery produces a high electromotive force and a high discharge voltage. In addition, the energy density becomes high. In the present invention, a lithium battery having a higher electric capacity can be manufactured by using a configuration in which the positive electrode, the separator (or solid electrolyte), the negative electrode, etc. are wound in a roll shape.

【0020】[0020]

【実施例】以下、実施例を示し本発明をより具体的に説
明する。なお、本発明がこれに限定されるものでないこ
とは言うまでもない。 実施例1 (正極活物質の製造)リン含有率85%のリン酸と炭酸
リチウムとを、リンとリチウムの原子比が1:1となる
量をそれぞれ秤量し、これをアルミナ製るつぼに入れ
て、電気炉で800℃、12時間加熱処理を行い、リチ
ウム・リン複合酸化物(正極活物質a)を製造した。
EXAMPLES Hereinafter, the present invention will be described more specifically by showing examples. Needless to say, the present invention is not limited to this. Example 1 (Production of Positive Electrode Active Material) Phosphoric acid having a phosphorus content of 85% and lithium carbonate were weighed in amounts such that the atomic ratio of phosphorus to lithium was 1: 1 and placed in an alumina crucible. Then, heat treatment was performed at 800 ° C. for 12 hours in an electric furnace to produce a lithium-phosphorus composite oxide (positive electrode active material a).

【0021】(正極体の作製)十分に粉砕し粒度約20
μm以下とした上記正極活物質a8重量部、アセチレン
ブラック1重量部、テフロン粉末1重量部を十分に混合
して正極合剤を調製した。ついで、この正極合剤100
mgをニッケルメッシュ上にプレス成形して、直径20m
m、厚さ1.0mmの円板状正極体を作製した。
(Preparation of positive electrode body) Sufficiently crushed to a particle size of about 20
A positive electrode mixture was prepared by sufficiently mixing 8 parts by weight of the positive electrode active material a having a size of not more than μm, 1 part by weight of acetylene black, and 1 part by weight of Teflon powder. Then, this positive electrode mixture 100
20 mg diameter by press forming mg on nickel mesh
A disk-shaped positive electrode having a thickness of 1.0 mm and a thickness of 1.0 mm was produced.

【0022】(負極体の作製)金属リチウムシートを直
径20.0mmに打ち抜き、片面にニッケルメッシュ5を
圧着して1.0mm厚さを有する円板状負極体を作製し
た。
(Preparation of Negative Electrode Body) A metallic lithium sheet was punched out to a diameter of 20.0 mm and a nickel mesh 5 was pressure bonded to one surface thereof to prepare a disc-shaped negative electrode body having a thickness of 1.0 mm.

【0023】(セパレータの作製)厚さ0.5mmの多孔
性ポリプロピレンフィルムを、直径25.0mmに打ち抜
き、円板状セパレータを作製した。
(Preparation of Separator) A 0.5 mm thick porous polypropylene film was punched to a diameter of 25.0 mm to prepare a disc-shaped separator.

【0024】(電解液の調製)含水量を50ppm 以下に
調製したプロピレンカーボネートと1,2−ジメトキシ
エタンとの体積比1:1の混合物に、1モル/リットル
の過塩素酸リチウムを溶解して電解液を調製した。
(Preparation of Electrolyte Solution) 1 mol / liter of lithium perchlorate was dissolved in a mixture of propylene carbonate and 1,2-dimethoxyethane having a water content of 50 ppm or less at a volume ratio of 1: 1. An electrolytic solution was prepared.

【0025】(リチウム電池の作製)上記作製した正極
体、負極体およびセパレータを、図1に示す構成に組立
て、正極体2にはステンレス製缶7を、負極体1にはス
テンレス製キャップ6をそれぞれ圧着させて取り付け、
前記電解液を上記正極缶7と負極キャップ6とで形成さ
れる容器内に注入した後、ガスケット8で封止してリチ
ウム電池Dを作製した。
(Production of Lithium Battery) The positive electrode body, the negative electrode body and the separator produced as described above are assembled into a structure shown in FIG. Attach by crimping each,
The electrolyte solution was injected into the container formed of the positive electrode can 7 and the negative electrode cap 6 and then sealed with a gasket 8 to prepare a lithium battery D.

【0026】(リチウム電池Dの性能試験)上記リチウ
ム電池Dを、1.0mAの定電流で充電を行った後、放電
電圧−放電時間および全放電容量を測定し、その放電特
性を調べた。この結果、図2および表1で示す通りであ
った。
(Performance Test of Lithium Battery D) The above lithium battery D was charged at a constant current of 1.0 mA, and then the discharge voltage-discharge time and the total discharge capacity were measured to examine the discharge characteristics. As a result, the results are shown in FIG. 2 and Table 1.

【0027】比較例1 (正極活物質の製造)炭酸リチウムと塩基性炭酸コバル
トとを、リチウムとコバルトの原子比が1:1となる量
をアルミナ製るつぼに秤取して十分に混合した後、電気
炉で900℃、24時間加熱処理を行い、リチウム・コ
バルト複合酸化物(正極活物質b)を製造した。この正
極活物質bを、粉末X線回析法で調べたところ、JCP
OSカードのNo. 16−427と合致することが確認さ
れた。
Comparative Example 1 (Production of Positive Electrode Active Material) Lithium carbonate and basic cobalt carbonate were weighed in an alumina crucible in an amount such that the atomic ratio of lithium to cobalt was 1: 1 and thoroughly mixed. Then, heat treatment was performed in an electric furnace at 900 ° C. for 24 hours to produce a lithium-cobalt composite oxide (positive electrode active material b). When this positive electrode active material b was examined by a powder X-ray diffraction method, JCP
It was confirmed to match the OS card No. 16-427.

【0028】(リチウム電池の作製)正極体2として上
記で製造した正極活物質bを用いたものに替える以外は
すべて実施例1と同様にして、リチウム電池を作製し
た。
(Production of Lithium Battery) A lithium battery was produced in the same manner as in Example 1 except that the positive electrode active material b produced above was used as the positive electrode body 2.

【0029】(リチウム電池の性能試験)このリチウム
電池を、1.0mAの定電流で充電して、実施例1と同様
にその放電特性を測定した。この結果は、図2および表
1で示す通りであった。
(Performance Test of Lithium Battery) This lithium battery was charged at a constant current of 1.0 mA and its discharge characteristics were measured in the same manner as in Example 1. The results are as shown in FIG. 2 and Table 1.

【0030】図2より明らかなように、実施例でえられ
るリチウム電池は、4V以上の高電圧を15時間近く維
持するものであるのに対し、比較例でえられるものは、
約1時間で放電電圧が4V以下に低下し、12時間を数
える前に急激に放電電圧が3V以下に低下した。
As is clear from FIG. 2, the lithium batteries obtained in the examples maintain a high voltage of 4 V or higher for about 15 hours, while the lithium batteries obtained in the comparative examples are:
The discharge voltage dropped to 4 V or less in about 1 hour, and drastically dropped to 3 V or less before counting 12 hours.

【0031】[0031]

【表1】 [Table 1]

【0032】また、上記表1より明らかなように、実施
例でえられるリチウム電池は、全放電容量にも優れるも
のであった。
As is clear from Table 1 above, the lithium batteries obtained in the examples were also excellent in total discharge capacity.

【0033】[0033]

【発明の効果】以上詳述したように、本発明では、正極
体に取り込むLi+ 量を増加させることができ、また、正
極体の単位重量当りに取り込むLi+ 量が多くできるの
で、高電気容量を有し、かつ、高起電力、高放電電圧を
発生する高エネルギー密度のリチウム電池がえられる。
As described in detail above, according to the present invention, the amount of Li + taken in by the positive electrode body can be increased, and the amount of Li + taken in per unit weight of the positive electrode body can be made large. It is possible to obtain a high energy density lithium battery which has a capacity and generates a high electromotive force and a high discharge voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すリチウム電池の模式図
である。
FIG. 1 is a schematic view of a lithium battery showing an embodiment of the present invention.

【図2】本発明のリチウム電池の放電特性を示す図であ
る。
FIG. 2 is a diagram showing discharge characteristics of the lithium battery of the present invention.

【符号の説明】[Explanation of symbols]

1 負極 2 正極 3 セパレータ 5a,5b 集電体 6 負極キャップ 7 正極缶 8 絶縁体 D リチウム電池 1 Negative electrode 2 Positive electrode 3 Separator 5a, 5b Current collector 6 Negative electrode cap 7 Positive electrode can 8 Insulator D Lithium battery

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属リチウムまたはその合金よりなる負
極体と、正極体と、電解質とで構成されるリチウム電池
であって、上記正極体の活物質がリチウム・リン複合酸
化物よりなることを特徴とするリチウム電池。
1. A lithium battery comprising a negative electrode body made of metallic lithium or an alloy thereof, a positive electrode body, and an electrolyte, wherein an active material of the positive electrode body is a lithium-phosphorus composite oxide. And a lithium battery.
【請求項2】 リチウム・リン複合酸化物が、一般式
LiPOx (1≦x≦3)で表されるものである請求項
1記載のリチウム電池。
2. The lithium-phosphorus composite oxide is represented by the general formula:
The lithium battery according to claim 1, which is represented by LiPO x (1 ≦ x ≦ 3).
JP12459392A 1992-05-18 1992-05-18 Lithium battery Expired - Fee Related JP3176702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12459392A JP3176702B2 (en) 1992-05-18 1992-05-18 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12459392A JP3176702B2 (en) 1992-05-18 1992-05-18 Lithium battery

Publications (2)

Publication Number Publication Date
JPH05325960A true JPH05325960A (en) 1993-12-10
JP3176702B2 JP3176702B2 (en) 2001-06-18

Family

ID=14889295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12459392A Expired - Fee Related JP3176702B2 (en) 1992-05-18 1992-05-18 Lithium battery

Country Status (1)

Country Link
JP (1) JP3176702B2 (en)

Also Published As

Publication number Publication date
JP3176702B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
JP7215423B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2006024415A (en) Cathode material and battery
KR101512349B1 (en) Cathode active material for Sodium secondary battery and method for preparing the same
JPH10188977A (en) Lithium secondary battery
JP4049542B2 (en) Lithium secondary battery
JPH08195200A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with this active material
JP2014143183A (en) Positive electrode active material for magnesium ion secondary battery, method for producing the same, positive electrode for magnesium ion secondary battery, and magnesium ion secondary battery
KR101981659B1 (en) Positive electrode active material for rechargable lithium battery and rechargable lithium battery including the same
JP2001052698A (en) Lithium secondary battery
JPH05325961A (en) Lithium battery
JP2022512443A (en) Positive electrode active material for lithium secondary batteries and lithium secondary batteries containing them
JP2512239B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2000100469A (en) Nonaqueous electrolyte battery
JP2018107117A (en) Negative electrode active material, and electrochemical device
JP4969051B2 (en) Method for producing lithium cobaltate positive electrode active material
JP3125075B2 (en) Non-aqueous electrolyte secondary battery
JP2022106635A (en) Porous silicon material, electricity storage device, and method for producing porous silicon material
JP3176702B2 (en) Lithium battery
JP2000200603A (en) Negative-electrode material, its manufacture, and battery using same
JP3615416B2 (en) Lithium secondary battery
JPH08106920A (en) Lithium secondary battery
JP3273569B2 (en) Lithium battery
JPH11191416A (en) Positive electrode active material for lithium secondary battery
JP3624516B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees