JPH05325661A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH05325661A
JPH05325661A JP4123693A JP12369392A JPH05325661A JP H05325661 A JPH05325661 A JP H05325661A JP 4123693 A JP4123693 A JP 4123693A JP 12369392 A JP12369392 A JP 12369392A JP H05325661 A JPH05325661 A JP H05325661A
Authority
JP
Japan
Prior art keywords
copper
coating layer
thickness
stabilizing material
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4123693A
Other languages
Japanese (ja)
Inventor
Akira Murase
暁 村瀬
Minoru Tanaka
実 田中
Tsutomu Fujioka
勉 藤岡
Satoru Hanai
哲 花井
Yoshihiro Wachi
良裕 和智
Masamitsu Ichihara
政光 市原
Nobuo Aoki
青木  伸夫
Shinji Hakamata
真志 袴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
SWCC Corp
Original Assignee
Toshiba Corp
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Showa Electric Wire and Cable Co filed Critical Toshiba Corp
Priority to JP4123693A priority Critical patent/JPH05325661A/en
Publication of JPH05325661A publication Critical patent/JPH05325661A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve stability when a copper-aluminium compound material is used as a stabilizing material by containing an aluminium material having a copper coating layer in the stabilizing material, and setting a thickness of the copper coating layer equal to or thinner than 35mum. CONSTITUTION:In a superconductor 11, a superconducting wire 3 formed of Nb3S or NbTi and so on of a copper matrix is buried in a copper stabilizing material 2. A groove 4 extending along the wire 3 is arranged on the outer surface of the copper stabilizing material 2, and an aluminium material 13 having a copper coating layer 12, that is, a copper clad-aluminium material 14 is installed in this groove 4 through solder, and a stabilizing material 15 is constituted of the material 2 and the material 14. This layer 12 is formed by means of metal plating and so on, and the thickness is set equal to or thinner than 35mum. Among the layer 12, a part situated in the groove 4 contributes to adhesiveness with the solder, so that stability of the superconductor 11 can be improved significantly. Thereby, the stability can be improved without deteriorating productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大型の超電導マグネッ
トなどの線材として使われる安定化材を備えた超電導導
体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting conductor provided with a stabilizing material used as a wire for large-sized superconducting magnets.

【0002】[0002]

【従来の技術】周知のように、核融合炉、エネルギ貯蔵
施設、ハイブリッド・マグネット、加速器などでは大型
の超電導マグネットを必要とする。このような大型の超
電導マグネットを形成する場合、コイルを構成する超電
導導体としては、常電導状態に転移したときの安全性の
確保、運転の継続確保、常電導状態から超電導状態への
自然回復の確保などの点から通常、超電導線に銅、アル
ミニウム、銅とアルミニウムの複合体などの安定化材を
添設したものが用いられる。
As is well known, large-scale superconducting magnets are required in nuclear fusion reactors, energy storage facilities, hybrid magnets, accelerators and the like. When forming such a large-sized superconducting magnet, the superconducting conductor that constitutes the coil is to ensure safety when the state changes to the normal conducting state, to ensure continuous operation, and to naturally recover from the normal conducting state to the superconducting state. From the point of view of securing, a superconducting wire is usually used with a stabilizing material such as copper, aluminum, or a composite of copper and aluminum.

【0003】ところで、銅は磁気抵抗効果が大きいた
め、高磁界において比抵抗が大きい。このため、安定化
材として銅だけを用いた超電導導体では十分な安定性が
得られない。一方、アルミニウムは磁気抵抗効果が小さ
く、高磁界での比抵抗が小さい。しかし反面、ハンダと
の接着性が悪く、しかも機械的強度性に劣る。このた
め、安定化材としてアルミニウムだけを使用しようとす
ると、超電導導体の製作が困難なものとなる。
By the way, since copper has a large magnetoresistive effect, it has a large specific resistance in a high magnetic field. Therefore, a superconducting conductor using only copper as a stabilizing material cannot provide sufficient stability. On the other hand, aluminum has a small magnetoresistance effect and a small specific resistance in a high magnetic field. However, on the other hand, the adhesion to solder is poor and the mechanical strength is poor. Therefore, if only aluminum is used as the stabilizing material, it becomes difficult to manufacture the superconducting conductor.

【0004】このようなことから、図8に示すように、
銅とアルミニウムの複合体を安定化材として使用してい
る超電導導体1が多い。すなわち、この超電導導体1
は、銅安定化材2中に銅マトリックスのNb3 Snある
いはNbTiからなる超電導線3を埋込むとともに、銅
安定化材2の外面に超電導線3に沿って延びる溝4を設
け、この溝4内に厚さがたとえば200μmの銅の被覆
層5を備えたアルミニウム材6、つまり銅クラッド・ア
ルミ材7をハンダを介して装着し、銅安定化材2と銅ク
ラッド・アルミ材7とで安定化材8を構成したものとな
っている。銅の被覆層5はメッキなどによって形成さ
れ、ハンダとの接着性に寄与している。
From the above, as shown in FIG.
Many superconducting conductors 1 use a composite of copper and aluminum as a stabilizer. That is, this superconducting conductor 1
Embedded in the copper stabilizing material 2 is a superconducting wire 3 made of Nb 3 Sn or NbTi of a copper matrix, and a groove 4 extending along the superconducting wire 3 is provided on the outer surface of the copper stabilizing material 2. An aluminum material 6 having a copper coating layer 5 with a thickness of, for example, 200 μm, that is, a copper clad aluminum material 7 is mounted via solder, and is stabilized by the copper stabilizing material 2 and the copper clad aluminum material 7. The chemical material 8 is configured. The copper coating layer 5 is formed by plating or the like and contributes to the adhesiveness with solder.

【0005】しかしながら、上記のように銅とアルミニ
ウムの複合体を安定化材8として用いた超電導導体1に
あっても、高磁界中において安定化材8の合成比抵抗を
実際に測定してみると、設計計算値に比べて異常に高
く、アルミニウム材6を加えた効果がほとんどないこと
が判明した。また、安定性の実証実験においても満足で
きる結果は得られなかった。
However, even in the case of the superconducting conductor 1 using the composite of copper and aluminum as the stabilizing material 8 as described above, the composite specific resistance of the stabilizing material 8 is actually measured in a high magnetic field. Then, it was found that the value was abnormally high compared to the design calculation value, and there was almost no effect of adding the aluminum material 6. In addition, satisfactory results were not obtained in the stability verification test.

【0006】[0006]

【発明が解決しようとする課題】上述の如く、従来、安
定性に優れていると言われている、銅とアルミニウムの
複合体を安定化材として用いた超電導導体にあっても、
実際には十分な安定性が得られないことが判った。そこ
で本発明は、銅とアルミニウムの複合体を安定化材とし
て用い、しかも安定性に優れた超電導導体を提供するこ
とを目的としている。
As described above, even in the case of a superconducting conductor using a composite of copper and aluminum as a stabilizing material, which is conventionally said to have excellent stability,
It turned out that sufficient stability was not actually obtained. Therefore, an object of the present invention is to provide a superconducting conductor which uses a composite of copper and aluminum as a stabilizing material and is excellent in stability.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る超電導導体では、安定化材が銅の被覆
層を備えたアルミニウム材を含んでおり、かつ上記銅の
被覆層の厚みが35μm以下に設定されている。
In order to achieve the above object, in a superconducting conductor according to the present invention, a stabilizing material includes an aluminum material having a copper coating layer, and The thickness is set to 35 μm or less.

【0008】[0008]

【作用】上記構成であると、5テスラ以上の高磁界中に
おいて、複合安定化材の実測比抵抗と計算比抵抗との比
を従来のものに較べて30%以上低下させることができ
る。つまり、アルミニウム材を加えたことによる効果を
有効に引き出すことができ、超電導導体の安定性を向上
させることができる。
With the above structure, in a high magnetic field of 5 tesla or more, the ratio of the measured specific resistance and the calculated specific resistance of the composite stabilizing material can be reduced by 30% or more as compared with the conventional one. That is, the effect of adding the aluminum material can be effectively brought out, and the stability of the superconducting conductor can be improved.

【0009】この理由は定かではないが次のように推測
される。金属には電流の流れる方向と垂直な方向に磁界
が印加されると、電流・磁界に対して垂直な方向に電場
が生じ、起電力が現れる。この現象はホール効果と呼ば
れている。このホール効果で生じる電圧は、電流と磁界
の積にある係数をもって比例する。この係数はホール係
数と呼ばれているが、銅とアルミニウムとではその係数
の正負が逆転している。このため、銅とアルミニウムか
ら構成される複合安定化材の軸方向に対して垂直な方向
に電流のループができ、これが軸方向の電流の流れに対
して抵抗になると予測される。この予測に立脚すると、
銅の被覆層の厚みが増加すれば銅に流れる電流値も増加
し、起電力差も大きくなり、ループ電流も増加する。事
実、銅の被覆層の厚みと磁界の増加に対して、複合安定
化材の実測比抵抗と計算比抵抗の比が増加すると言う実
験結果を定性的に説明できる。したがって、銅の被覆層
の一部または全部の厚みが薄くなるか、零になれば、ル
ープ電流の流れる厚さが制限されるため、ホール起電力
の差が小さくなり、ループ電流が減少し、実測比抵抗と
計算比抵抗との比が低下するものと予測される。
The reason for this is not clear, but it is presumed as follows. When a magnetic field is applied to metal in a direction perpendicular to the direction of current flow, an electric field is generated in a direction perpendicular to the current / magnetic field, and electromotive force appears. This phenomenon is called the Hall effect. The voltage produced by this Hall effect is proportional to the product of the current and the magnetic field. This coefficient is called the Hall coefficient, but the positive and negative of the coefficient are reversed between copper and aluminum. Therefore, a current loop is formed in a direction perpendicular to the axial direction of the composite stabilizer made of copper and aluminum, which is expected to become a resistance against the current flow in the axial direction. Building on this prediction,
When the thickness of the copper coating layer increases, the current value flowing through the copper also increases, the electromotive force difference also increases, and the loop current also increases. In fact, it is possible to qualitatively explain the experimental result that the ratio of the measured resistivity and the calculated resistivity of the composite stabilizer increases with the increase of the copper coating layer thickness and the magnetic field. Therefore, if the thickness of part or all of the copper coating layer becomes thin or becomes zero, the thickness of the loop current flows is limited, so the difference in Hall electromotive force becomes smaller, and the loop current decreases. It is predicted that the ratio between the measured resistivity and the calculated resistivity will decrease.

【0010】[0010]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1には本発明の一実施例に係る超電導導体の横断
面図が示されている。なお、この図では図8と同一部分
が同一符号で示されている。
Embodiments will be described below with reference to the drawings. FIG. 1 shows a cross-sectional view of a superconducting conductor according to an embodiment of the present invention. In this figure, the same parts as those in FIG. 8 are designated by the same reference numerals.

【0011】この実施例に係る超電導導体11は、銅安
定化材2の中に銅マトリックスのNb3 SnあるいはN
bTiなどからなる超電導線3を埋込むとともに、銅安
定化材2の外面に超電導線3に沿って延びる溝4を設
け、この溝4内に銅の被覆層12を備えたアルミニウム
材13、つまり銅クラッド・アルミ材14をハンダを介
して装着し、銅安定化材2と銅クラッド・アルミ材14
とで安定化材15を構成している。
In the superconducting conductor 11 according to this embodiment, the copper stabilizing material 2 contains Nb 3 Sn or N in a copper matrix.
A superconducting wire 3 made of bTi or the like is embedded, and a groove 4 extending along the superconducting wire 3 is provided on the outer surface of the copper stabilizing material 2, and an aluminum material 13 having a copper coating layer 12 in the groove 4, that is, The copper clad / aluminum material 14 is attached via solder, and the copper stabilizing material 2 and the copper clad / aluminum material 14 are attached.
And constitute the stabilizing material 15.

【0012】銅の被覆層12はメッキなどによって形成
されており、その厚みは35μm以下、この例では30
μmに設定されている。この被覆層12のうち、溝4内
に位置している部分はハンダとの接着性に寄与してい
る。このような構成であると、超電導導体11の安定性
を大幅に向上させることができる。
The copper coating layer 12 is formed by plating or the like, and has a thickness of 35 μm or less, in this example, 30.
It is set to μm. The portion of the coating layer 12 located in the groove 4 contributes to the adhesiveness with the solder. With such a structure, the stability of the superconducting conductor 11 can be significantly improved.

【0013】すなわち、図1に示される超電導導体11
と図8に示される従来の超電導導体1との安定性を比較
してみた。なお、両者とも安定化材として使用している
銅とアルミニウムとの比が3:1となるように構成し
た。これらの導体を用いてコイルを作製し、安定化の目
安となる常電導状態に転移した後に超電導状態に戻る電
流(回復電流)を比較した。その結果、銅の被覆層12
の厚みが30μmである本発明の導体は1000A以上
であった。これに対して、銅の被覆層の厚みが200μ
mである従来の導体のそれは700A以下であった。本
発明の適用によって40%以上の安定性の向上が確認さ
れた。
That is, the superconducting conductor 11 shown in FIG.
And the stability of the conventional superconducting conductor 1 shown in FIG. 8 were compared. In addition, both were configured so that the ratio of copper to aluminum used as a stabilizing material was 3: 1. A coil was produced using these conductors, and the currents (recovery currents) that returned to the superconducting state after the transition to the normal conducting state, which is a standard for stabilization, were compared. As a result, the copper coating layer 12
The conductor of the present invention having a thickness of 30 μm was 1000 A or more. On the other hand, the thickness of the copper coating layer is 200μ
That of the conventional conductor having m is 700 A or less. It was confirmed that the application of the present invention improved the stability by 40% or more.

【0014】また、発明者らは銅の被覆層12の厚みの
限界を確認するために次のような実験を行った。すなわ
ち、アルミニウム線に厚さ10、20、30、40、4
5μmの銅の被覆層を施した直径1mmの銅クラッド・ア
ルミ線を作製し、これらに4.2K中で0〜7テスラの
磁界を印加し、そのときの電気抵抗を測定してみた。そ
の結果、図2に示すデータを得た。なお、横軸は銅の被
覆層の厚みを示し、縦軸は実測比抵抗と計算による比抵
抗との比を示している。この図から判るように、磁界お
よび銅の被覆層の厚みの増加にともなって実測比抵抗と
計算による比抵抗との比が急激に増加している。たとえ
ば、最も応用範囲が広い6テスラ近くの場合を例にとる
と、銅の被覆層の厚みが35μm以下では実測比抵抗/
計算比抵抗の比が2倍程度以下であるのに対して、銅の
被覆層の厚みが40μmを越えると2.6倍以上、つま
り30%以上増加している。したがって、銅の被覆層1
2の厚みは35μm以下でハンダ接合に支障を与えない
範囲に設定する必要があると言える。
The inventors also conducted the following experiment in order to confirm the limit of the thickness of the copper coating layer 12. That is, the thickness of aluminum wire is 10, 20, 30, 40, 4
A copper clad aluminum wire having a diameter of 1 mm and having a copper coating layer of 5 μm was produced, and a magnetic field of 0 to 7 Tesla was applied to these at 4.2 K, and the electric resistance at that time was measured. As a result, the data shown in FIG. 2 was obtained. The horizontal axis represents the thickness of the copper coating layer, and the vertical axis represents the ratio of the measured specific resistance to the calculated specific resistance. As can be seen from this figure, the ratio between the measured specific resistance and the calculated specific resistance sharply increases as the magnetic field and the thickness of the copper coating layer increase. For example, taking the case of 6 Tesla, which has the widest application range, as an example, when the thickness of the copper coating layer is 35 μm or less, the measured specific resistance /
While the ratio of the calculated specific resistance is about 2 times or less, when the thickness of the copper coating layer exceeds 40 μm, it increases 2.6 times or more, that is, 30% or more. Therefore, the copper coating layer 1
It can be said that the thickness of No. 2 is 35 μm or less and needs to be set in a range that does not hinder solder joining.

【0015】なお、本発明は上述した実施例に限定され
るものではない。すなわち、上述した実施例では、銅ク
ラッド・アルミ材14の一部を露出させているが、図3
に示すように銅クラッド・アルミ材14を銅安定化材2
中に完全に埋め込むようにし、被覆層12の一部を電気
的な接触のない空胴や真空層16で覆うようにしてもよ
い。また、空胴や真空層16に代えて図4に示すように
絶縁材17で覆うようにしてもよい。また、上述した各
例ではアルミニウム材13の外周面全体に厚さが35μ
m以下の銅の被覆層12を設けているが、ハンダ接合に
供されない部分については被覆層12を除いてもよく、
たとえば図5に示すように、アルミニウム材13の3辺
だけに35μm以下の銅の被覆層12を設け、この被覆
層12を使って銅安定化材2にハンダ接合し、アルミニ
ウム材13の残りの1辺を電気的な接触のない空胴や真
空層16で覆うようにしてもよい。空胴や真空層16に
代えて図6に示すように絶縁材17で覆うようにしても
よい。また、上述した各例では、銅安定化材2を設けて
いるが、図7に示すように銅クラッド・アルミ材14だ
けで安定化材15aを構成してもよい。この場合も銅の
被覆層12の厚みは35μm以下に設定する必要があ
る。その他、本発明の要旨を逸脱しない範囲で種々変形
実施することができる。
The present invention is not limited to the above embodiment. That is, in the above-described embodiment, a part of the copper clad / aluminum material 14 is exposed.
As shown in, the copper clad aluminum material 14 is replaced with the copper stabilizer 2
Alternatively, the coating layer 12 may be completely embedded, and a part of the coating layer 12 may be covered with a cavity or a vacuum layer 16 having no electrical contact. Further, instead of the cavity or the vacuum layer 16, it may be covered with an insulating material 17 as shown in FIG. Further, in each of the above-described examples, the thickness of the entire outer peripheral surface of the aluminum material 13 is 35 μm.
Although the copper coating layer 12 having a thickness of m or less is provided, the coating layer 12 may be removed for a portion not used for soldering,
For example, as shown in FIG. 5, a copper coating layer 12 having a thickness of 35 μm or less is provided on only three sides of the aluminum material 13, and the copper stabilizing material 2 is solder-bonded using the coating layer 12 and the remaining portion of the aluminum material 13 is removed. You may make it cover one side with the cavity or the vacuum layer 16 which does not make electrical contact. Instead of the cavity or the vacuum layer 16, it may be covered with an insulating material 17 as shown in FIG. Further, in each of the above-described examples, the copper stabilizing material 2 is provided, but as shown in FIG. 7, the stabilizing material 15a may be composed of only the copper clad / aluminum material 14. Also in this case, the thickness of the copper coating layer 12 needs to be set to 35 μm or less. Besides, various modifications can be made without departing from the scope of the present invention.

【0016】[0016]

【発明の効果】以上のように、本発明によれば、製作性
を低下させることなく、安定性を向上させることができ
る。
As described above, according to the present invention, stability can be improved without lowering manufacturability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る超電導導体の横断
面図
FIG. 1 is a transverse sectional view of a superconducting conductor according to a first embodiment of the present invention.

【図2】磁界中におかれたときの銅の被覆層の影響を調
べた実験結果を示す図
FIG. 2 is a diagram showing experimental results for examining the effect of a copper coating layer when placed in a magnetic field.

【図3】本発明の第2の実施例に係る超電導導体の横断
面図
FIG. 3 is a transverse sectional view of a superconducting conductor according to a second embodiment of the present invention.

【図4】本発明の第3の実施例に係る超電導導体の横断
面図
FIG. 4 is a transverse sectional view of a superconducting conductor according to a third embodiment of the present invention.

【図5】本発明の第4の実施例に係る超電導導体の横断
面図
FIG. 5 is a cross-sectional view of a superconducting conductor according to a fourth embodiment of the present invention.

【図6】本発明の第5の実施例に係る超電導導体の横断
面図
FIG. 6 is a cross sectional view of a superconducting conductor according to a fifth embodiment of the present invention.

【図7】本発明の第6の実施例に係る超電導導体の横断
面図
FIG. 7 is a transverse sectional view of a superconducting conductor according to a sixth embodiment of the present invention.

【図8】従来の超電導導体の横断面図FIG. 8 is a cross-sectional view of a conventional superconducting conductor.

【符号の説明】[Explanation of symbols]

2…銅安定化材 3…超電導線 4…溝 11,11a,11b,11c,11d,
11e…超電導導体 12…銅の被覆層 13…アルミニ
ウム材 14…銅クラッド・アルミ材 15,15a…
安定化材 16…空胴または真空層 17…絶縁材
2 ... Copper stabilizing material 3 ... Superconducting wire 4 ... Grooves 11, 11a, 11b, 11c, 11d,
11e ... Superconducting conductor 12 ... Copper coating layer 13 ... Aluminum material 14 ... Copper clad aluminum material 15, 15a ...
Stabilizing material 16 ... Cavity or vacuum layer 17 ... Insulating material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 実 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 藤岡 勉 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 花井 哲 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 和智 良裕 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 市原 政光 神奈川県川崎市川崎区小田栄二丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 青木 伸夫 神奈川県川崎市川崎区小田栄二丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 袴田 真志 神奈川県川崎市川崎区小田栄二丁目1番1 号 昭和電線電纜株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Minoru Tanaka, 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Prefecture, Toshiba Research Institute Ltd. (72) Inventor Tsutomu Fujioka 1-1-1, Shibaura, Minato-ku, Tokyo Issued at Toshiba Headquarters Office (72) Inventor Satoshi Hanai 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Inside Keihin Plant, Toshiba Corporation (72) Yoshihiro Wachi 2-cue, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 4 In Toshiba Keihin Office (72) Inventor Masamitsu Ichihara 1-1-1, Oda Eikawa, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Showa Electric Cable Co., Ltd. (72) Nobuo Aoki Oda-ei 2-chome, Kawasaki-ku, Kawasaki-shi, Kanagawa No. 1 No. 1 Showa Electric Wire & Cable Co., Ltd. (72) Inventor Masashi Hakada No. 1-1 Eda Oda 2-chome, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Electric Cable Denki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超電導線に安定化材を添設してなる超電導
導体において、前記安定化材は銅の被覆層を備えたアル
ミニウム材を含み、上記銅の被覆層は厚みが35μm以
下であることを特徴とする超電導導体。
1. A superconducting conductor comprising a stabilizing material attached to a superconducting wire, wherein the stabilizing material includes an aluminum material having a copper coating layer, and the copper coating layer has a thickness of 35 μm or less. A superconducting conductor characterized in that
JP4123693A 1992-05-15 1992-05-15 Superconductor Pending JPH05325661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4123693A JPH05325661A (en) 1992-05-15 1992-05-15 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4123693A JPH05325661A (en) 1992-05-15 1992-05-15 Superconductor

Publications (1)

Publication Number Publication Date
JPH05325661A true JPH05325661A (en) 1993-12-10

Family

ID=14866993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4123693A Pending JPH05325661A (en) 1992-05-15 1992-05-15 Superconductor

Country Status (1)

Country Link
JP (1) JPH05325661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544113A (en) * 2006-07-14 2009-12-10 シーメンス マグネット テクノロジー リミテッド Channel superconductor with built-in wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544113A (en) * 2006-07-14 2009-12-10 シーメンス マグネット テクノロジー リミテッド Channel superconductor with built-in wire

Similar Documents

Publication Publication Date Title
US3428926A (en) Superconductor cable surrounded by a plurality of aluminum wires
US4151498A (en) Combined superconducting coil
US4564564A (en) Superconducting magnet wire
JPH05325661A (en) Superconductor
US3440336A (en) Web-shaped superconductor
US3391362A (en) Superconducting magnet coil
JPS60100487A (en) Permanent current switch
JP3354171B2 (en) Composite superconductor and superconducting coil
EP0067330B2 (en) Coil for a superconducting magnet device
JP3356459B2 (en) Superconducting coil
US5247271A (en) Superconducting solenoid coil
JP3272017B2 (en) AC superconducting wire and method of manufacturing the same
JPH03150806A (en) Superconductor
JP3120626B2 (en) Oxide superconducting conductor
JPS63200506A (en) Superconducting magnet
JP2699732B2 (en) Superconducting conductor and stabilizing material used therefor
JP2525016B2 (en) Superconducting wire
JPH0412412A (en) Superconductive conductor
JPH04116904A (en) Coil
JPH08125242A (en) Permanent current switch
JPS6215803A (en) Superconductive coil
JPH0721851A (en) Stabilizing material for superconductor
GB1137459A (en) Superconductor magnetic coils
JP3352735B2 (en) Superconducting flexible cable
JPH06223641A (en) Superconductor and superconducting current limiter trigger coil using same