JPH05323358A - Space optical modulating element and its production - Google Patents

Space optical modulating element and its production

Info

Publication number
JPH05323358A
JPH05323358A JP12584592A JP12584592A JPH05323358A JP H05323358 A JPH05323358 A JP H05323358A JP 12584592 A JP12584592 A JP 12584592A JP 12584592 A JP12584592 A JP 12584592A JP H05323358 A JPH05323358 A JP H05323358A
Authority
JP
Japan
Prior art keywords
liquid crystal
film thickness
crystal layer
layer
spatial light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12584592A
Other languages
Japanese (ja)
Inventor
Akio Takimoto
昭雄 滝本
Junko Asayama
純子 朝山
Koji Akiyama
浩二 秋山
Yasunori Kuratomi
靖規 藏富
Kuni Ogawa
久仁 小川
Yukio Tanaka
幸生 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12584592A priority Critical patent/JPH05323358A/en
Publication of JPH05323358A publication Critical patent/JPH05323358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide the space optical modulating element with which an orientation defect is prevented or the generated orientation defect, if any, is limited to a local part and picture element defects are decreased. CONSTITUTION:This space optical modulator is constituted of at least a photoconductive layer 103, a liquid crystal layer 106 and metallic reflection films 104 divided to microshapes within the same plane between these layers. The film thickness of the liquid crystal layer 106 on the metallic thin films 104 is set smaller than the film thickness of the spacings 105 between the metallic thin films. The photoconductive layer 103 is formed on transparent insulating substrates 101, 110 coated with transparent conductive electrodes 102, 109 and the metallic reflection films 104 are uniformly formed and after the patterns of the microshapes are formed by photolithography, the photoconductive layer 103 is etched by using the metallic reflection films 104 of the microshapes as a mask, by which level differences are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、投写型ディスプレイ、
ホログラフィ−テレビジョンあるいは光演算装置に用い
られる空間光変調素子に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a projection display,
Holography-The present invention relates to a spatial light modulator used in a television or an optical arithmetic unit.

【0002】[0002]

【従来の技術】大画面、高密度画素からなる高品位テレ
ビが様々な方式で開発され実用化されている。中でも従
来のブラウン管方式に変わって液晶技術を使った投写式
ディスプレイの開発が盛んである。ブラウン管方式であ
ると高密度画素に対して画面の輝度が低下し暗くなる。
叉ブラウン管自身、大型化が困難である。一方、トラン
ジスタ駆動方式の液晶素子による投写型ディスプレイ装
置は有力な方法ではあるが、開口率が大きくならないこ
と、素子が高価であることが欠点として上げられてい
る。CRTを入力とした液晶ライトバルブは従来より素
子形状が簡単で且つCRTと液晶素子の利点を組み合わ
せた装置として注目されている(例えば特開昭63−1
09422号公報)。近年は高感度な受光層アモルファ
スシリコンと液晶を組合せ、100インチ以上の大画面
で動画像を映し出すことが可能となった。また液晶材料
も高速応答可能な強誘電性液晶を用いて、より高速・高
解像度な液晶ライトバルブができるようになった。この
液晶ライトバルブは、強誘電性液晶の持つメモリ−性と
2値化特性を使った次世代の並列演算装置、光コンピュ
−ティング装置の核としても期待されている。
2. Description of the Related Art High-definition televisions having large screens and high-density pixels have been developed and put into practical use in various systems. Above all, the development of a projection display using liquid crystal technology has been active in place of the conventional cathode ray tube method. With the cathode ray tube method, the screen brightness becomes lower and the screen becomes darker for high density pixels.
Also, it is difficult to increase the size of the cathode ray tube itself. On the other hand, although a projection display apparatus using a liquid crystal element of a transistor drive system is a promising method, it has been pointed out that the aperture ratio does not increase and the element is expensive. A liquid crystal light valve using a CRT as an input has attracted attention as a device having a simpler element shape and combining the advantages of a CRT and a liquid crystal element (for example, JP-A-63-1).
09422). In recent years, it has become possible to display moving images on a large screen of 100 inches or more by combining a highly sensitive light receiving layer amorphous silicon and liquid crystal. In addition, the liquid crystal material uses a ferroelectric liquid crystal that can respond at high speed, and liquid crystal light valves with higher speed and higher resolution have become possible. This liquid crystal light valve is also expected to be the core of the next-generation parallel computing device and optical computing device that uses the memory property and binarization characteristics of ferroelectric liquid crystals.

【0003】3次元立体動画映像を眼鏡なしに見ること
のできる装置としてホログラフィ−テレビジョンが注目
されている。特に書換え可能なホログラム記録媒体とし
て液晶表示素子が期待されている。現在のトランジスタ
駆動方式の液晶素子の解像度は12〜25lp/mmで
あり、今後200lp/mmを有する素子の実現が望ま
れている。
Holography-television has been attracting attention as a device capable of viewing a three-dimensional moving image without glasses. In particular, a liquid crystal display element is expected as a rewritable hologram recording medium. The resolution of the current liquid crystal element of the transistor drive system is 12 to 25 lp / mm, and it is desired to realize an element having 200 lp / mm in the future.

【0004】液晶層と光導電層からなる空間光変調素子
あるいは液晶ライトバルブにおいて、各画素を独立して
分離した微小電極を設けることで形成する素子構成があ
る。微小電極を用いた液晶ライトバルブは、それまでの
多層誘電体薄膜の反射層を用いた場合に対して製造が容
易であること、入射角度依存性の無いこと及び反射能が
高いことが特徴として上げられる。また投写型ディスプ
レイの空間光変調素子として用いた場合は、開口率が大
きく画素形状が鮮明であることから高品位なテレビ画像
が得られる。
There is a spatial light modulator consisting of a liquid crystal layer and a photoconductive layer or a liquid crystal light valve, which is formed by providing minute electrodes which are independent of each pixel. A liquid crystal light valve using microelectrodes is characterized by being easier to manufacture than when using a reflective layer of a multi-layered dielectric thin film, having no dependence on the incident angle, and having high reflectivity. Can be raised. When used as a spatial light modulator of a projection display, a high-quality television image can be obtained because the aperture ratio is large and the pixel shape is clear.

【0005】[0005]

【発明が解決しようとする課題】液晶層を強誘電性液晶
で構成した場合、その配向制御が重要である。強誘電性
液晶特有のジグザグ欠陥等の欠陥配向は、画像を形成し
た場合画像欠陥は言うまでもなくコントラスト低下を招
く。配向欠陥は局所的に発生するものではなく、核を中
心に広い面積に渡って成長する。よって配向欠陥を防止
すること、或は発生しても局所部に限られることが必要
である。
When the liquid crystal layer is composed of a ferroelectric liquid crystal, it is important to control the orientation thereof. The defect alignment such as the zigzag defect peculiar to the ferroelectric liquid crystal causes a reduction in contrast not to mention an image defect when an image is formed. Alignment defects do not occur locally but grow over a large area centered on the nucleus. Therefore, it is necessary to prevent the alignment defect or to limit it to the local portion even if it occurs.

【0006】[0006]

【課題を解決するための手段】少なくとも光導電層と液
晶層、及びそれらの層間の同一平面内に微小形状に分割
された金属反射膜とで構成される空間光変調素子におい
て、前記金属薄膜上の液晶層の膜厚と、前記金属薄膜間
の液晶層の膜厚を異ならせる。
A spatial light modulator comprising at least a photoconductive layer, a liquid crystal layer, and a metal reflective film divided into minute shapes in the same plane between the layers, wherein the metal thin film is formed on the metal thin film. The thickness of the liquid crystal layer is different from the thickness of the liquid crystal layer between the metal thin films.

【0007】透明導電性電極を被覆した透明絶縁性基板
に光導電層を成膜し、一様に金属反射膜を成膜し、フォ
トリソグラフィ−によって微小形状のパタ−ンを成形し
た後、この微小形状の金属反射膜をマスクとして光導電
層をエッチングし段差を設け、金属薄膜間の液晶層の膜
厚を大きくする。
A photoconductive layer is formed on a transparent insulating substrate coated with a transparent conductive electrode, a metal reflection film is uniformly formed, and a fine pattern is formed by photolithography. The photoconductive layer is etched by using the minute metal reflection film as a mask to form a step, and the thickness of the liquid crystal layer between the metal thin films is increased.

【0008】[0008]

【作用】強誘電性液晶を用いた画像表示素子あるいは空
間光変調素子は、液晶配向状態として表面安定化状態
(以下SS状態と称する)を用いる。この配向状態はジ
グザグ欠陥と称せられる欠陥モ−ドが現れ易く、画像欠
陥の第一要因となる。ジグザグ欠陥は液晶層の断面を見
た場合、液晶層の液晶配向面が“く”の字に変形するこ
とに起因することが明らかにされている。今液晶層の膜
厚が不連続に変化する場合を考える。液晶層の膜厚が小
さい領域で発生したジグザグ欠陥は層の中央で折れ曲が
り、くの字の変形を発生する。
In the image display device or the spatial light modulation device using the ferroelectric liquid crystal, the surface stabilized state (hereinafter referred to as SS state) is used as the liquid crystal alignment state. This orientation state is likely to cause a defect mode called a zigzag defect, which is the first cause of image defects. It has been clarified that the zigzag defect is caused by the deformation of the liquid crystal alignment surface of the liquid crystal layer into a V shape when the cross section of the liquid crystal layer is viewed. Now consider the case where the film thickness of the liquid crystal layer changes discontinuously. The zigzag defect generated in the region where the film thickness of the liquid crystal layer is small is bent at the center of the layer, resulting in a V-shaped deformation.

【0009】この欠陥が膜厚の大きい領域を連続的に成
長し、膜厚方向に非対称な層構造を発生する。膜厚差が
大きいほどその非対称差は顕著になる。よって、そのエ
ネルギ−状態は膜厚差の増加に伴って高くなる。一方発
生したくの字配向が切断されて不連続な配向となり、く
の字欠陥を一領域に閉じこめた状態となれば、状態エネ
ルギ−は低くなり、実現され易い配向状態である。この
場合、配向の不連続面は膜厚の不連続変化の発生する界
面に集中する。
This defect continuously grows in a region having a large film thickness, and an asymmetric layer structure is generated in the film thickness direction. The larger the film thickness difference, the more remarkable the asymmetry difference. Therefore, the energy state becomes higher as the film thickness difference increases. On the other hand, when the generated V-shaped orientation is cut into a discontinuous orientation and the V-shaped defects are confined in one region, the state energy becomes low, and the orientation state is easily realized. In this case, the discontinuous plane of orientation concentrates on the interface where the discontinuous change in film thickness occurs.

【0010】よって微小領域に分割された金属反射面を
画素として持つ素子においては、その金属反射膜上の液
晶膜厚と金属反射膜間の液晶膜厚を異ならせることで、
ジグザグ欠陥を発生した場合でも、その発生源となる一
画素にだけ閉じこめることが可能となる。
Therefore, in an element having a metal reflection surface divided into minute areas as a pixel, by making the liquid crystal film thickness on the metal reflection film and the liquid crystal film thickness between the metal reflection films different,
Even if a zigzag defect occurs, it can be confined to only one pixel that is the source.

【0011】[0011]

【実施例】本発明の実施例について、図面を参照しなが
ら説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0012】図1、2に本発明の空間光変調素子の一実
施例の断面図を示す。図1は画素間凹部105があり、
金属反射面上の液晶層106の膜厚が、画素間の液晶層
より薄い場合である。空間光変調素子111の構成は、
透明絶縁性基板101(例えばガラス)上に透明導電性
電極102(例えばITO、SnOx)があり、光導電
層103(例えばダイオ−ド構造を有するアモルファス
シリコン半導体)が積層され、画素に相当する分離した
微小形状の金属反射層104(例えばアルミニウム、ク
ロム、チタン等の金属薄膜)と液晶を配向する配向膜1
07(例えばポリイミド等の高分子薄膜)が配置され
る。強誘電性液晶層106はスペ−サ−としての分散さ
れたビ−ズ108によってセル厚が制御される。対抗側
の透明導電性電極109上にも配向層107が一様に成
膜される。光導電層の成膜される基板側から入射光11
2によって光書き込みされ、他方より読み出し光113
が液晶層106で変調され、金属反射層104より出力
光114がでる。偏光子115および検光子116を直
交する配置とする。
1 and 2 are sectional views showing one embodiment of the spatial light modulator of the present invention. In FIG. 1, there is a concave portion 105 between pixels,
This is the case where the film thickness of the liquid crystal layer 106 on the metal reflection surface is thinner than the liquid crystal layer between pixels. The configuration of the spatial light modulator 111 is
A transparent conductive electrode 102 (for example, ITO, SnOx) is provided on a transparent insulating substrate 101 (for example, glass), a photoconductive layer 103 (for example, an amorphous silicon semiconductor having a diode structure) is laminated, and a separation corresponding to a pixel is formed. Aligned film 1 for aligning the liquid crystal layer 104 (for example, a metal thin film of aluminum, chromium, titanium, etc.) having a minute shape and the liquid crystal.
07 (for example, a polymer thin film such as polyimide) is arranged. The cell thickness of the ferroelectric liquid crystal layer 106 is controlled by the dispersed beads 108 serving as a spacer. The alignment layer 107 is evenly formed on the transparent conductive electrode 109 on the opposite side. Incident light from the substrate side on which the photoconductive layer is formed 11
2 is optically written, and the other is read light 113
Is modulated by the liquid crystal layer 106, and output light 114 is emitted from the metal reflective layer 104. The polarizer 115 and the analyzer 116 are arranged so as to be orthogonal to each other.

【0013】光導電層103に使用する材料は例えば、
CdS,CdTe,CdSe,ZnS,ZnSe,Ga
As,GaN,GaP,GaAlAs,InP等の化合
物半導体、Se,SeTe,AsSe等の非晶質半導
体、Si,Ge,Si1-xx,Si1-xGex,Ge1-x
x(0<x<1)の多結晶または非晶質半導体、また、(1)
フタロシアニン顔料(Pcと略す)例えば無金属Pc,
XPc(X=Cu,Ni,Co,TiO,Mg,Si
(OH)2など),AlClPcCl,TiOClPc
Cl,InClPcCl,InClPc,InBrPc
Brなど、(2)モノアゾ色素,ジスアゾ色素などのア
ゾ系色素、(3)ペニレン酸無水化物およびペニレン酸
イミドなどのペニレン系顔料、(4)インジゴイド染
料、(5)キナクリドン顔料、(6)アントラキノン
類、ピレンキノン類などの多環キノン類、(7)シアニ
ン色素、(8)キサンテン染料、(9)PVK/TNF
などの電荷移動錯体、(10)ビリリウム塩染料とポリ
カーボネイト樹脂から形成される共晶錯体、(11)ア
ズレニウム塩化合物など有機半導体がある。また、非晶
質のSi,Ge,Si1-xx,Si1-xGex,Ge1-x
x(以下、a−Si,a−Ge,a−Si1-xx,a
−Si1-xGex,a−Ge1-xxのように略す)を光導
電層103に使用する場合、水素またはハロゲン元素を含
めてもよく、誘電率を小さくするおよび抵抗率の増加の
ため酸素または窒素を含めてもよい。抵抗率の制御には
p型不純物であるB,Al,Gaなどの元素を、または
n型不純物であるP,As,Sbなどの元素を添加して
もよい。このように不純物を添加した非晶質材料を積層
してp/n,p/i,i/n、p/i/nなどの接合を
形成し、光導電層107内に空乏層を形成するようにし
て誘電率および暗抵抗あるいは動作電圧極性を制御して
もよい。このような非晶質材料だけでなく、上記の材料
を2種類以上積層してヘテロ接合を形成して光導電層1
03内に空乏層を形成してもよい。また、光導電層10
3の膜厚は0.1〜10μmが望ましい。
The material used for the photoconductive layer 103 is, for example,
CdS, CdTe, CdSe, ZnS, ZnSe, Ga
Compound semiconductors such as As, GaN, GaP, GaAlAs, InP, amorphous semiconductors such as Se, SeTe, AsSe, Si, Ge, Si 1-x C x , Si 1-x Ge x , Ge 1-x
C x (0 <x <1) polycrystalline or amorphous semiconductor, and (1)
Phthalocyanine pigment (abbreviated as Pc), for example, metal-free Pc,
XPc (X = Cu, Ni, Co, TiO, Mg, Si
(OH) 2 ), AlClPcCl, TiOClPc
Cl, InClPcCl, InClPc, InBrPc
Br, etc., (2) azo dyes such as monoazo dyes and disazo dyes, (3) penylene pigments such as penylene anhydride and penylene acid imide, (4) indigoid dyes, (5) quinacridone pigments, (6) anthraquinone , Polycyclic quinones such as pyrenequinones, (7) cyanine dyes, (8) xanthene dyes, (9) PVK / TNF
There are organic semiconductors such as charge transfer complexes such as (10), eutectic complexes formed from (10) pyrrole dyes and polycarbonate resins, and (11) azurenium salt compounds. In addition, amorphous Si, Ge, Si 1-x C x , Si 1-x Ge x , Ge 1-x
C x (hereinafter a-Si, a-Ge, a-Si 1-x C x , a
-Si 1-x Ge x, when used for a-Ge 1-x C abbreviated as in x) photoconductive layer 103, it may be included hydrogen or a halogen element, and of the resistivity to reduce the dielectric constant Oxygen or nitrogen may be included for augmentation. To control the resistivity, an element such as B, Al or Ga which is a p-type impurity, or an element such as P, As or Sb which is an n-type impurity may be added. As described above, the amorphous materials to which impurities are added are stacked to form junctions such as p / n, p / i, i / n, and p / i / n, and a depletion layer is formed in the photoconductive layer 107. In this way, the dielectric constant and dark resistance or the operating voltage polarity may be controlled. Not only such an amorphous material, but also two or more kinds of the above materials are laminated to form a heterojunction to form the photoconductive layer 1.
A depletion layer may be formed in 03. In addition, the photoconductive layer 10
The film thickness of 3 is preferably 0.1 to 10 μm.

【0014】配向膜107は強誘電性液晶分子の配向を
層方向と平行になるように設定してある。配向膜の厚み
は1000Å以下であり、望ましくは100Å以下であ
る。配向膜としてはナイロン、ポリイミド等の高分子膜
あるいはSiO2斜方蒸着膜がある。特に電気的特性の
優れた配向膜としては例えば特願平3−1145があ
る。液晶層106の液晶材料としては、強誘電性液晶の
カイラルスメクティックC液晶を用いる。強誘電性液晶
層の厚みは、反射型空間光変調素子の場合であるのでお
およそ1μmに設定するのが出力光のコントラストが高
い。また金属薄膜の厚みは100〜2000Å、最適に
は500〜1500Åである。
The alignment film 107 is set so that the alignment of the ferroelectric liquid crystal molecules is parallel to the layer direction. The thickness of the alignment film is 1000 Å or less, preferably 100 Å or less. As the alignment film, there is a polymer film of nylon, polyimide or the like or a SiO 2 oblique vapor deposition film. For example, Japanese Patent Application No. 3-1145 discloses an alignment film having excellent electrical characteristics. As the liquid crystal material of the liquid crystal layer 106, a chiral smectic C liquid crystal which is a ferroelectric liquid crystal is used. Since the thickness of the ferroelectric liquid crystal layer is in the case of the reflection type spatial light modulator, the contrast of the output light is set to about 1 μm. The thickness of the metal thin film is 100 to 2000Å, optimally 500 to 1500Å.

【0015】図2は、画素間凸部205があり、金属反
射面上の液晶層206の膜厚が、画素間の液晶層より厚
い場合の素子構造の例である。図3は従来の空間光変調
素子の構造例である。
FIG. 2 is an example of an element structure in which there are inter-pixel convex portions 205 and the liquid crystal layer 206 on the metal reflection surface is thicker than the liquid crystal layer between pixels. FIG. 3 is a structural example of a conventional spatial light modulator.

【0016】図4、5はそれぞれ図1、2の製造方法を
示した工程図である。図4の工程に於て、(1)図1の
一方の透明絶縁性基板のガラス基板401上に透明導電
性電極402を成膜する。光導電層403として例えば
プラズマCVD法によってアモルファスシリコン光導電
層のp層、i層、n層を連続して成膜する。最上部に金
属反射膜404を成膜する。(2)画素に相当する分離
反射膜405をフォトリソグラフィ−によってパタ−ン
形成する。(3)分離反射膜405をエッチングマスク
として光導電層403の一部を除去する。例えばCF4
とO2の混合ガスによるドライエッチング或は弗酸と硝
酸の混合溶液によるウェットエッチングで画素間凹部4
06の段差を形成できる。この工程で図1の空間光変調
素子の光導電層を含む一方の基板ができる。
4 and 5 are process diagrams showing the manufacturing method of FIGS. In the step of FIG. 4, (1) a transparent conductive electrode 402 is formed on the glass substrate 401 which is one of the transparent insulating substrates of FIG. As the photoconductive layer 403, for example, a p-layer, an i-layer, and an n-layer of an amorphous silicon photoconductive layer are continuously formed by a plasma CVD method. A metal reflection film 404 is formed on the top. (2) A separate reflection film 405 corresponding to a pixel is patterned by photolithography. (3) Part of the photoconductive layer 403 is removed using the separation reflection film 405 as an etching mask. CF 4 for example
The inter-pixel recess 4 is formed by dry etching using a mixed gas of O 2 and O 2 or wet etching using a mixed solution of hydrofluoric acid and nitric acid.
A step difference of 06 can be formed. This step yields one substrate containing the photoconductive layer of the spatial light modulator of FIG.

【0017】図5は画素間凸部を形成する場合の工程図
であり、図2の空間光変調素子を形成する場合である。
(1)図2の一方の透明絶縁性基板のガラス基板501
上に透明導電性電極502を成膜する。光導電層503
として例えばプラズマCVD法によってアモルファスシ
リコン光導電層のp層、i層、n層を連続して成膜す
る。最上部にフォトリソグラフィ−によって画素間部分
形成のレジストパタ−ンを形成する。(2)レジスト5
04をエッチングマスクとして光導電層503の一部を
除去する。例えばCF4とO2の混合ガスによるドライエ
ッチング或は弗酸と硝酸の混合溶液によるウェットエッ
チングで画素部分の段差を形成できる。(3)基板面全
面に金属反射膜を成膜する。分離反射膜505が形成さ
れる。(4)レジストを除去することで画素間凸部50
6が形成され、図2の空間光変調素子の光導電層を含む
一方の基板ができる。
FIG. 5 is a process diagram for forming the convex portion between pixels, and is for forming the spatial light modulator of FIG.
(1) One transparent insulating substrate glass substrate 501 of FIG.
A transparent conductive electrode 502 is formed on top. Photoconductive layer 503
For example, a p-layer, an i-layer, and an n-layer of the amorphous silicon photoconductive layer are continuously formed by the plasma CVD method. A resist pattern for forming a portion between pixels is formed on the uppermost portion by photolithography. (2) Resist 5
A part of the photoconductive layer 503 is removed by using 04 as an etching mask. For example, the steps in the pixel portion can be formed by dry etching using a mixed gas of CF 4 and O 2 or wet etching using a mixed solution of hydrofluoric acid and nitric acid. (3) A metal reflective film is formed on the entire surface of the substrate. The separation reflection film 505 is formed. (4) The inter-pixel convex portion 50 is formed by removing the resist.
6 is formed, and one substrate including the photoconductive layer of the spatial light modulator of FIG. 2 is formed.

【0018】図6を用いて作用を説明する。強誘電性液
晶を用いた画像表示素子あるいは空間光変調素子は、液
晶配向状態として表面安定化状態(以下SS状態と称す
る)を用いる。この配向状態はジグザグ欠陥と称せられ
る欠陥モ−ドが現れ易く、画像欠陥の第一要因となる。
ジグザグ欠陥は液晶層の断面を見た場合、液晶層の液晶
配向面が“く”の字に変形することに起因することが明
らかにされている。今液晶層の膜厚が不連続に変化する
場合を考える。図6において、液晶層601の膜厚が小
さい領域Aで発生したジグザグ欠陥は層の中央で折れ曲
がり、くの字の変形を発生する。この欠陥が膜厚の大き
い領域Bを連続的に成長し、再び膜厚の小さい領域A’
につながる場合を図6の(1)に示した。領域B(或は
B’)では膜厚方向に非対称な層構造を発生する。膜厚
差が大きいほどその非対称差は顕著になる。よって、そ
のエネルギ−状態は膜厚差の増加に伴って高くなる。一
方不連続に配向する場合を図6の(2)に示した。図で
はAで発生したくの字配向がAとBの界面で切断され
る。そして,B,A`、B’のいづれの領域においても
液晶配向は対称となる平行な無欠陥配向とした。この場
合、配向の不連続面は膜厚の不連続変化の発生する界面
に集中する。図6(1)に対して非対称な配向は減少
し、エネルギ−状態も低い。図6の(1)と(2)の状
態エネルギ−はこの液晶膜厚差が大きくなるほど、くの
字欠陥を一領域に閉じこめた(2)の方が低くなり、実
現される配向となる。よって微小領域に分割された金属
反射面を画素として持つ素子においては、その金属反射
膜上の液晶膜厚Daと金属反射膜間の液晶膜厚Dbを異
ならせることで、ジグザグ欠陥を発生した場合でも、そ
の発生源となる一画素にだけ閉じこめることが可能とな
る。
The operation will be described with reference to FIG. An image display element or a spatial light modulation element using a ferroelectric liquid crystal uses a surface stabilized state (hereinafter referred to as SS state) as a liquid crystal alignment state. This orientation state is likely to cause a defect mode called a zigzag defect, which is the first cause of image defects.
It has been clarified that the zigzag defect is caused by the deformation of the liquid crystal alignment surface of the liquid crystal layer into a V shape when the cross section of the liquid crystal layer is viewed. Now consider the case where the film thickness of the liquid crystal layer changes discontinuously. In FIG. 6, the zigzag defect generated in the region A where the film thickness of the liquid crystal layer 601 is small is bent at the center of the layer, and a V-shaped deformation occurs. This defect continuously grows in a region B having a large film thickness, and again has a region A ′ having a small film thickness.
The case where it is connected to is shown in (1) of FIG. In the region B (or B '), a layer structure asymmetric in the film thickness direction is generated. The larger the film thickness difference, the more remarkable the asymmetry difference. Therefore, the energy state becomes higher as the film thickness difference increases. On the other hand, the case of discontinuous orientation is shown in (2) of FIG. In the figure, the doglegged orientation generated in A is cut at the interface between A and B. The liquid crystal alignment was made parallel and defect-free alignment in any of B, A'and B '. In this case, the discontinuous plane of orientation concentrates on the interface where the discontinuous change in film thickness occurs. The asymmetric orientation with respect to FIG. 6A is reduced, and the energy state is low. The state energy of (1) and (2) of FIG. 6 becomes lower in the case of confining the dogleg defect in one region as the difference in the liquid crystal film thickness becomes larger, and the orientation is realized. Therefore, in an element having a metal reflection surface divided into minute regions as pixels, when a zigzag defect is generated by making the liquid crystal film thickness Da on the metal reflection film different from the liquid crystal film thickness Db between the metal reflection films. However, it is possible to confine it only to the one pixel that is the source.

【0019】(実施例1)図7に示す空間光変調素子を
作製した。55mm×45mm×1.1mmのガラス基
板701上に0.1μm厚のITOをスパッタ法により
成膜し、透明導電性電極702を形成した。次に、プラ
ズマCVD法により2.2μm厚でp/i/nダイオ−
ド構成のアモルファスシリコン膜を光導電層706とし
て積層する。p層703(膜厚1000Å)、i層70
4(膜厚1.8μm)、n層705(膜厚3000Å)
とした。有効面積は35mm×35mmである。この有
効面積内の膜上に真空蒸着法によりアルミニウム薄膜1
000Aを金属反射膜707として形成した。レジスト
パタ−ンを形成して、各画素の大きさ20μm×20μ
mとしてピッチ25μmによって1000×1000画
素形成した。画素間のアモルファスシリコン膜の一部を
エッチング除去した。CF4と酸素の混合ガスによるリ
アクティブ・イオン・エッチング(以下RIEと称す
る)によってドライエッチングを施す。5000Åほぼ
垂直にエッチングされ、n層705の3000Åとi層
704の上部2000Åが除去される。この工程で画素
間凹部708を形成する。
Example 1 A spatial light modulator shown in FIG. 7 was produced. An ITO film having a thickness of 0.1 μm was formed on a glass substrate 701 having a size of 55 mm × 45 mm × 1.1 mm by a sputtering method to form a transparent conductive electrode 702. Then, a p / i / n diode with a thickness of 2.2 μm is formed by a plasma CVD method.
An amorphous silicon film having a transparent structure is stacked as the photoconductive layer 706. p layer 703 (thickness 1000Å), i layer 70
4 (film thickness 1.8 μm), n layer 705 (film thickness 3000 Å)
And The effective area is 35 mm × 35 mm. An aluminum thin film 1 is formed on the film within this effective area by a vacuum deposition method.
000A was formed as the metal reflection film 707. A resist pattern is formed and the size of each pixel is 20 μm × 20 μ.
As m, 1000 × 1000 pixels were formed with a pitch of 25 μm. A part of the amorphous silicon film between the pixels was removed by etching. Dry etching is performed by reactive ion etching (hereinafter referred to as RIE) using a mixed gas of CF 4 and oxygen. 5000 Å is etched almost vertically to remove 3000 Å of the n-layer 705 and the upper 2000 Å of the i-layer 704. In this step, the inter-pixel concave portion 708 is formed.

【0020】ポリイミド配向膜711を積層し、配向処
理はナイロン布で表面を一定方向に擦って行なった。片
側のガラス基板713上におよそ1μmの液晶層厚みを
実現するのにイソプロピ−ルアルコ−ル中に分散させた
直径1μmのビ−ズをスプレ−によって撒く。その後、
両ガラス基板をUV硬化樹脂で基板周囲を封入し液晶セ
ルを作製した。このセルに真空中で強誘電液晶ZLI−
3654(メルク社製)を注入する。注入後均一配向を
得るため、ZLI−3654の相転移温度(62℃)以
上の温度に加熱した後、1℃/分以下の徐冷速度で室温
にもどし再配向させた。
A polyimide alignment film 711 was laminated, and the alignment treatment was performed by rubbing the surface in a certain direction with a nylon cloth. On a glass substrate 713 on one side, in order to realize a liquid crystal layer thickness of about 1 μm, beads having a diameter of 1 μm dispersed in isopropyl alcohol are scattered by a spray. afterwards,
A liquid crystal cell was produced by enclosing both glass substrates with UV curable resin around the substrates. Ferroelectric liquid crystal ZLI-
Inject 3654 (Merck). In order to obtain uniform orientation after injection, the material was heated to a temperature not lower than the phase transition temperature (62 ° C.) of ZLI-3654 and then returned to room temperature and reoriented at a slow cooling rate of 1 ° C./min or less.

【0021】偏光方向が互いに直交となるように偏光子
715および検光子716を配置して、空間光変調素子
を作製した。この空間光変調素子に交流電圧を印加し
て、入力光に白色光を用いて動作を確認した。その結
果、入力光717の強度が数μ十W/cm2以上あれ
ば、出力光719の立ち上がりが観測され、入射光強度
が小さくても十分動作することが確認できた。
A polarizer 715 and an analyzer 716 were arranged so that the polarization directions were orthogonal to each other, and a spatial light modulator was produced. An AC voltage was applied to this spatial light modulator and white light was used as input light to confirm the operation. As a result, when the intensity of the input light 717 was several μW / cm 2 or more, the rising of the output light 719 was observed, and it was confirmed that the operation was sufficient even when the incident light intensity was small.

【0022】この様にして作製した空間光変調素子を投
射型ディスプレイとして評価した。図9に投写型ディス
プレイ装置の模式図を示す。本発明の空間光変調素子9
01に光書き込みをCRTディスプレイ902によって
行う。表示に用いた素子の画素数は縦480横650で
ある。読み出しの為の光源905(メタルハライドラン
プ)をコンデンサ−レンズ904で偏光ビ−ムスプリッ
タ903によって照射する。出力像はレンズ906で拡
大されスクリ−ン607に映し出される。CRT画面上
の各ドットが空間光変調素子の分離された画素内に書き
込まれると、スクリ−ン上では各画素は四角形状に変換
される。開口率は80%と大きく明るい画像が得られ、
100インチ相当の大きさに拡大した像はスクリ−ン上
で2000ル−メンの照度を持つ。画像はコントラスト
250:1、解像度は縦方向650本TVライイ数が確
認された。空間光変調素子に於いては50lp/mmの
解像度があることを意味する。動画像を出力したところ
ビデオレ−トの動きに対して残像はなく鮮明な高輝度画
像が得られた。カラ−画像をえるため、RGBそれぞれ
に対応したCRT管と空間光変調素子をセットにしたも
のを3組用意して、スクリ−ン上で合成した。良好なカ
ラ−映像がきめ細かく再現されており、画素間の領域は
漏れ光はほとんどなく画素部分の最大照度に対して1/
104以下であった。画素欠陥は55個(全数〜10
6個)で、従来構造より1桁以上削減できた。
The spatial light modulator thus produced was evaluated as a projection display. FIG. 9 shows a schematic view of the projection display device. Spatial light modulator 9 of the present invention
01 is optically written by the CRT display 902. The number of pixels of the element used for display is 480 in height and 650 in width. A light source 905 (metal halide lamp) for reading is illuminated by a polarizing beam splitter 903 by a condenser lens 904. The output image is magnified by the lens 906 and displayed on the screen 607. When each dot on the CRT screen is written in the separated pixel of the spatial light modulator, each pixel is converted into a square shape on the screen. The aperture ratio is 80% and a bright image can be obtained.
The image enlarged to a size of 100 inches has an illuminance of 2000 lumens on the screen. The image had a contrast of 250: 1 and a resolution of 650 vertical TV lines. This means that the spatial light modulator has a resolution of 50 lp / mm. When a moving image was output, a clear high-intensity image was obtained with no afterimage due to the movement of the video rate. In order to obtain a color image, three sets of a CRT tube corresponding to each of RGB and a spatial light modulation element were prepared and combined on a screen. A good color image is reproduced in detail, and there is almost no leak light in the area between pixels, which is 1 / the maximum illuminance of the pixel area.
It was 10 4 or less. 55 pixel defects (total number: 10
6 pieces), it has been possible to reduce by more than one digit compared to the conventional structure.

【0023】画素間凸部を持つ図8の空間光変調素子を
図5の工程によって上記の方法で作製した。投射型ディ
スプレイ装置を組み立てて評価したところ、画素欠陥7
5個と同等の高画質を得た。
The spatial light modulator having the convex portion between pixels shown in FIG. 8 was manufactured by the above method by the process shown in FIG. When a projection type display device was assembled and evaluated, pixel defects 7
High image quality equivalent to 5 was obtained.

【0024】(実施例2)画素間凹部を持つ空間光変調
素子において、その凹部の深さ(D(μm))を変化さ
せて欠陥画素数を比較評価した。素子構成は実施例1の
図8とした。結果を表1に示す。表中、D=0.1μm
は図3の従来例とした。ここで段差は反射膜厚に相当す
る。
(Example 2) In a spatial light modulator having a concave portion between pixels, the number of defective pixels was comparatively evaluated by changing the depth (D (μm)) of the concave portion. The device configuration is shown in FIG. 8 of the first embodiment. The results are shown in Table 1. In the table, D = 0.1 μm
Is the conventional example of FIG. Here, the step corresponds to the reflection film thickness.

【0025】[0025]

【表1】 [Table 1]

【0026】0.5μm以上の段差を設けることで著し
く効果が現われることを示している。よって図10に示
す画素間凹部が光導電層厚みとなる空間光変調素子10
14を作製した。段差は2.2μmである。実施例1同
様の工程でできるが、基板1001上に予め画素間に入
力光の遮光となる入力遮光膜1002を成膜した。実施
例1同様に図9の装置で画像評価を行なったところ、画
素欠陥14と良好な素子を作製できた。
It has been shown that a significant effect can be obtained by providing a step of 0.5 μm or more. Therefore, the spatial light modulator 10 shown in FIG. 10 in which the concave portions between pixels have the thickness of the photoconductive layer.
14 was produced. The step difference is 2.2 μm. Although the same process as in Example 1 can be performed, an input light shielding film 1002 that shields input light between pixels is formed on the substrate 1001 in advance. Image evaluation was carried out by the apparatus shown in FIG. 9 in the same manner as in Example 1, and a pixel defect 14 and a favorable element could be manufactured.

【0027】(実施例3)上記の方法で作製した図10
の空間光変調素子を用いて、図11に示すホログラフィ
−テレビジョン装置を組み立てて、その実時間表示され
る立体画像の再生を確認した。コヒ−レント光としてHe
−Neレ−ザ−1101を用いて被写体1106を照射
し、コリメ−タ1105を通しての参照光とともにCC
D1107の撮像面上に干渉縞パタ−ンを形成する。こ
の画像デ−タをCRT1109に転送し空間光変調素子
1110に光書き込みして干渉縞パタ−ンを再現する。
読みだしにはコヒ−レント光のHe−Neレ−ザ−1101
を使い反射モ−ドで立体像を観測する。尚、画素パタ−
ンは8μm角の画素に10μmピッチの100lp/m
mの素子(3200×3200=107画素)とした。
(Embodiment 3) FIG. 10 manufactured by the above method.
11 was assembled using the spatial light modulator of No. 1 and the reproduction of the stereoscopic image displayed in real time was confirmed. He as coherent light
-Ne laser 1101 is used to illuminate a subject 1106, and CC is emitted together with the reference light passing through the collimator 1105.
An interference fringe pattern is formed on the image pickup surface of D1107. This image data is transferred to the CRT 1109 and optically written in the spatial light modulator 1110 to reproduce the interference fringe pattern.
He-Ne laser-1101 of coherent light to read
Observe a three-dimensional image in reflection mode using. The pixel pattern
The pixel size is 8 μm square and 100 lp / m with 10 μm pitch.
m elements (3200 × 3200 = 10 7 pixels).

【0028】[0028]

【発明の効果】本発明によれば、高解像度で高輝度、大
画面の映像を映し出す投写型ディスプレイ装置にとっ
て、画素欠陥の少ない空間光変調素子を提供する。また
単純な構成と少ない工程で素子を作製できる方法を提供
する。この素子を用いてホログラフィ−テレビジョン装
置は、実時間で鮮明な立体像が得られる。
According to the present invention, a spatial light modulator having few pixel defects is provided for a projection display device which displays a high-resolution, high-luminance, large-screen image. In addition, a method for manufacturing an element with a simple structure and a small number of steps is provided. Using this element, a holography-television device can obtain a clear stereoscopic image in real time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の画素間凹部を持った空間光変調素子の
断面図
FIG. 1 is a cross-sectional view of a spatial light modulator having a concave portion between pixels according to the present invention.

【図2】本発明の画素間凸部を持った空間光変調素子の
断面図
FIG. 2 is a cross-sectional view of a spatial light modulator having convex portions between pixels according to the present invention.

【図3】従来構造の空間光変調素子の一例の断面図FIG. 3 is a sectional view of an example of a spatial light modulator having a conventional structure.

【図4】本発明の画素間凹部を持った空間光変調素子の
製造方法を示す工程図
FIG. 4 is a process drawing showing a method for manufacturing a spatial light modulator having inter-pixel recesses of the present invention.

【図5】本発明の画素間凸部を持った空間光変調素子の
製造方法を示す工程図
FIG. 5 is a process diagram showing a method for manufacturing a spatial light modulator having convex portions between pixels according to the present invention.

【図6】膜厚方向に段差のある強誘電性液晶層の配向状
態を表わす模式図
FIG. 6 is a schematic diagram showing an alignment state of a ferroelectric liquid crystal layer having a step in the film thickness direction.

【図7】本発明実施例1の画素間凹部を持った空間光変
調素子の断面図
FIG. 7 is a cross-sectional view of a spatial light modulator having an inter-pixel concave portion according to the first embodiment of the present invention.

【図8】本発明実施例1の画素間凸部を持った空間光変
調素子の断面図
FIG. 8 is a cross-sectional view of a spatial light modulator having a convex portion between pixels according to the first embodiment of the present invention.

【図9】本発明の空間光変調素子を用いて作製した投写
型ディスプレイ装置の模式図
FIG. 9 is a schematic diagram of a projection display device manufactured using the spatial light modulator of the present invention.

【図10】本発明実施例2の画素間凹部を持った空間光
変調素子の断面図
FIG. 10 is a sectional view of a spatial light modulator having a concave portion between pixels according to a second embodiment of the present invention.

【図11】本発明の空間光変調素子を用いて作製したホ
ログラフィ−テレビジョン装置の模式図
FIG. 11 is a schematic diagram of a holography-television device manufactured using the spatial light modulator of the present invention.

【符号の説明】[Explanation of symbols]

101 透明導電性基板 102 透明導電性電極 103 光導電層 104 金属反射膜 105 画素間凹部 106 液晶層 107 配向膜 108 ビ−ズ 109 透明導電性電極 110 透明絶縁性基板 111 空間光変調素子 112 入射光 113 読みだし光 114 出力光 115 偏光子 116 検光子 101 Transparent Conductive Substrate 102 Transparent Conductive Electrode 103 Photoconductive Layer 104 Metal Reflective Film 105 Inter-pixel Recesses 106 Liquid Crystal Layer 107 Alignment Film 108 Beads 109 Transparent Conductive Electrode 110 Transparent Insulating Substrate 111 Spatial Light Modulation Element 112 Incident Light 113 Read-out light 114 Output light 115 Polarizer 116 Analyzer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藏富 靖規 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小川 久仁 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 田中 幸生 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuki Zutomi, 1006 Kadoma, Kadoma City, Osaka Prefecture, Matsushita Electric Industrial Co., Ltd. (72) Kuni Ogawa, 1006, Kadoma, Kadoma City, Osaka Prefecture 72) Inventor Yukio Tanaka 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも光導電層と液晶層、及びそれら
の層間の同一平面内に微小形状に分割された金属反射膜
とで構成される空間光変調素子において、前記金属薄膜
上の液晶層の膜厚と、前記金属薄膜間の液晶層の膜厚が
異なることを特徴とする空間光変調素子。
1. A spatial light modulator comprising at least a photoconductive layer, a liquid crystal layer, and a metal reflective film divided into minute shapes in the same plane between the layers, and a liquid crystal layer on the metal thin film. A spatial light modulation element characterized in that the film thickness and the liquid crystal layer between the metal thin films are different.
【請求項2】前記金属薄膜上の液晶層の膜厚と前記金属
薄膜間の液晶層の膜厚の差が2000Å以上であること
を特徴とする請求項1記載の空間光変調素子。
2. The spatial light modulator according to claim 1, wherein the difference between the film thickness of the liquid crystal layer on the metal thin film and the film thickness of the liquid crystal layer between the metal thin films is 2000 Å or more.
【請求項3】前記金属薄膜上の液晶層の膜厚が、前記金
属薄膜間の液晶層の膜厚より薄く、その差が光導電層の
膜厚以上であることを特徴とする請求項1記載の空間光
変調素子。
3. The film thickness of the liquid crystal layer on the metal thin film is smaller than the film thickness of the liquid crystal layer between the metal thin films, and the difference is not less than the film thickness of the photoconductive layer. The spatial light modulator described.
【請求項4】透明導電性電極を被覆した透明絶縁性基板
に光導電層を成膜し、一様に金属反射膜を成膜し、フォ
トリソグラフィ−によって微小形状のパタ−ンを成形し
た後、この微小形状の金属反射膜をマスクとして光導電
層をエッチングし段差を設けることで金属薄膜間の液晶
層の膜厚を大きくする請求項1記載の空間光変調素子の
製造方法。
4. A photoconductive layer is formed on a transparent insulating substrate coated with a transparent conductive electrode, a metal reflection film is uniformly formed, and a fine pattern is formed by photolithography. 2. The method for manufacturing a spatial light modulator according to claim 1, wherein the photoconductive layer is etched by using the minute metal reflection film as a mask to form a step, thereby increasing the film thickness of the liquid crystal layer between the metal thin films.
JP12584592A 1992-05-19 1992-05-19 Space optical modulating element and its production Pending JPH05323358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12584592A JPH05323358A (en) 1992-05-19 1992-05-19 Space optical modulating element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12584592A JPH05323358A (en) 1992-05-19 1992-05-19 Space optical modulating element and its production

Publications (1)

Publication Number Publication Date
JPH05323358A true JPH05323358A (en) 1993-12-07

Family

ID=14920371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12584592A Pending JPH05323358A (en) 1992-05-19 1992-05-19 Space optical modulating element and its production

Country Status (1)

Country Link
JP (1) JPH05323358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339812A (en) * 1997-06-09 1998-12-22 Nitto Denko Corp Circularly polarized light separation layer, optical element, polarized light source device, and liquid crystal device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339812A (en) * 1997-06-09 1998-12-22 Nitto Denko Corp Circularly polarized light separation layer, optical element, polarized light source device, and liquid crystal device

Similar Documents

Publication Publication Date Title
JP2808380B2 (en) Driving method of spatial light modulator
US5384649A (en) Liquid crystal spatial light modulator with electrically isolated reflecting films connected to electrically isolated pixel portions of photo conductor
US5781267A (en) Anti-ferroelectric liquid crystal with black display in one frame, white in other and ratio giving grey scale
JPH0784267A (en) Liquid crystal display element and spatial light modulating element
JPH05323358A (en) Space optical modulating element and its production
JP3070252B2 (en) Spatial light modulation element and display device
JP3070248B2 (en) Spatial light modulator and method of manufacturing the same
JPH05333366A (en) Space optical modulating element
JPH05173172A (en) Spatial optical modulating element and its manufacture
JPH06347819A (en) Spatial optical modulation element
JP2857274B2 (en) Spatial light modulator and method of manufacturing the same
JPH05333368A (en) Space optical modulating element and its production
JPH05173174A (en) Spatial optical modulating element
JPS6364031A (en) Matrix display device
JPH05173170A (en) Spatial optical modulating element and its manufacture
JPH08122811A (en) Space light modulating element and its manufacture
JPH06258657A (en) Spatial optical modulation element and its production
JPH05173173A (en) Production of spatial optical modulating element
JPH086041A (en) Liquid crystal display element and its production
JPH06347820A (en) Production of spatial optical modulation element
JPH06273793A (en) Space optical modulation element and its production as well as projection type display device
JPH06301051A (en) Spatial optical modulation element
JPH07140483A (en) Spatial optical modulation element
JPH07281207A (en) Spatial optical modulation element and its production
JPH05196959A (en) Liquid crystal display device