JPH05322919A - Structure of multidimensional semiconductor acceleration sensor - Google Patents

Structure of multidimensional semiconductor acceleration sensor

Info

Publication number
JPH05322919A
JPH05322919A JP4156134A JP15613492A JPH05322919A JP H05322919 A JPH05322919 A JP H05322919A JP 4156134 A JP4156134 A JP 4156134A JP 15613492 A JP15613492 A JP 15613492A JP H05322919 A JPH05322919 A JP H05322919A
Authority
JP
Japan
Prior art keywords
sensor
sensor chip
recess
stem
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4156134A
Other languages
Japanese (ja)
Inventor
Toshishige Tei
敏林 程
Tatsuya Ito
達也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP4156134A priority Critical patent/JPH05322919A/en
Publication of JPH05322919A publication Critical patent/JPH05322919A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Abstract

PURPOSE:To align the position of a sensor chip to a stem simply and to reduce the cost of a sensor. CONSTITUTION:As a bonding head for bonding a sensor chip 48, a stem 50, whose material is cobalt alloy and the like having the thermal expansion coefficient close to those of a glass stage 24, a semiconductor pellet 20 and the like, and which contains hermetic seals 52 for lead pins 51 formed of glass, is provided. A recess part 54 having the shape for controlling the operating range of a weight 16 of a sensor is formed in the stem 50. A size (a) of the sensor chip 48 facing the recess part 54 is smaller than a size (b) of the opening part of the recess part 54 and larger than a size (c) of the bottom part of the recess part 54. The sensor chip 48 is die-bonded so that the chip enters into the recess part 54. Thus, the position alignment of the sensor chip 48 with the stem 50 can be achieved simply, and the cost can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ピエゾ抵抗効果を利用
した多数個の感歪抵抗ブリッジと、ダイヤフラム型の可
撓部と、該可撓部につながる作用部に接合された重錘と
を有する多次元半導体加速度センサの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a large number of strain-sensitive resistance bridges utilizing the piezoresistive effect, a diaphragm type flexible portion, and a weight joined to an acting portion connected to the flexible portion. And a structure of a multi-dimensional semiconductor acceleration sensor having the same.

【0002】[0002]

【従来の技術】図5に1例を示すような、ピエゾ抵抗効
果を利用した多数個の感歪抵抗ブリッジ(感歪みゲー
ジ)10と、ダイヤフラム型の可撓部12と、該可撓部
12につながる作用部14に接合された重錘体16とを
有する多次元半導体加速度センサが開発されている。
2. Description of the Related Art A large number of strain-sensitive resistance bridges (strain-sensitive gauges) 10 utilizing a piezoresistive effect, a diaphragm type flexible portion 12, and a flexible portion 12 as shown in FIG. A multi-dimensional semiconductor acceleration sensor having a weight body 16 joined to the acting portion 14 connected to the has been developed.

【0003】なお、図5の(A)は前記センサのZ軸に
沿う切断断面図、図5の(B)は前記センサのXY平面
の上面図である。また、一般に感歪み抵抗ブリッジ10
は、センサチップ18表面に熱拡散等で作製され、ま
た、前記可撓部12上に設けられる。図5で符合20
は、可撓部12、作用部14、及び、固定部22からな
る半導体ペレット、23は重錘体16の作動範囲を制御
する部材、24はガラスからなる台座、26はボンディ
ングパッド、28はボンディングワイヤ、30はパッケ
ージ、32はキャップ、34はリードである。
5A is a sectional view taken along the Z-axis of the sensor, and FIG. 5B is a top view of the XY plane of the sensor. In addition, generally, the strain-sensitive resistance bridge 10
Is formed on the surface of the sensor chip 18 by thermal diffusion or the like, and is provided on the flexible portion 12. Reference numeral 20 in FIG.
Is a semiconductor pellet including the flexible portion 12, the acting portion 14, and the fixing portion 22, 23 is a member for controlling the operating range of the weight body 16, 24 is a pedestal made of glass, 26 is a bonding pad, and 28 is a bonding pad. A wire, 30 is a package, 32 is a cap, and 34 is a lead.

【0004】この様な多次元半導体加速度センサの検出
原理は、重錘体16に加速度が加わると、その力で可撓
部12が歪み、その歪みを感歪み抵抗ブリッジ10を利
用して電気信号に変換するものである。
The principle of detection of such a multi-dimensional semiconductor acceleration sensor is that, when acceleration is applied to the weight body 16, the flexible portion 12 is distorted by the force, and the distortion is sensed using the strain sensing resistance bridge 10. Is to be converted to.

【0005】また、この様な構造の多次元半導体加速度
センサの製造方法として、特開平3−2535が提案さ
れている。この公報の方法においては、図6に示すよう
に、チップ単位に切断分離前のウェハ状態のセンサ基板
36(同図(A))に対して、陽極接合法等を用いて溝
38が形成されたガラス板40を接合し(同図
(B))、その後、このガラス板40をダイシングする
ことにより、重錘体16と台座24とを一度に作製する
(同図(C))ことが示されている。
Further, Japanese Patent Laid-Open No. 3-2535 has been proposed as a method of manufacturing a multidimensional semiconductor acceleration sensor having such a structure. In the method of this publication, as shown in FIG. 6, a groove 38 is formed in a chip unit by a anodic bonding method or the like on a sensor substrate 36 in a wafer state before cutting and separating (FIG. 6A). It is shown that the glass body 40 and the pedestal 24 are manufactured at one time by joining the glass plates 40 (FIG. 2B) and then dicing the glass plate 40 (FIG. 2C). Has been done.

【0006】この製造方法においては、重錘体16と台
座24の下面位置が同じ高さになるので、そのまま通常
のボンディングヘッド等に組み立てたのでは、重錘体1
6に動作の自由度が無くなってしまい、センサとして動
作しない。そこで、図7に示すような、重錘体16の可
動範囲を適切に制御するための、凹み部42を有する制
御基板(支持台)44を重錘体16と台座24の下面に
接着し、その後、この制御基板44や台座24と共にセ
ンサ基板36のウェハを半導体ペレット20に切断し
て、センサ素子としている。
In this manufacturing method, since the lower surface positions of the weight body 16 and the pedestal 24 are at the same height, the weight body 1 would not be assembled as it is in a normal bonding head or the like.
6 does not operate as a sensor because the degree of freedom of operation is lost. Therefore, as shown in FIG. 7, a control board (support base) 44 having a recess 42 for appropriately controlling the movable range of the weight body 16 is adhered to the weight body 16 and the lower surface of the pedestal 24, After that, the wafer of the sensor substrate 36 together with the control substrate 44 and the pedestal 24 is cut into the semiconductor pellets 20 to form sensor elements.

【0007】[0007]

【発明が解決しようとする課題】前記従来の多次元半導
体加速度センサの実際の製造においては、前記制御基板
44は、ガラス台座に陽極接合法を用いて一括接着する
ため、シリコン単結晶基板にフォトリソグラフ法による
エッチング加工したものを用いる。
In the actual manufacture of the conventional multi-dimensional semiconductor acceleration sensor, the control substrate 44 is collectively attached to the glass pedestal by using the anodic bonding method, so that the photolithography is performed on the silicon single crystal substrate. An etching processed by the lithographic method is used.

【0008】しかしながら、チップの重錘体16の形状
は、例えば2mm×2mm程度と小形のものであるた
め、チップ下部に接着する制御基板(支持台)の凹み部
42の寸法精度は、少なくとも0.05mm程度と高い
ものが必要である。従って、この種の多次元半導体加速
度センサでは、製造時に位置合わせの精度が問題となっ
て、位置合わせが困難となることから、量産時の歩留ま
り低下の原因に成っていたという問題点がある。
However, since the weight body 16 of the chip has a small shape of, for example, about 2 mm × 2 mm, the dimensional accuracy of the recessed portion 42 of the control substrate (supporting base) adhered to the lower portion of the chip is at least 0. It needs to be as high as about 0.05 mm. Therefore, in this type of multi-dimensional semiconductor acceleration sensor, there is a problem in that the accuracy of the alignment becomes a problem at the time of manufacturing, and the alignment becomes difficult, which causes a decrease in yield during mass production.

【0009】また、シリコン単結晶基板は高価であり、
また、該基板のフォトリソグラフ法によるエッチング加
工は工数がかかることが、この種の多次元半導体センサ
素子のコスト高の要因となっており、素子のコスト削減
の要請があった。
Further, the silicon single crystal substrate is expensive,
Further, it takes a lot of man-hours to perform the etching process of the substrate by the photolithography method, which is a factor of the high cost of this kind of multidimensional semiconductor sensor device, and there has been a demand for cost reduction of the device.

【0010】本発明は、前記従来の問題点を解消するべ
くなされたものであって、位置合わせが簡単にでき、か
つ、コストを削減し得る多次元半導体センサの構造を提
供することを課題とする。
The present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to provide a structure of a multidimensional semiconductor sensor which can be easily aligned and can reduce the cost. To do.

【0011】[0011]

【課題を解決するための手段】本発明は、ピエゾ抵抗効
果を利用した多数個の感歪抵抗ブリッジと、ダイヤフラ
ム型の可撓部と、該可撓部につながる作用部に接合され
た重錘体とを有する多次元半導体加速度センサの構造に
おいて、センサチップをボンディングするボンディング
ヘッドとして、台座や半導体基板等に近い熱膨張係数を
有するコバール合金等を材料とし、かつ、リードピンの
ハーメチックシールを有するステムを設け、該ステムに
は、センサの重錘体の作動範囲を制御する形状の凹み部
が形成され、前記センサチップの前記凹み部に対向する
側のサイズは、前記凹み部開口部のサイズより小さく、
かつ、凹み部底部のサイズより大きいものとされ、前記
センサチップは、前記凹み部に入るようにダイボンドさ
れたものとして、前記課題を解決するものである。
SUMMARY OF THE INVENTION According to the present invention, a large number of strain sensitive resistance bridges utilizing a piezoresistive effect, a diaphragm type flexible portion, and a weight connected to an acting portion connected to the flexible portion. In a structure of a multi-dimensional semiconductor acceleration sensor having a body, a stem having a hermetic seal of a lead pin as a bonding head for bonding a sensor chip is made of a material such as Kovar alloy having a thermal expansion coefficient close to that of a pedestal or a semiconductor substrate. The stem is provided with a recess having a shape for controlling the operating range of the weight of the sensor, and the size of the side of the sensor chip facing the recess is smaller than the size of the recess opening. small,
The size of the bottom of the recess is larger than the size of the bottom of the recess, and the sensor chip is die-bonded so as to enter the recess.

【0012】また、本発明においては、更に、センサチ
ップには、チップ台座の端面にテーパー部を設けること
ができる。
Further, in the present invention, the sensor chip may be provided with a taper portion on the end surface of the chip pedestal.

【0013】[0013]

【作用】本発明においては、センサチップをボンディン
グするボンディングヘッドとしてステムが設けられ、こ
のステムには凹み部が設けられており、この凹み部にセ
ンサチップを入れれば良い構造であるので、従来のセン
サには設けられていた制御基板(支持台)が不要にな
り、コストの削減が図れる。また、前記制御基板をセン
サウェハに接合する工程(例えば陽極接合法)が不要に
なり、コストの削減が図れる。また、センサチップの前
記凹み部に対向する側のサイズは、前記凹み部開口部の
サイズより小さく、かつ、凹み部底部のサイズより大き
いものとされるので、センサチップをステムにダイボン
ドするとき、ステムの凹み部開口部の縁が位置合わせの
マークに使用できるため、位置合わせを簡単に行うこと
ができ、量産時の歩留まりを向上させることができる。
In the present invention, the stem is provided as the bonding head for bonding the sensor chip, and the stem is provided with the recessed portion. Since the structure is sufficient if the sensor chip is inserted into this recessed portion, The control board (support base) provided for the sensor is not required, and the cost can be reduced. Further, the step of bonding the control substrate to the sensor wafer (for example, the anodic bonding method) is unnecessary, and the cost can be reduced. Further, the size of the side of the sensor chip facing the recess is smaller than the size of the recess opening, and is larger than the size of the bottom of the recess, so when the sensor chip is die-bonded to the stem, Since the edge of the opening of the recessed portion of the stem can be used as the alignment mark, the alignment can be performed easily and the yield in mass production can be improved.

【0014】なお、本発明において、更に、センサチッ
プのチップ台座の端面にテーパー部を設ければ、前記凹
み部は開口部が大きく底部が小さいため、センサチップ
をステムに安定してダイボンドすることができる。これ
により、更に、位置合わせを簡単化でき、量産時の歩留
まりを向上させることができる。
In the present invention, if a taper portion is further provided on the end surface of the chip pedestal of the sensor chip, the recess has a large opening and a small bottom, so that the sensor chip can be stably die-bonded to the stem. You can As a result, the alignment can be further simplified and the yield in mass production can be improved.

【0015】[0015]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。まず図1は本発明の多次元半導体加速度セ
ンサの第一実施例である。図1に示すように、第一実施
例のセンサは、ピエゾ抵抗効果を利用した多数個の感歪
抵抗ブリッジ10と、ダイヤフラム型の可撓部12と、
該可撓部12につながる作用部14に接合された重錘体
16とをセンサチップ48に有しており、前記図4のセ
ンサと同様の部分には同一の番号を付してその説明は略
する。
Embodiments of the present invention will now be described in detail with reference to the drawings. First, FIG. 1 shows a first embodiment of the multidimensional semiconductor acceleration sensor of the present invention. As shown in FIG. 1, the sensor according to the first embodiment includes a large number of strain-sensitive resistance bridges 10 utilizing a piezoresistive effect, a diaphragm-type flexible portion 12, and
The sensor chip 48 has a weight body 16 joined to the acting portion 14 connected to the flexible portion 12, and the same parts as those of the sensor shown in FIG. I will omit it.

【0016】第一実施例のセンサは、センサチップ48
をボンディングするボンディングヘッドとしてステム5
0を有する。このステム50は、ガラスからなる台座2
4やシリコン基板(半導体ペレット20)等に近い熱膨
脹係数を有するコバール合金等を材料とし、かつ、ガラ
スによるリードピン51のハーメチックシール52を有
するいわゆるハーメチックステムとなっている。また、
このステム50には、前記センサの重錘体16の作動範
囲を制御する形状の凹み部54が形成される。この凹み
部54は、精密プレスなどにより作製することができ
る。
The sensor of the first embodiment is a sensor chip 48.
Stem 5 as a bonding head for bonding
Has 0. The stem 50 is a base 2 made of glass.
4 or a silicon substrate (semiconductor pellet 20) or the like, which is a so-called hermetic stem made of a Kovar alloy or the like having a coefficient of thermal expansion close to that of the silicon substrate and having a hermetic seal 52 of the lead pin 51 made of glass. Also,
The stem 50 is formed with a recess 54 having a shape for controlling the operating range of the weight body 16 of the sensor. The recess 54 can be manufactured by a precision press or the like.

【0017】前記センサチップ48の前記凹み部54に
対向する側のサイズaは、図2に示すように、前記凹み
部54の開口部のサイズbより小さく、かつ、凹み部5
4底部のサイズcより大きいものとされる。また、前記
センサチップ48はステム50の凹み部54に設置し、
ダイボンドして、前記センサを構成するが、その際、前
記センサチップ48はステム50の凹み部54に調度入
るように位置合わせし、その後、接着剤55によりダイ
ボンドする。
As shown in FIG. 2, the size a of the sensor chip 48 on the side facing the recess 54 is smaller than the size b of the opening of the recess 54 and the recess 5 is formed.
4 is larger than the size c of the bottom. Further, the sensor chip 48 is installed in the recess 54 of the stem 50,
The sensor is formed by die-bonding. At this time, the sensor chip 48 is aligned so that it fits into the recess 54 of the stem 50, and then die-bonded with an adhesive 55.

【0018】従って、ステム50の凹み部54開口部の
縁が位置合わせのマークに使用できるため、位置合わせ
を簡単に行うことができ、量産時の歩留まりを向上させ
ることができる。
Therefore, since the edge of the opening of the recessed portion 54 of the stem 50 can be used as a positioning mark, the positioning can be easily performed and the yield in mass production can be improved.

【0019】次に、本発明の多次元半導体加速度センサ
の第二実施例を説明する。この第二実施例のセンサは、
図3に示すセンサチップ58を有しており、第一実施例
センサと同様部分に同一番号を付して、その説明は略す
る。
Next, a second embodiment of the multidimensional semiconductor acceleration sensor of the present invention will be described. The sensor of this second embodiment is
The sensor chip 58 shown in FIG. 3 is provided, and the same parts as those of the first embodiment sensor are designated by the same reference numerals and the description thereof will be omitted.

【0020】図4は、前記センサチップ58の、組み立
て前(A)・後(B)の構成である。図4の(A)のよ
うに、前記センサチップ58は、予め、台座56の凹み
部54に当接する端面56Aにダイシングソー等でテー
パー部56Bを作成する。
FIG. 4 shows the structure of the sensor chip 58 before (A) and after (B) assembly. As shown in FIG. 4A, in the sensor chip 58, a taper portion 56B is previously formed on the end surface 56A of the pedestal 56, which is in contact with the recess 54, with a dicing saw or the like.

【0021】このように、第二実施例では、センサチッ
プ58の台座56の端面56Aにテーパー部56Bを設
けており、前記凹み部54は開口部が大きく底部が小さ
いテーパー状のため、収まりが良く第一実施例よりもさ
らに安定してセンサチップ58をステム50にダイボン
ドすることができる。また、位置合わせを簡単化でき、
量産時の歩留まりを向上させることができる。
As described above, in the second embodiment, the tapered portion 56B is provided on the end surface 56A of the pedestal 56 of the sensor chip 58, and the recessed portion 54 has a tapered opening with a large opening and a small bottom. The sensor chip 58 can be die-bonded to the stem 50 more stably than in the first embodiment. Also, the alignment can be simplified,
The yield in mass production can be improved.

【0022】尚、前記実施例では、図1乃至図4に本発
明の多次元半導体加速度センサの構造例を示したが、こ
れらは一例であり、本発明の範囲内であれば、他の構成
もとり得る。例えば、ステムはコバール合金を材料とす
ることに限定されるものでなく、台座や半導体基板等に
近い熱膨張係数を有する材料であれば、他のものを用い
ることができる。
In the above embodiments, FIGS. 1 to 4 show structural examples of the multi-dimensional semiconductor acceleration sensor of the present invention, but these are examples, and other configurations are possible within the scope of the present invention. Can also be taken. For example, the stem is not limited to the material made of Kovar alloy, and any other material can be used as long as it has a coefficient of thermal expansion close to that of the pedestal or the semiconductor substrate.

【0023】[0023]

【発明の効果】以上説明したとおり、本発明によれば、
多次元半導体加速度センサの制御基板(支持台)が不要
になり、コストの削減が図れる。また、前記制御基板を
センサウェハに接合する工程(例えば陽極接合法)が不
要になり、コストの削減が図れる。また、センサチップ
をステムにダイボンドするとき、ステムの凹み部開口部
の縁が位置合わせのマークに使用できるため、位置合わ
せを簡単に行うことができ、量産時の歩留まりを向上さ
せることができる。
As described above, according to the present invention,
The control board (support base) of the multi-dimensional semiconductor acceleration sensor is not required, and the cost can be reduced. Further, the step of bonding the control substrate to the sensor wafer (for example, the anodic bonding method) is unnecessary, and the cost can be reduced. Further, when the sensor chip is die-bonded to the stem, the edge of the opening of the recessed portion of the stem can be used as a positioning mark, so that the positioning can be easily performed and the yield in mass production can be improved.

【0024】なお、本発明において、更に、センサチッ
プのチップ台座の端面にテーパー部を設ければ、前記凹
み部は開口部が大きく底部が小さいため、センサチップ
をハーメチックステムに安定してダイボンドすることが
できる。これにより、更に、位置合わせを簡単化でき、
量産時の歩留まりを向上させることができる等の優れた
効果が得られる。
Further, in the present invention, if a taper portion is provided on the end surface of the chip pedestal of the sensor chip, since the recess has a large opening and a small bottom, the sensor chip is stably die-bonded to the hermetic stem. be able to. This can further simplify the alignment,
It is possible to obtain an excellent effect that the yield in mass production can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の多次元半導体加速度センサの
第一実施例の断面構成図である。
FIG. 1 is a sectional configuration diagram of a first embodiment of a multidimensional semiconductor acceleration sensor of the present invention.

【図2】図2は、前記第一実施例のセンサチップの周辺
構成図である。
FIG. 2 is a peripheral configuration diagram of the sensor chip of the first embodiment.

【図3】図3は、本発明の多次元半導体加速度センサの
第二実施例の断面構成図である。
FIG. 3 is a sectional configuration diagram of a second embodiment of the multidimensional semiconductor acceleration sensor of the present invention.

【図4】図4は、前記第二実施例のセンサチップのステ
ム上への組み立て構成図である。
FIG. 4 is an assembly configuration diagram of the sensor chip of the second embodiment on a stem.

【図5】図5は、従来の多次元半導体加速度センサの構
成図であって、(A)は断面図、(B)は上面図であ
る。
5A and 5B are configuration diagrams of a conventional multidimensional semiconductor acceleration sensor, in which FIG. 5A is a sectional view and FIG. 5B is a top view.

【図6】図6は、従来の多次元半導体加速度センサの製
造行程説明図である。
FIG. 6 is an explanatory diagram of a manufacturing process of a conventional multidimensional semiconductor acceleration sensor.

【図7】図7は、従来の多次元半導体加速度センサの製
造行程説明図である。
FIG. 7 is a manufacturing process explanatory diagram of a conventional multidimensional semiconductor acceleration sensor.

【符号の説明】[Explanation of symbols]

20 半導体ペレット 24 台座 48 センサチップ 50 ステム 51 リードピン 52 ハーメチックシール 54 凹み部 55 接着剤 56 台座 56A 端面 56B テーパー部 20 semiconductor pellet 24 pedestal 48 sensor chip 50 stem 51 lead pin 52 hermetic seal 54 recessed portion 55 adhesive 56 pedestal 56A end surface 56B taper portion

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ピエゾ抵抗効果を利用した多数個の感歪
抵抗ブリッジと、ダイヤフラム型の可撓部と、該可撓部
につながる作用部に接合された重錘体とを有する多次元
半導体加速度センサの構造において、 センサチップをボンディングするボンディングヘッドと
して、台座や半導体基板等に近い熱膨張係数を有するコ
バール合金等を材料とし、かつ、リードピンのハーメチ
ックシールを有するステムを設け、 該ステムには、センサの重錘体の作動範囲を制御する形
状の凹み部が形成され、 前記センサチップの前記凹み部に対向する側のサイズ
は、前記凹み部開口部のサイズより小さく、かつ、凹み
部底部のサイズより大きいものとされ、 前記センサチップは、前記凹み部に入るようにダイボン
ドされたことを特徴とする多次元半導体加速度センサの
構造。
1. A multi-dimensional semiconductor acceleration having a large number of strain-sensitive resistance bridges utilizing a piezoresistive effect, a diaphragm-type flexible portion, and a weight body joined to an action portion connected to the flexible portion. In the structure of the sensor, as a bonding head for bonding the sensor chip, a Kovar alloy or the like having a coefficient of thermal expansion close to that of a pedestal or a semiconductor substrate is used as a material, and a stem having a hermetic seal of a lead pin is provided. A recess having a shape that controls the operating range of the weight body of the sensor is formed, and the size of the side of the sensor chip that faces the recess is smaller than the size of the recess opening, and the bottom of the recess is The multi-dimensional semiconductor acceleration is larger than the size, and the sensor chip is die-bonded so as to fit in the recess. The structure of the capacitor.
【請求項2】 請求項1において、更に、 センサチップには、チップ台座の端面にテーパー部を設
けたことを特徴とする多次元半導体加速度センサの構
造。
2. The structure of a multidimensional semiconductor acceleration sensor according to claim 1, wherein the sensor chip is further provided with a taper portion on an end surface of the chip pedestal.
JP4156134A 1992-05-25 1992-05-25 Structure of multidimensional semiconductor acceleration sensor Pending JPH05322919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4156134A JPH05322919A (en) 1992-05-25 1992-05-25 Structure of multidimensional semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4156134A JPH05322919A (en) 1992-05-25 1992-05-25 Structure of multidimensional semiconductor acceleration sensor

Publications (1)

Publication Number Publication Date
JPH05322919A true JPH05322919A (en) 1993-12-07

Family

ID=15621070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4156134A Pending JPH05322919A (en) 1992-05-25 1992-05-25 Structure of multidimensional semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JPH05322919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031781A1 (en) * 2002-10-04 2004-04-15 Hokuriku Electric Industry Co.,Ltd. Semiconductor acceleration sensor and process for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031781A1 (en) * 2002-10-04 2004-04-15 Hokuriku Electric Industry Co.,Ltd. Semiconductor acceleration sensor and process for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2503290B2 (en) Semiconductor pressure / differential pressure measurement diaphragm
JPH10502449A (en) Equipment for mounting absolute pressure sensors
JP4754817B2 (en) Semiconductor acceleration sensor
JPH0875580A (en) Semiconductor pressure sensor
JPH08233852A (en) Semiconductor device
JP2006250760A (en) Sensor
JPH05322919A (en) Structure of multidimensional semiconductor acceleration sensor
JP3690056B2 (en) Manufacturing method of sensor chip of semiconductor pressure sensor
US6308575B1 (en) Manufacturing method for the miniaturization of silicon bulk-machined pressure sensors
JPS5826237A (en) Pressure sensor
JP3173256B2 (en) Semiconductor acceleration sensor and method of manufacturing the same
JPH05281250A (en) Multidimensional semiconductor acceleration sensor
JPH0738122A (en) Sensor package
JPH06241931A (en) Semiconductor pressure sensor
JP3196882B2 (en) Absolute pressure sensor and manufacturing method thereof
JP2001153882A (en) Semiconductor acceleration sensor, and method of maunfacturing same
JPH0566979B2 (en)
JPH08320340A (en) Semiconductor accelerometer
JPH0547393Y2 (en)
JP2001116637A (en) Semiconductor pressure sensor
JPS6142956A (en) Pressure sensor
JPH05288769A (en) Multi-dimensional semiconductor acceleration sensor
JPH0587829A (en) Manufacture of semiconductor acceleration sensor
JPH06347353A (en) Semiconductor pressure sensor
JPH06194377A (en) Semiconductor acceleration sensor and manufacture thereof