JPH05322516A - Apparatus for measuring displacement of sample - Google Patents

Apparatus for measuring displacement of sample

Info

Publication number
JPH05322516A
JPH05322516A JP6019291A JP6019291A JPH05322516A JP H05322516 A JPH05322516 A JP H05322516A JP 6019291 A JP6019291 A JP 6019291A JP 6019291 A JP6019291 A JP 6019291A JP H05322516 A JPH05322516 A JP H05322516A
Authority
JP
Japan
Prior art keywords
beam splitter
light
component
sample
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6019291A
Other languages
Japanese (ja)
Other versions
JP2966950B2 (en
Inventor
Toshinori Nakajima
俊典 中島
Eiichi Sato
榮一 佐藤
Ichiro Yamaguchi
一郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research, Olympus Optical Co Ltd filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP6019291A priority Critical patent/JP2966950B2/en
Publication of JPH05322516A publication Critical patent/JPH05322516A/en
Application granted granted Critical
Publication of JP2966950B2 publication Critical patent/JP2966950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To correctly measure the absolute value of the shift of a minute sample or the rough surface of the sample by combining an out-of-focus detecting device and a detecting system detecting the intensity change of interference fringes to be compact with the use of the minimum optical element. CONSTITUTION:A light generating means comprised of a semiconductor laser 2 and a collimator lens 4 generates a parallel light which is substantially a linearly polarized light. The light emitted from the laser 2 is not a perfect linearly polarized light, and therefore divided into a necessary perpendicular component or first polarized component and a parallel component or second polarized light which crosses the necessary component and is not naturally required. The required perpendicular component (first polarized component) of the imperfect linearly polarized light from the light source is utilized for a de-focus detecting system, and the parallel component (second polarized component) is used as an interference fringe generating/detecting system. Accordingly, a detecting system for detecting the intensity change of interference fringes so as to evaluate measuring values of a focus error detecting device 20 is incorporated the detecting device 20, making it possible to measure the absolute value of the shift of a very small sample 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は試料の数ミクロン程度の
極めて僅かな試料の変位もしくは試料表面の凹凸を計測
する分野に利用できる試料変位測定用光学装置に係るも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device for measuring a sample displacement which can be used in the field of measuring a very small displacement of a sample of about several microns or unevenness of the sample surface.

【0002】[0002]

【従来技術】このような極めて僅かな試料の変位は従来
焦点エラー検出装置を用いて測定した。この焦点エラー
検出装置では収束光を試料表面に照射し、そして試料表
面からの反射光を検出して試料の変位を焦点位置からの
試料のずれとして計測していた。しかしこの測定では試
料の変位の絶対値は測定できない。試料の変位の絶対値
を焦点エラー検出装置で測定するには試料に既知の大き
さの変位を与えてこれを測定して、それを基準として測
定値を評定し変位の絶対値を求める。しかしこれは煩雑
な手数を要し、充分な精度も得られない。又別の方法と
しては干渉縞をつくり、光の波長と一定の関係にあるそ
れの強度変化を基準として試料の変位の測定値を評定し
変位の絶対値を求める。これも煩瑣な手続きを要し、ま
た機械的な振動や外部からの変化を受けやすく、正確な
測定は困難であった。
2. Description of the Related Art Such extremely slight displacement of a sample has been measured by using a conventional focus error detector. In this focus error detection device, the sample surface is irradiated with convergent light, the reflected light from the sample surface is detected, and the displacement of the sample is measured as the displacement of the sample from the focus position. However, this measurement cannot measure the absolute value of the displacement of the sample. In order to measure the absolute value of the displacement of the sample by the focus error detection device, the sample is given a displacement of a known size, this is measured, and the measured value is evaluated with reference to this to obtain the absolute value of the displacement. However, this requires complicated steps and cannot obtain sufficient accuracy. As another method, interference fringes are formed, and the absolute value of the displacement is obtained by evaluating the measured value of the displacement of the sample with reference to the change in the intensity of light having a constant relationship with the wavelength of light. This also requires complicated procedures, and is susceptible to mechanical vibration and external changes, making accurate measurement difficult.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、極め
て僅かな試料の変位もしくは試料表面の凹凸の絶対値を
正確に計測する試料変位測定用光学装置を提供すること
である。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical device for measuring sample displacement, which accurately measures an extremely small amount of sample displacement or the absolute value of the unevenness of the sample surface.

【0004】[0004]

【課題を解決するための手段】本発明は半導体レーザー
のような光源からの不完全な直線偏光の所要の垂直成分
(以下「第1偏光成分」という)を焦点ずれ計測系に利
用し、本来所要とはされていない平行成分(以下「第2
偏光成分」という)を干渉縞生成・検出系に利用するこ
とによって焦点エラー検出装置にその測定値を評定する
ための干渉縞の強度変化計測系を内蔵させることによっ
て前記の目的を達成している。
The present invention utilizes a required vertical component of incomplete linearly polarized light (hereinafter referred to as "first polarized light component") from a light source such as a semiconductor laser in a defocus measurement system, and originally, Parallel components not required (hereinafter referred to as "second
The above-mentioned object is achieved by incorporating the interference fringe intensity change measurement system for evaluating the measurement value into the focus error detection device by utilizing the "polarization component") in the interference fringe generation / detection system. ..

【0005】本発明の試料変位測定用光学装置は、実質
的に直線偏光である平行光を発生する光発生手段と、平
行光の第1偏光成分を反射し、平行光の第2偏光成分を
透過する偏光ビームスプリッタと、第1と第2と第3の
ビームスプリッタと、第1偏光成分を(それが往復して
通過すると)第2偏光成分に変換する4分の1波長板
と、試料観察用の対物レンズと、試料の変位を焦点ずれ
として検出する焦点ずれ検出装置と、干渉縞の強度変化
を検出する光検出素子を含む干渉縞検出装置とを備えて
おり、それの焦点ずれ計測系の光路は以下のようにな
る。すなわち、光発生手段からの平行光の第1偏光成分
は、平行光の進行方向に交差する第1の方向へ偏光ビー
ムスプリッタにより反射し、第1の方向に交差する第2
の方向に第1のビームスプリッタにより反射され、それ
から4分の1波長板と対物レンズとを通って試料表面に
収束し、そして試料表面から反射し、対物レンズと4分
の1波長板とを通って、第1のビームスプリッタで反射
され、波長板を往復して通過することによって第2偏光
成分の光となった反射光は偏光ビームスプリッタを透過
し、そして焦点ずれ検出装置によって検出される。ま
た、干渉縞の強度変化計測系の光路は以下のようにな
る。すなわち、光発生手段からの平行光の第2偏光成分
は偏光ビームスプリッタを透過し、第3のビームスプリ
ッタで反射される。他方、光発生手段からの平行光の第
1偏光成分は第1の方向へ偏光ビームスプリッタにより
反射し、第2の方向に第1のビームスプリッタにより反
射され、それから4分の1波長板と対物レンズとを通っ
て試料表面に収束し、そして試料表面から反射し、対物
レンズと4分の1波長板とを通って(波長板を往復通過
することによって第2偏光成分の光となった)反射光は
第1のビームスプリッタを透過し、そして第2のビーム
スプリッタにより反射され、第3のビームスプリッタを
透過する。この透過した反射光と光発生手段から偏光ビ
ームスプリッタを透過した平行光の第2偏光成分とが干
渉して、干渉縞をつくる。この干渉縞の強度変化を計測
して焦点ずれとして表された試料の変位の絶対値を決定
する。
The sample displacement measuring optical device of the present invention reflects the first polarized light component of the parallel light and the light generating means for generating parallel light which is substantially linearly polarized light, and outputs the second polarized light component of the parallel light. A polarizing beam splitter that transmits light, a first, a second, and a third beam splitter, a quarter-wave plate that converts the first polarized component into a second polarized component (when it passes back and forth), and sample An objective lens for observation, a focus shift detection device that detects displacement of the sample as a focus shift, and an interference fringe detection device that includes a photodetection element that detects a change in the intensity of the interference fringes are provided. The optical path of the system is as follows. That is, the first polarized component of the parallel light from the light generating means is reflected by the polarization beam splitter in the first direction that intersects the traveling direction of the parallel light, and the second polarized component that intersects the first direction.
Is reflected by the first beam splitter, then passes through the quarter-wave plate and the objective lens to converge on the sample surface, and then is reflected from the sample surface to move the objective lens and the quarter-wave plate. The reflected light that passes through the polarization beam splitter, is reflected by the first beam splitter, passes through the wave plate back and forth, and becomes the light of the second polarization component, and is detected by the defocus detector. .. The optical path of the interference fringe intensity change measurement system is as follows. That is, the second polarized component of the parallel light from the light generating means passes through the polarizing beam splitter and is reflected by the third beam splitter. On the other hand, the first polarization component of the parallel light from the light generating means is reflected by the polarization beam splitter in the first direction and by the first beam splitter in the second direction, and then from the quarter wavelength plate and the objective. It converges on the sample surface through the lens, and is reflected from the sample surface, and passes through the objective lens and the quarter-wave plate (the light of the second polarization component is obtained by passing back and forth through the wave plate). The reflected light passes through the first beam splitter, is reflected by the second beam splitter, and passes through the third beam splitter. The transmitted reflected light and the second polarized component of the parallel light transmitted from the polarization beam splitter from the light generating means interfere with each other to form interference fringes. The change in the intensity of the interference fringes is measured to determine the absolute value of the displacement of the sample, which is expressed as the defocus.

【0006】[0006]

【実施例】本発明の装置の実施例を添付図を参照して説
明する。半導体レーザー2とコリメータレンズ4とから
成る光発生手段は実質的に直線偏光である平行光を発生
する。半導体レーザー2が発生する光は完全な直線偏光
ではなく、そのためその光は所要の垂直成分又は第1偏
光成分と、これと交差する本来所要とはされていない平
行成分又は第2偏光成分とに分割される。偏光ビームス
プリッタ10は平行光の第1偏光成分を反射し、平行光の
第2偏光成分を透過する。
Embodiments of the apparatus of the present invention will be described with reference to the accompanying drawings. The light generating means consisting of the semiconductor laser 2 and the collimator lens 4 generates parallel light which is substantially linearly polarized light. The light emitted by the semiconductor laser 2 is not perfectly linearly polarized, so that the light is divided into a required vertical component or first polarized component and an originally undesired parallel component or second polarized component which intersects this component. Will be divided. The polarization beam splitter 10 reflects the first polarized component of parallel light and transmits the second polarized component of parallel light.

【0007】先ず、焦点ずれ計測系の光路を説明する。
半導体レーザー2の偏光はコリメータレンズ4で平行光
とされ、この第1偏光成分は平行光の進行方向に交差す
る第1の方向(図面では水平方向)へ偏光ビームスプリ
ッタ10によって反射される。この第1の偏光成分は、
第1の方向に交差するよう配置された第1のビームスプ
リッタ12−1により、第1の方向に交差する第2の方
向(図面では垂直方向)へ試料5に向けて反射される。
その後、この第1偏光成分は4分の1波長板8及び対物
レンズ6を通過して試料表面へ収束され、そして試料表
面から反射した反射光は再び対物レンズ6及び4分の1
波長板8を通過して第1のビームスプリッタ12−1に
よって第1の方向に偏光ビームスプリッタ10に向けて
反射される。この時、第1の偏光成分は4分の1波長板
8を往復したため、第2偏光成分に変化している。この
反射光の第2偏光成分は偏光ビームスプリッタ10によ
って反射されず、偏光ビームスプリッタ10を透過す
る。焦点ずれ検出装置20はこの反射光の第2偏光成分
によって焦点ずれの大きさに比例して変化する信号を生
じる。
First, the optical path of the defocus measurement system will be described.
The polarized light of the semiconductor laser 2 is collimated by the collimator lens 4, and the first polarized component is reflected by the polarization beam splitter 10 in the first direction (horizontal direction in the drawing) intersecting the traveling direction of the parallel light. This first polarization component is
The first beam splitter 12-1 arranged so as to intersect with the first direction reflects the light toward the sample 5 in the second direction (the vertical direction in the drawing) intersecting with the first direction.
Then, the first polarized component passes through the quarter-wave plate 8 and the objective lens 6 and is converged on the sample surface, and the reflected light reflected from the sample surface is again the objective lens 6 and the quarter.
It passes through the wave plate 8 and is reflected by the first beam splitter 12-1 toward the polarization beam splitter 10 in the first direction. At this time, the first polarization component has reciprocated through the quarter-wave plate 8 and thus has changed to the second polarization component. The second polarization component of this reflected light is not reflected by the polarization beam splitter 10 and passes through the polarization beam splitter 10. The defocus detection device 20 produces a signal that changes in proportion to the magnitude of defocus due to the second polarization component of the reflected light.

【0008】次に、干渉縞の強度変化計測系の光路を説
明する。既に述べたように、半導体レーザー2からの光
は完全な直線偏光ではないため、コリメータレンズ4に
よって平行光とされた半導体レーザー2からの光には第
2偏光成分が含まれる。この第2偏光成分は偏光ビーム
スプリッタ10によって反射されず、偏光ビームスプリ
ッタ10を透過する。一方、半導体レーザー2からの平
行光の第1偏光成分は、偏光ビームスプリッタによって
第1の方向へ反射された後、第1のビームスプリッタ1
2−1によって第2の方向に反射され、4分の1波長板
8及び対物レンズ6を通って試料表面に収束され、試料
表面を反射した後、対物レンズ6及び4分の1波長板8
を通過し、更に第1のビームスプリッタ12−1を透過
する。この時の反射光は前に述べたように、第2偏光成
分である。この第2偏光成分は第1のビームスプリッタ
12−1を透過した後、その進行方向に交差する位置に
配置された第2のビームスプリッタ12−2によって第
3のビームスプリッタ12−3へ反射される。第3のビ
ームスプリッタ12−3はこの反射光の第2偏光成分を
光検出素子を備える干渉縞検出装置30へ透過させるの
であるが、この時、この反射光の第2偏光成分と、半導
体レーザー2から投射され、偏光ビームスプリッタ10
を透過し、第3ビームスプリッタ12−3において反射
された前記の第2偏光成分との間で干渉縞が形成され
る。この干渉縞はピンホール28を通して干渉縞検出装
置30によって検出され、この干渉縞の強度に対応した
信号が作られる。この信号は試料表面が変位すると正弦
波状に変化するがその正弦波のピークからピークまでの
周期を基準として焦点ずれの大きさを評定してその絶対
値を求める。このためデータ処理は、焦点ずれ検出装置
20と干渉縞検出装置30に接続されたデータ処理装置
(図示されていない)で実施される。
Next, the optical path of the interference fringe intensity change measuring system will be described. As described above, since the light from the semiconductor laser 2 is not perfectly linearly polarized light, the light from the semiconductor laser 2 which is collimated by the collimator lens 4 contains the second polarization component. This second polarization component is not reflected by the polarization beam splitter 10 and passes through the polarization beam splitter 10. On the other hand, the first polarization component of the parallel light from the semiconductor laser 2 is reflected by the polarization beam splitter in the first direction, and then the first beam splitter 1
2-1 is reflected in the second direction, passes through the quarter-wave plate 8 and the objective lens 6 and is converged on the sample surface, and after reflecting the sample surface, the objective lens 6 and the quarter-wave plate 8 are reflected.
Through the first beam splitter 12-1. The reflected light at this time is the second polarization component as described above. After passing through the first beam splitter 12-1, the second polarized component is reflected to the third beam splitter 12-3 by the second beam splitter 12-2 arranged at a position intersecting the traveling direction. It The third beam splitter 12-3 transmits the second polarized component of the reflected light to the interference fringe detection device 30 including a photodetector. At this time, the second polarized component of the reflected light and the semiconductor laser are transmitted. 2 is projected from the polarization beam splitter 10
Interference fringes are formed between the second polarized light component which is transmitted through the second beam splitter 12-3 and is reflected by the third beam splitter 12-3. This interference fringe is detected by the interference fringe detection device 30 through the pinhole 28, and a signal corresponding to the intensity of this interference fringe is produced. This signal changes sinusoidally when the sample surface is displaced, but the magnitude of defocus is evaluated with reference to the period from the peak of the sinusoidal wave to the absolute value. Therefore, the data processing is performed by a data processing device (not shown) connected to the defocus detection device 20 and the interference fringe detection device 30.

【0009】以上が本発明の装置の主な構成であるが、
試料5で反射した後に第1のビームスプリッタ12−1
を透過し、第2のビームスプリッタ12−2を透過した
反射光を接眼レンズ40に入射させ、試料を観察するよ
うにすることも出来る。本発明の試料変位測定装置に利
用出来る焦点ずれの検出方法としては、臨界角法、非点
収差法、フーコー法、ナイフエッジ法があり、これらに
ついて以下に説明する。
The above is the main configuration of the apparatus of the present invention.
After being reflected by the sample 5, the first beam splitter 12-1
It is also possible to observe the sample by causing the reflected light that has passed through the second beam splitter 12-2 to enter the eyepiece lens 40. There are a critical angle method, an astigmatism method, a Foucault method, and a knife edge method as defocus detection methods that can be used in the sample displacement measuring apparatus of the present invention, and these will be described below.

【0010】図1には臨界角法による焦点ずれの検出装
置が示されている。この焦点ずれ検出装置20は、ビー
ムスプリッタ22、平行光が入射するとこれを全反射す
るよう配置した臨界角プリズム24−1、24−2、光
の強度を検出するための光検出素子26−1〜26−4
を備える。試料表面変位の測定には、臨界角プリズム2
4−1と光検出素子26−1、26−2を設ければ足り
るが、試料表面が水平でなく僅かな傾斜がある時それに
よる計測誤差を排除するためにもう一組みの別の臨界角
プリズム24−2と光検出素子26−3、26−4を設
けている。
FIG. 1 shows an apparatus for detecting defocus by the critical angle method. The defocusing detection device 20 includes a beam splitter 22, critical angle prisms 24-1 and 24-2 arranged to totally reflect parallel light, and a light detection element 26-1 for detecting light intensity. ~ 26-4
Equipped with. To measure the sample surface displacement, the critical angle prism 2
It suffices to provide 4-1 and the photodetection elements 26-1 and 26-2, but when the sample surface is not horizontal and there is a slight inclination, another set of another critical angle is provided in order to eliminate measurement errors due to it. A prism 24-2 and light detecting elements 26-3 and 26-4 are provided.

【0011】試料表面からの反射光である第2偏光成分
は偏光ビームスプリッタ10を透過した後、ビームスプ
リッタ22によって2方向に分割され臨界角プリズム2
4−1、24−2にそれぞれ入射する。試料が変位して
いるために試料表面が対物レンズ6の焦点位置からずれ
ている場合、臨界角プリズム24−1に入射する第2偏
光成分は平行光ではない。例えば対物レンズ6から遠ざ
かるように変位すると、図面で中心軸から上の方の光は
入射角が臨界角より小さくなり一部の光は臨界角プリズ
ム24−1を透過し、残りの光が光検出素子26−1に
入射し、図面で中心軸から下の方の光は入射角が臨界角
より大きくなるため、全反射されて光検出素子26−2
に入射する。光検出素子26−1、26−2の出力の差
から試料表面の変位に比例する信号が求まる。
The second polarized light component, which is the reflected light from the surface of the sample, is transmitted through the polarization beam splitter 10 and then split into two directions by the beam splitter 22.
It is incident on 4-1 and 24-2, respectively. When the sample surface is displaced from the focal position of the objective lens 6 due to the displacement of the sample, the second polarization component incident on the critical angle prism 24-1 is not parallel light. For example, when the light is displaced away from the objective lens 6, the incident angle of the light above the central axis becomes smaller than the critical angle in the drawing, part of the light passes through the critical angle prism 24-1, and the rest of the light is converted into light. Light incident on the detecting element 26-1 and downward in the drawing from the central axis has an incident angle larger than the critical angle, and thus is totally reflected and is detected by the light detecting element 26-2.
Incident on. A signal proportional to the displacement of the sample surface can be obtained from the difference between the outputs of the photodetection elements 26-1 and 26-2.

【0012】また試料表面が水平でなく僅かな傾斜があ
ると、光検出素子26−1と26−2による信号の差
と、光検出素子26−3と26−4による信号の差との
和を求めることにより、その傾斜による誤差を相殺し
て、試料表面の変位に正確に比例する信号を求めること
が出来る。図2には非点収差法による焦点ずれ検出装置
が示されている。この焦点ずれ検出装置は、ビームスプ
リッタ42、4分割の光検出素子46−1、46−2、
そしてそれぞれが2つの収束線を持つ曲率異方性レンズ
44−1、44−2を備える。試料表面変位の測定には
曲率異方性レンズ44−1と4分割の光検出素子46−
1を設ければ足りるが、曲率異方性レンズ44−2と4
分割の光検出素子46−2を用いることによって計測誤
差を排除出来る。曲率異方性レンズ44−1は、入射光
が平行光の場合はその光をA点及びB点に線状に収束さ
せる。即ちこの光はA点において、紙面に垂直な線(4
分割光検出素子の1から3の方向に伸びる線)上の有限
の線として収束し、そしてB点において紙面内の中心軸
(一点鎖線)と直交する線(4分割光検出素子の2から
4の方向に伸びる線)上の有限の線として収束する。こ
の収束光の紙面に垂直な断面での形状は、A点からA点
とB点の中点に向かうに従って4分割光検出素子の1か
ら3の方向に伸びる楕円から円に変化し、中点からB点
に向かうに従って2から4の方向に伸びる楕円に変化す
る。
If the sample surface is not horizontal and has a slight inclination, the sum of the signal difference between the photodetection elements 26-1 and 26-2 and the signal difference between the photodetection elements 26-3 and 26-4 is obtained. By obtaining the above, it is possible to cancel the error due to the inclination and obtain a signal that is accurately proportional to the displacement of the sample surface. FIG. 2 shows a defocus detection device based on the astigmatism method. This defocus detection device includes a beam splitter 42, four-division photodetection elements 46-1, 46-2,
Then, each is provided with curvature anisotropic lenses 44-1 and 44-2 each having two convergent lines. Anisotropic lens 44-1 and four-division photodetector 46-
1 is sufficient, but curvature anisotropy lenses 44-2 and 4
The measurement error can be eliminated by using the divided photodetector element 46-2. When the incident light is parallel light, the curvature anisotropy lens 44-1 linearly converges the light at points A and B. That is, this light is a line (4
It converges as a finite line on a line extending from 1 to 3 of the split photodetector and is a line (2 to 4 of the 4-split photodetector) orthogonal to the central axis (dotted line) in the plane of the paper at point B. Converges as a finite line on the line extending in the direction of. The shape of this converged light in a cross section perpendicular to the plane of the paper changes from an ellipse extending in the directions 1 to 3 of the four-division photodetection element to a circle from the point A toward the midpoint of points A and B. Changes to an ellipse extending from 2 to 4 from point B to point B.

【0013】今、4分割検出素子46−1をA点及びB
点の中点に配置しておく。第2偏光成分は試料表面から
反射して偏光ビームスプリッタ10を透過した後、ビー
ムスプリッタ42によって2方向に分割され、曲率異方
性レンズ44−1と44−2に入射する。試料に変位が
存在せず、試料表面が対物レンズの焦点位置にある場
合、この入射光は平行光であるため、曲率異方性レンズ
44−1を透過した光は4分割の光検出素子上に円とな
って投射される。試料に変位が存在し、試料表面が対物
レンズの焦点位置からずれている場合、入射光は平行光
とならないため、その光の収束位置はA点、B点の前後
にずれる。この結果、4分割の光検出素子上に現れる光
の断面形状は1から3の方向に伸びる楕円、あるいは2
から4の方向に伸びる楕円となる。このため、これら4
分割光検出素子の各素子で検出される光の強度は異な
り、試料表面の変位に比例する信号が得られる。
Now, the four-division detector element 46-1 is connected to points A and B.
Place it at the midpoint of the point. The second polarized component is reflected from the surface of the sample and transmitted through the polarized beam splitter 10, then is split into two directions by the beam splitter 42 and enters the curvature anisotropic lenses 44-1 and 44-2. When there is no displacement in the sample and the sample surface is at the focal position of the objective lens, this incident light is parallel light, so the light transmitted through the curvature anisotropy lens 44-1 is on the 4-division photodetection element. It is projected as a circle on. When the sample has a displacement and the surface of the sample is displaced from the focal position of the objective lens, the incident light is not parallel light, so that the convergent position of the light deviates before and after the points A and B. As a result, the cross-sectional shape of the light appearing on the four-division photodetection element is an ellipse extending from 1 to 3 or 2
It becomes an ellipse extending from 4 to 4. Therefore, these 4
The intensity of light detected by each element of the divided photodetection element is different, and a signal proportional to the displacement of the sample surface is obtained.

【0014】図3にはフーコー法による焦点ずれ検出装
置が示されている。この焦点ずれ検出装置は、ビームス
プリッタ52、レンズ54−1、54−2、入射した光
を2方向に発散させるスプリットプリズム56−1、5
6−2、4分割の光検出素子58−1、58−2を備え
る。試料表面変位の測定には、レンズ54−1、スプリ
ットプリズム56−1、及び4分割の光検出素子58−
1を設ければ足りるが、レンズ54−2、スプリットプ
リズム56−2、及び4分割の光検出素子58−2を用
いて両光検出素子の出力信号の和をとることによって計
測誤差を相殺出来る。スプリットプリズム56−1は入
射光をa及びbの2方向に発散させる。この光は4分割
の光検出素子58−1において円または半円の断面形状
となって現れる。入射光の収束点がスプリットプリズム
56−1の頂点にある場合、入射光は図4(A)のよう
に発散、透過するため、4分割の光検出素子58−1に
おけるその断面形状は、4分割の光検出素子の1及び2
の領域を分割する分割線あるいは3及び4の領域を分割
する分割線を中心軸とした2つの完全な円となる。入射
光の収束点がスプリットプリズム56−1の上流側にあ
る場合には、図4(B)に示したようにその断面形状
は、4分割の光検出素子58−1の領域1及び2の分割
線を中心軸とした半円として2の領域に、また領域3及
び4の分割線を中心軸とした半円として3の領域に現
れ、入射光の収束点がスプリットプリズム56−1の下
流側にある場合には、図4(C)に示したようにその断
面形状は、4分割の光検出素子58−1の領域1及び2
の分割線を中心軸とした半円として1の領域に、また領
域3及び4の分割線を中心軸とした半円として4の領域
に現れる。これらの半円の大きさは、スプリットプリズ
ム56−1の頂点に対する収束位置によって変化する。
FIG. 3 shows a defocus detecting device based on the Foucault method. This defocus detecting device includes a beam splitter 52, lenses 54-1 and 54-2, and split prisms 56-1 and 5-5 for diverging incident light in two directions.
6-2 and 4-division photodetector elements 58-1 and 58-2 are provided. To measure the sample surface displacement, a lens 54-1, a split prism 56-1 and a four-division photodetector element 58-
1 is sufficient, but the measurement error can be offset by taking the sum of the output signals of both photodetection elements by using the lens 54-2, the split prism 56-2, and the 4-division photodetection element 58-2. .. The split prism 56-1 diverges incident light in two directions, a and b. This light appears as a circular or semicircular cross-sectional shape in the four-division photodetector element 58-1. When the converging point of the incident light is at the apex of the split prism 56-1, the incident light diverges and transmits as shown in FIG. 4A, so that the sectional shape of the four-division photodetection element 58-1 is 4 1 and 2 of split photodetector
Two complete circles whose center axis is the dividing line dividing the area of 1 or the dividing line dividing the areas of 3 and 4. When the converging point of the incident light is on the upstream side of the split prism 56-1, its cross-sectional shape is as shown in FIG. A semi-circle with the dividing line as the central axis appears in the region 2 and a semi-circle with the dividing lines in the regions 3 and 4 as the semi-circle in the region 3, and the convergence point of the incident light is downstream of the split prism 56-1. When it is on the side, as shown in FIG. 4C, its cross-sectional shape is such that regions 1 and 2 of the four-division photodetection element 58-1.
Appears in region 1 as a semicircle with the dividing line as the central axis, and in region 4 as a semicircle with the dividing lines in regions 3 and 4 as the central axis. The size of these semicircles changes depending on the convergence position with respect to the apex of the split prism 56-1.

【0015】今、平行光のレンズ54−1による収束点
が、丁度スプリットプリズム56−1の頂点にくるよう
配置しておく。試料表面からの反射光である第2偏光成
分は偏光ビームスプリッタ10を透過し、ビームスプリ
ッタ52によって2方向に分割されてレンズ54−1を
透過した後、このスプリットプリズム56−1に入射す
る。試料に変位が存在せず、試料表面が対物レンズの焦
点位置にある場合、レンズ54−1に入射する光は平行
光であるため、スプリットプリズム56−1の頂点に収
束する。このため、4分割の光検出素子58−1に現れ
る断面形状は、完全な円となる(図4(A))。試料に
変位が存在し、試料表面が対物レンズの焦点位置からず
れている場合、レンズ54−1に入射する光は平行光で
はなくなる。このため、レンズ54−1により収束され
た光の収束点はスプリットプリズム56−1の頂点から
ずれ、4分割の光検出素子58−1に現れるその断面形
状は2及び3あるいは1及び4の領域における半円とな
る。この半円の大きさは試料表面の変位の大きさに比例
して変化しているため、4分割光検出素子の各素子で検
出される光の強度を測定することにより、試料表面の変
位に比例する信号が得られる。
Now, the converging point of the parallel light by the lens 54-1 is arranged so as to be exactly at the apex of the split prism 56-1. The second polarized component, which is the reflected light from the sample surface, passes through the polarization beam splitter 10, is split into two directions by the beam splitter 52, passes through the lens 54-1 and then enters the split prism 56-1. When there is no displacement in the sample and the sample surface is at the focal position of the objective lens, the light incident on the lens 54-1 is parallel light and therefore converges on the apex of the split prism 56-1. Therefore, the cross-sectional shape that appears in the four-division photodetector element 58-1 is a perfect circle (FIG. 4A). When the sample is displaced and the sample surface is displaced from the focal position of the objective lens, the light incident on the lens 54-1 is not parallel light. Therefore, the convergence point of the light converged by the lens 54-1 is deviated from the apex of the split prism 56-1 and the cross-sectional shape appearing in the four-division photodetection element 58-1 is 2 and 3 or 1 and 4 regions. It becomes a half circle in. Since the size of this semicircle changes in proportion to the displacement of the sample surface, the displacement of the sample surface can be determined by measuring the intensity of light detected by each element of the 4-split photodetector. A proportional signal is obtained.

【0016】図5にはナイフエッジ法による焦点ずれ検
出装置が示されている。この焦点ずれ検出装置は、ビー
ムスプリッタ62、光の半分を遮断するナイフエッジ6
6−1、66−2、レンズ64−1、64−2、2分割
の光検出素子68−1、68−2を備える。試料表面変
位の測定には、一般のレンズ64−1、ナイフエッジ6
6−1、光検出素子68−1を設ければ足り、別の一組
のレンズ64−2、ナイフエッジ66−2、光検出素子
68−2は寄生誤差を相殺排除するためのものである。
FIG. 5 shows a defocus detecting device by the knife edge method. This defocus detection device includes a beam splitter 62 and a knife edge 6 that blocks half of the light.
6-1 and 66-2, lenses 64-1 and 64-2, and two-divided photo detection elements 68-1 and 68-2. To measure the sample surface displacement, a general lens 64-1 and knife edge 6 are used.
It suffices to provide 6-1 and the photodetection element 68-1, and another set of the lens 64-2, the knife edge 66-2, and the photodetection element 68-2 are for canceling and eliminating the parasitic error. ..

【0017】試料表面からの反射光である第2偏光成分
は偏光ビームスプリッタ10を透過した後、ビームスプ
リッタ62によって2方向に分割され、ナイフエッジ6
6−1、66−2によりその第2偏光成分の半分が遮断
された後、レンズ64−1、64−2によって2分割の
光検出素子68−1、68−2の上に収束する。試料に
変位が存在せず、試料表面が対物レンズの焦点位置にあ
る場合、レンズ64−1によって収束された光は、2分
割の光検出素子68−1上の領域1及び2を分割する分
割線上に収束しているが、試料変位が存在し、試料表面
が対物レンズの焦点位置からずれている場合、レンズ6
4−1によって収束される光の収束点は光検出素子の前
後いづれかにずれ、この結果、領域1及び2それぞれに
おいて検出される光の強度に差が生じる。これら2分割
光検出素子の各素子で検出される光の強度を測定するこ
とにより、試料表面の変位に比例する信号が得られる。
The second polarized light component, which is the reflected light from the surface of the sample, is transmitted through the polarizing beam splitter 10 and is then split into two directions by the beam splitter 62, so that the knife edge 6
After half of the second polarized component is blocked by 6-1 and 66-2, it is converged on the two-divided photodetection elements 68-1 and 68-2 by lenses 64-1 and 64-2. When there is no displacement in the sample and the sample surface is at the focal position of the objective lens, the light converged by the lens 64-1 is divided into regions 1 and 2 on the two-division photodetection element 68-1. If the sample surface is displaced from the focus position of the objective lens although it converges on the line, the lens 6
The convergence point of the light converged by 4-1 shifts to either the front or the rear of the photodetection element, and as a result, a difference occurs in the intensity of the detected light in each of the regions 1 and 2. A signal proportional to the displacement of the sample surface can be obtained by measuring the intensity of light detected by each of these two-division photodetection elements.

【0018】[0018]

【発明の効果】焦点ずれ検出装置と干渉縞の強度変化計
測系とを最小の光学素子を用いてコンパクトに組合せ、
数ミクロン程度の極めて僅かな試料変位の絶対値を正確
に測定出来る。
The defocus detecting device and the interference fringe intensity change measuring system are combined in a compact manner by using the smallest optical element,
It is possible to accurately measure the absolute value of extremely small sample displacement of a few microns.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の試料変位測定装置の実施例を示す略
図。
FIG. 1 is a schematic view showing an embodiment of a sample displacement measuring device of the present invention.

【図2】本発明の試料変位測定装置に使用出来る非点収
差法を用いた焦点ずれ検出装置を示す略図。
FIG. 2 is a schematic diagram showing a defocus detection device using an astigmatism method that can be used in the sample displacement measuring device of the present invention.

【図3】本発明の試料変位測定装置に使用出来るフーコ
ー法を用いた焦点ずれ検出装置を示す略図。
FIG. 3 is a schematic diagram showing a defocus detection device using the Foucault method that can be used in the sample displacement measuring device of the present invention.

【図4】フーコー法の焦点ずれ検出の態様を示す説明
図。
FIG. 4 is an explanatory diagram showing a mode of defocus detection of the Foucault method.

【図5】本発明の試料変位測定装置に使用出来るナイフ
エッジ法を用いた焦点ずれ検出装置を示す略図。
FIG. 5 is a schematic view showing a defocus detection device using a knife edge method that can be used in the sample displacement measuring device of the present invention.

【符号の説明】[Explanation of symbols]

2 半導体レーザーLD 4 コリメーターレンズ 5 試料 6 対物レンズ 8 4分の1波長板 10 偏光ビームスプリッタ 12−1 ビームスプリッタ 12−2 ビームスプリッタ 12−3 ビームスプリッタ 20 焦点エラー検出装置 22 ビームスプリッタ 24−1 臨界角プリズム 24−2 臨界角プリズム 26−1 光検出素子 26−2 光検出素子 26−3 光検出素子 26−4 光検出素子 28 ピンホール 30 干渉縞検出装置 40 接眼レンズ 42 ビームスプリッタ 44−1 曲率異方性レンズ 44−2 曲率異方性レンズ 46−1 4分割の光検出素子 46−2 4分割の光検出素子 52 ビームスプリッタ 54−1 レンズ 54−2 レンズ 56−1 スプリットプリズム 56−2 スプリットプリズム 58−1 4分割の光検出素子 58−2 4分割の光検出素子 62 ビームスプリッタ 64−1 レンズ 64−2 レンズ 66−1 ナイフエッジ 66−2 ナイフエッジ 68−1 2分割の光検出素子 68−2 2分割の光検出素子 2 Semiconductor laser LD 4 Collimator lens 5 Sample 6 Objective lens 8 Quarter wave plate 10 Polarization beam splitter 12-1 Beam splitter 12-2 Beam splitter 12-3 Beam splitter 20 Focus error detection device 22 Beam splitter 24-1 Critical angle prism 24-2 Critical angle prism 26-1 Photodetector 26-2 Photodetector 26-3 Photodetector 26-4 Photodetector 28 Pinhole 30 Interference fringe detector 40 Eyepiece 42 Beam splitter 44-1 Curvature anisotropy lens 44-2 Curvature anisotropy lens 46-1 4-division photo detection element 46-2 4-division photo detection element 52 beam splitter 54-1 lens 54-2 lens 56-1 split prism 56-2 Split prism 58-1 4-split photodetector 58 2 four divided light detection element 62 beam splitter 64-1 lens 64-2 lens 66-1 knife edge 66-2 knife edge 68-1 2 divided photodetection element 68-2 2 divided light detecting elements

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 一郎 埼玉県和光市広沢2番1号 理化学研究所 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiro Yamaguchi 2-1, Hirosawa, Wako-shi, Saitama RIKEN

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 実質的に直線偏光である平行光を発生す
る光発生手段と、平行光の第1偏光成分を反射し、平行
光の第2偏光成分を透過する偏光ビームスプリッタと、
第1と第2と第3のビームスプリッタと、4分の1波長
板と、試料観察用の対物レンズと、試料の変位を焦点ず
れとして検出する焦点ずれ検出装置と、干渉縞の強度変
化を検出する干渉縞検出装置とを備え、前記の偏光ビー
ムスプリッタは前記の光発生手段からの平行光の第1偏
光成分を平行光の進行方向に交差する第1の方向へ反射
し、そして平行光の第2偏光成分を平行光の進行方向に
透過するよう配置し、前記の第1のビームスプリッタは
前記の第1の方向に交差する第2の方向に前記の偏光ビ
ームスプリッタからの第1偏光成分を反射するよう配置
し、この第1偏光成分が前記の4分の1波長板と対物レ
ンズとを通って試料表面に収束するよう前記の4分の1
波長板と対物レンズを配置し、前記の焦点ずれ検出装置
は試料表面から反射し、前記の対物レンズと4分の1波
長板とを通って、前記の第1のビームスプリッタで反射
され、前記の偏光ビームスプリッタを透過した反射光の
第2偏光成分を受けるよう配置され、前記の第2のビー
ムスプリッタは前記の第1のビームスプリッタを透過し
た前記の反射光の第2偏光成分を反射させるよう配置さ
れ、そして前記の第3のビームスプリッタは前記の偏光
ビームスプリッタを透過した平行光の第2偏光成分を反
射し、そして前記の第2のビームスプリッタから反射さ
れた反射光の第2偏光成分を透過するよう配置され、そ
して前記の干渉縞検出装置は前記の第2のビームスプリ
ッタからの反射光の第2偏光成分と前記の偏光ビームス
プリッタを透過した平行光の第2偏光成分との干渉縞を
検出するよう配置されたことを特徴とする試料変位測定
用光学装置。
1. A light generating means for generating parallel light that is substantially linearly polarized light, and a polarization beam splitter that reflects a first polarization component of the parallel light and transmits a second polarization component of the parallel light.
The first, second, and third beam splitters, the quarter-wave plate, the objective lens for observing the sample, the defocus detection device that detects the displacement of the sample as the defocus, and the intensity change of the interference fringes. An interference fringe detection device for detecting, wherein the polarization beam splitter reflects the first polarized component of the parallel light from the light generating means in a first direction intersecting the traveling direction of the parallel light, and The second polarized light component of the polarized light beam splitter is arranged to transmit the parallel polarized light in the traveling direction of the parallel light, and the first beam splitter is configured to transmit the first polarized light from the polarized light beam splitter in a second direction intersecting the first direction. The first polarized component is arranged so as to reflect light, and the first polarized component passes through the quarter wavelength plate and the objective lens to converge on the sample surface.
A wavelength plate and an objective lens are arranged, and the defocus detection device reflects from the sample surface, passes through the objective lens and the quarter wavelength plate, and is reflected by the first beam splitter. Is arranged to receive the second polarization component of the reflected light that has passed through the polarization beam splitter, and the second beam splitter reflects the second polarization component of the reflected light that has passed through the first beam splitter. And the third beam splitter reflects the second polarization component of the parallel light transmitted through the polarization beam splitter and the second polarization of the reflected light reflected from the second beam splitter. Is arranged to transmit the component, and the interference fringe detection device transmits the second polarization component of the reflected light from the second beam splitter and the polarization beam splitter. Sample displacement measuring optical apparatus characterized by being arranged to detect the interference fringes of the second polarized light component of the parallel light.
【請求項2】 試料観察用の接眼レンズを更に備え、こ
の接眼レンズは、前記の第1のビームスプリッタを透過
し、そして前記の第2のビームスプリッタを透過した反
射光の第2偏光成分を通すよう配置されたことを特徴と
する請求項1に記載の試料変位測定用光学装置。
2. An eyepiece for observing a sample is further provided, and the eyepiece transmits the second polarized component of the reflected light which is transmitted through the first beam splitter and is transmitted through the second beam splitter. The sample displacement measuring optical device according to claim 1, wherein the optical device is arranged so as to pass therethrough.
【請求項3】 実質的に直線偏光である平行光を発生す
る光発生手段と、平行光の第1偏光成分を反射し、平行
光の第2偏光成分を透過する偏光ビームスプリッタと、
第1と第2と第3のビームスプリッタと、第1偏光成分
を第2偏光成分に変換する4分の1波長板と、試料観察
用の対物レンズと、試料の変位を焦点ずれとして検出す
る焦点ずれ検出装置と、干渉縞の強度変化を検出する干
渉縞検出装置と、データ処理装置とを備え、前記の偏光
ビームスプリッタは前記の光発生手段からの平行光の第
1偏光成分を平行光の進行方向に交差する第1の方向へ
反射し、そして平行光の第2偏光成分を平行光の進行方
向に透過するよう配置し、前記の第1のビームスプリッ
タは前記の第1の方向に交差する第2の方向に前記の偏
光ビームスプリッタからの第1偏光成分を反射するよう
配置し、この第1偏光成分が前記の4分の1波長板と対
物レンズとを通って試料表面に収束するよう前記の4分
の1波長板と対物レンズを配置し、前記の焦点ずれ検出
装置は試料表面から反射し、前記の対物レンズと4分の
1波長板とを通って、前記の第1のビームスプリッタで
反射され、前記の偏光ビームスプリッタを透過した反射
光の第2偏光成分を受けるよう配置され、前記の第2の
ビームスプリッタは前記の第1のビームスプリッタを透
過した前記の反射光の第2偏光成分を反射させるよう配
置され、前記の第3のビームスプリッタは前記の偏光ビ
ームスプリッタを透過した平行光の第2偏光成分を反射
し、そして前記の第2のビームスプリッタから反射され
た反射光の第2偏光成分を透過するよう配置され、前記
の干渉縞検出装置は前記の第2のビームスプリッタから
の反射光の第2偏光成分と前記の偏光ビームスプリッタ
を透過した平行光の第2偏光成分との干渉縞を検出する
よう配置され、そして前記のデータ処理装置は前記の焦
点ずれ検出装置と前記の干渉縞検出装置とに接続され、
前記の強度変化で前記の焦点ずれを評定して試料表面の
ずれの絶対値を求めることを特徴とする試料変位測定装
置。
3. Light generating means for generating parallel light that is substantially linearly polarized light, and a polarizing beam splitter that reflects the first polarized light component of the parallel light and transmits the second polarized light component of the parallel light.
First, second, and third beam splitters, a quarter-wave plate that converts the first polarized component into a second polarized component, an objective lens for observing the sample, and displacement of the sample is detected as defocus. The polarization beam splitter includes a defocus detection device, an interference fringe detection device that detects a change in the intensity of interference fringes, and a data processing device, and the polarization beam splitter converts the first polarization component of the parallel light from the light generation means into parallel light. Is arranged so as to reflect in a first direction intersecting the traveling direction of the parallel light and transmit the second polarized component of the parallel light in the traveling direction of the parallel light, and the first beam splitter is arranged in the first direction. It is arranged so as to reflect the first polarization component from the polarization beam splitter in the second direction intersecting, and the first polarization component is converged on the sample surface through the quarter wavelength plate and the objective lens. As described above, the quarter-wave plate and the objective Lens is disposed, the defocus detection device reflects from the sample surface, passes through the objective lens and the quarter-wave plate, and is reflected by the first beam splitter. Is arranged to receive a second polarization component of the reflected light transmitted through the second beam splitter, and the second beam splitter is arranged to reflect a second polarization component of the reflected light transmitted through the first beam splitter. The third beam splitter reflects the second polarization component of the parallel light transmitted through the polarization beam splitter and transmits the second polarization component of the reflected light reflected from the second beam splitter. The interference fringe detection device is provided with a second polarization component of the reflected light from the second beam splitter and a second polarization component of the parallel light transmitted through the polarization beam splitter. Interference fringes are arranged to detect, and the data processing apparatus is connected to said focus deviation detecting system and the interference fringe detector,
A sample displacement measuring device, characterized in that the focus shift is evaluated by the intensity change to obtain an absolute value of the shift of the sample surface.
【請求項4】 試料観察用の接眼レンズを更に備え、こ
の接眼レンズは、前記の第1のビームスプリッタを透過
し、そして前記の第2のビームスプリッタを透過した反
射光の第2偏光成分を通すよう配置されたことを特徴と
する請求項3に記載の試料変位測定用光学装置。
4. An eyepiece lens for observing a sample is further provided, wherein the eyepiece lens transmits a second polarization component of the reflected light which is transmitted through the first beam splitter and is transmitted through the second beam splitter. The sample displacement measuring optical device according to claim 3, wherein the optical device is arranged so as to pass therethrough.
JP6019291A 1991-03-25 1991-03-25 Sample displacement measuring device Expired - Fee Related JP2966950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6019291A JP2966950B2 (en) 1991-03-25 1991-03-25 Sample displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6019291A JP2966950B2 (en) 1991-03-25 1991-03-25 Sample displacement measuring device

Publications (2)

Publication Number Publication Date
JPH05322516A true JPH05322516A (en) 1993-12-07
JP2966950B2 JP2966950B2 (en) 1999-10-25

Family

ID=13135051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6019291A Expired - Fee Related JP2966950B2 (en) 1991-03-25 1991-03-25 Sample displacement measuring device

Country Status (1)

Country Link
JP (1) JP2966950B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022415A (en) * 2000-05-01 2002-01-23 Hitachi Electronics Eng Co Ltd Fine protrusion inspecting apparatus
CN112066961A (en) * 2020-09-15 2020-12-11 成都明杰科技有限公司 Abbe error control system for precision measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022415A (en) * 2000-05-01 2002-01-23 Hitachi Electronics Eng Co Ltd Fine protrusion inspecting apparatus
CN112066961A (en) * 2020-09-15 2020-12-11 成都明杰科技有限公司 Abbe error control system for precision measurement

Also Published As

Publication number Publication date
JP2966950B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
JP2004530898A (en) Interferometric scanning for aspheric surfaces and wavefronts
US5164791A (en) Minute displacement detector using optical interferometry
JPH05500712A (en) optical measuring device
EP0902874A1 (en) Interferometer for measuring thickness variations of semiconductor wafers
US10018460B2 (en) Interferometric measuring device with detectors set at different angular ranges
US5011287A (en) Interferometer object position measuring system and device
US6710881B1 (en) Heterodyne interferometry for small spacing measurement
JP4223349B2 (en) Vibration-resistant interferometer device
JP2000241128A (en) Plane-to-plane space measuring apparatus
JPH0256604B2 (en)
US4105335A (en) Interferometric optical phase discrimination apparatus
JP2966950B2 (en) Sample displacement measuring device
JPS63193003A (en) Apparatus for measuring depth of recessed part and thickness of film
JPS6024401B2 (en) How to measure the physical constants of a measured object
JP2001264036A (en) Measuring apparatus and measuring method for surface shape
JPH06213623A (en) Optical displacement sensor
JP2592254B2 (en) Measuring device for displacement and displacement speed
JP2831428B2 (en) Aspherical shape measuring machine
JP2000088513A (en) Aspherical wave generating lens system assembling adjusting equipment
JPH11325848A (en) Aspherical surface shape measurement device
JPS6370110A (en) Distance measuring apparatus
JPS61242779A (en) Method of detecting inclination and focus of laser beam in laser beam machining device
RU2643677C1 (en) Method of micro objects investigation and near-field optical microscope for its implementation
JPH0968408A (en) Optical displacement sensor
JPH02259512A (en) Integrated interference measuring instrument

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990712

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees