JPH05322361A - Adsorption type cooling system - Google Patents

Adsorption type cooling system

Info

Publication number
JPH05322361A
JPH05322361A JP13379892A JP13379892A JPH05322361A JP H05322361 A JPH05322361 A JP H05322361A JP 13379892 A JP13379892 A JP 13379892A JP 13379892 A JP13379892 A JP 13379892A JP H05322361 A JPH05322361 A JP H05322361A
Authority
JP
Japan
Prior art keywords
adsorber
adsorption
cooling
heating
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13379892A
Other languages
Japanese (ja)
Inventor
Yasuo Yamada
泰生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP13379892A priority Critical patent/JPH05322361A/en
Priority to US08/066,984 priority patent/US5333471A/en
Publication of JPH05322361A publication Critical patent/JPH05322361A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2333/00Details of boilers; Analysers; Rectifiers
    • F25B2333/005Details of boilers; Analysers; Rectifiers the generator or boiler uses electromagnetic energy in the form of microwaves for desorbing the sorbate from the sorbate/sorbent compound

Abstract

PURPOSE:To shorten a time required for heating and regenerating steps and to improve an operating efficiency of an entire system by using a microwave heater as means for heating an adsorption unit at the time of the step of regenerating to separate adsorbing medium in the unit and return it into a cooling vessel. CONSTITUTION:An adsorption type cooling system comprises a pair of adsorption units 20, 21 each containing an adsorbing material, a cooling vessel 22 coupled thereto, a condenser 23, a heat exchanger 24, etc. In an adsorbing step, one unit is cooled, and the medium in the vessel 22 is adsorbed into the unit. On the other hand, in a regenerating step, the other unit is superheated to return the medium in the unit to the vessel 22. In the above structure, a microwave heater for induction-heating is used as means for heating the unit. The heater has an oscillator 29, a power source 30 and a waveguide 31. Thus, a time required for the heating and regenerating steps is shortened to improve an operating efficiency of the entire system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両用、住棟用または
船舶用の空気調和装置や、要冷蔵の食品または医薬品の
輸送コンテナ用冷却装置等に適用可能な吸着式冷却シス
テムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption type cooling system applicable to an air conditioner for a vehicle, a residential building, or a ship, a cooling device for a container for transporting food or medicines requiring refrigeration, and the like. is there.

【0002】[0002]

【従来の技術】従来、空気調和装置や冷凍装置等に用い
られる冷却システムとしては、ヒートポンプ式等が一般
的に知られているが、最近ではゼオライト等からなる吸
着材を用いた吸着式冷却システムが提案されている。
尚、これに関連した従来技術としては、例えば特開昭6
2−5060号公報に記載されたものがある。
2. Description of the Related Art Conventionally, as a cooling system used for an air conditioner, a refrigerating device, etc., a heat pump type has been generally known, but recently, an adsorption type cooling system using an adsorbent made of zeolite or the like. Is proposed.
As a conventional technique related to this, for example, Japanese Patent Laid-Open No.
There is one described in Japanese Patent Publication No. 2-5060.

【0003】図5は吸着式冷却システムの基本的な原理
を示すもので、吸着器1と冷却容器2とを開閉バルブ3
を有する管路4によって連結した単一の吸着式冷却シス
テムである。吸着器1内にはゼオライト等からなる吸着
材1aが収容されており、吸着材1aには加熱または冷
却用の熱交換パイプ5が接触している。冷却容器2内に
は吸着媒体としての水が入っており、この水には冷却し
ようとする空気が流通する冷却パイプ6が熱的に接触
し、吸着器1、管路4及び冷却容器2内は真空になって
いる。また、管路4の冷却容器2側には外気と熱交換す
る凝縮器7が設けられている。この冷却システムでは、
管路4の開閉バルブ3を開くと、図5(a)に示すように
吸着材1aの吸着作用により冷却容器2内の水が蒸発し
て水蒸気となり、管路4を通って吸着器1内の吸着材1
aに吸着される。これにより、冷却容器2内の水が蒸発
する際の潜熱が冷却容器2側から吸収されるため、冷却
容器2内の温度が低下し、冷却パイプ6内の空気が冷却
される。このような操作を吸着行程という。次に、吸着
材1aに吸着された水を冷却容器2に戻す操作を行う。
即ち、図5(b) に示すように熱交換パイプ5に外部熱源
からの高温空気を流通させることによって吸着材1aを
加熱し、吸着材1aに吸着されている水を分離させる。
これにより、水蒸気となった水分が管路4を通って凝縮
器7で水となり、冷却容器2に回収される。このような
操作を再生行程という。尚、この場合の吸着とは吸着材
の分子間に水の分子が保持されている状態を示し、この
状態で吸着材を加熱することにより水が吸着材から分離
して再生される。
FIG. 5 shows the basic principle of an adsorption type cooling system, in which an adsorber 1 and a cooling container 2 are connected to each other and an opening / closing valve 3 is provided.
Is a single adsorption cooling system connected by a conduit 4 having An adsorbent 1a made of zeolite or the like is accommodated in the adsorber 1, and a heat exchange pipe 5 for heating or cooling is in contact with the adsorbent 1a. Water as an adsorption medium is contained in the cooling container 2, and a cooling pipe 6 through which air to be cooled flows is thermally contacted with the water, and the adsorber 1, the pipe line 4 and the inside of the cooling container 2 are in contact with each other. Is in a vacuum. In addition, a condenser 7 that exchanges heat with the outside air is provided on the side of the cooling container 2 of the pipeline 4. With this cooling system,
When the opening / closing valve 3 of the pipe line 4 is opened, the water in the cooling container 2 is evaporated into water vapor by the adsorption action of the adsorbent 1a as shown in FIG. Adsorbent 1
Adsorbed by a. As a result, the latent heat when the water in the cooling container 2 evaporates is absorbed from the cooling container 2 side, so that the temperature in the cooling container 2 decreases and the air in the cooling pipe 6 is cooled. Such an operation is called an adsorption process. Next, the operation of returning the water adsorbed by the adsorbent 1a to the cooling container 2 is performed.
That is, as shown in FIG. 5 (b), the adsorbent 1a is heated by circulating high-temperature air from the external heat source through the heat exchange pipe 5 to separate the water adsorbed by the adsorbent 1a.
As a result, the moisture that has become steam becomes water in the condenser 7 through the conduit 4 and is collected in the cooling container 2. Such an operation is called a reproduction process. In this case, the adsorption means a state where water molecules are held between the molecules of the adsorbent, and by heating the adsorbent in this state, water is separated from the adsorbent and regenerated.

【0004】しかしながら、前述した単一の吸着式冷却
システムでは吸着行程と再生行程とを同一のシステムで
交互に行わなければならないため、連続的な冷却を行う
ことができない。そこで、図6に示すように二つの吸着
器8,9を有する二連の吸着式冷却システムが提案され
ている。各吸着器8,9はそれぞれ開閉バルブ10,1
1を有する管路12,13によって一つの冷却容器13
に連結され、冷却容器13内の水には前述と同様の冷却
パイプ14が熱的に接触している。また、各吸着器8,
9内の吸着材8a,9aにはそれぞれ熱交換パイプ1
5,16が熱的に接触しており、各管路12,13には
それぞれ凝縮器17,18が設けられている。この冷却
システムでは、例えば一方の吸着器8において吸着行程
を行わせると同時に、他方の吸着器9においては再生行
程を行わせる。そして、各吸着器8,9がそれぞれの行
程を終了した時点で逆の動作を行わせるよう切換操作す
る。その際、再生行程を終了した吸着器9は高温になっ
ているため、熱交換パイプ16に低温または常温の空気
を流通して吸着材9aを冷却する。このような操作を周
期的に繰り返すことによって連続的な冷却を行うことが
可能となる。
However, in the above-described single adsorption type cooling system, since the adsorption process and the regeneration process must be alternately performed in the same system, continuous cooling cannot be performed. Therefore, as shown in FIG. 6, a dual adsorption cooling system having two adsorbers 8 and 9 has been proposed. The adsorbers 8 and 9 are open / close valves 10 and 1, respectively.
One cooling container 13 by the pipe lines 12 and 13 having one
The cooling pipe 14 similar to the above is in thermal contact with the water in the cooling container 13. In addition, each adsorber 8,
The adsorbents 8a and 9a in 9 are respectively provided with the heat exchange pipe 1
5 and 16 are in thermal contact with each other, and condensers 17 and 18 are provided in the pipe lines 12 and 13, respectively. In this cooling system, for example, the adsorption process is performed in one of the adsorbers 8 while the regeneration process is performed in the other adsorber 9. Then, when the adsorbers 8 and 9 have completed their respective strokes, a switching operation is performed so as to perform the reverse operation. At that time, since the adsorber 9 that has completed the regeneration process is at a high temperature, air at a low temperature or room temperature is circulated through the heat exchange pipe 16 to cool the adsorbent 9a. By repeating such an operation periodically, it is possible to perform continuous cooling.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記二連の
吸着式冷却システムにおいては、熱交換パイプ15,1
6の熱源に電気ヒータやエンジンの排気ガスを用いてい
るため、加熱ムラや熱量不足等により吸着材8a(9
a)の加熱、即ち再生行程に長時間を要していた。この
ため、各行程の切換周期が長くなり、システム全体の運
転効率が低下するという問題点があった。
In the double adsorption cooling system, the heat exchange pipes 15 and 1 are connected.
Since the electric heater and the exhaust gas of the engine are used as the heat source of 6, the adsorbent 8a (9
It took a long time for the heating of a), that is, the regeneration process. Therefore, there is a problem that the switching cycle of each process becomes long and the operating efficiency of the entire system is reduced.

【0006】本発明は前記問題点に鑑みてなされたもの
であり、その目的とするところは、再生行程に要する時
間の短縮化を図り、システム全体の運転効率を向上し得
る吸着式冷却システムを提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an adsorption cooling system capable of shortening the time required for the regeneration process and improving the operating efficiency of the entire system. To provide.

【0007】[0007]

【課題を解決するための手段】本発明は前記目的を達成
するため、吸着材を収容した一対の吸着器と、各吸着器
に連結された冷却容器と、各吸着器を択一的に冷却する
冷却手段と、各吸着器を択一的に加熱する加熱手段とを
備え、一方の吸着器を冷却することによって冷却容器内
の吸着媒体を該吸着器内に吸着させる吸着行程と、他方
の吸着器を加熱することによって該吸着器内の吸着媒体
を分離させ冷却容器内に戻す再生行程とを各吸着器にお
いて交互に行わせる吸着式冷却システムにおいて、前記
加熱手段を前記吸着器の吸着材を誘電加熱するマイクロ
波加熱装置から構成している。
To achieve the above object, the present invention selectively cools a pair of adsorbers containing an adsorbent, a cooling container connected to each adsorber, and each adsorber. Cooling means and a heating means for selectively heating each adsorber, and an adsorption step for adsorbing the adsorption medium in the cooling container into the adsorber by cooling one of the adsorbers, and another In an adsorption type cooling system in which the adsorption medium in the adsorber is separated by heating the adsorber and returned to the inside of the cooling vessel, the adsorbing type cooling system alternately performs the regeneration process in each adsorber. It is composed of a microwave heating device for dielectric heating.

【0008】[0008]

【作用】本発明の吸着式冷却システムによれば、吸着器
の吸着材がマイクロ波加熱装置によって誘電加熱される
ことから、吸着材がムラなく迅速に加熱され、再生行程
に要する時間が短縮される。
According to the adsorption cooling system of the present invention, since the adsorbent of the adsorber is dielectrically heated by the microwave heating device, the adsorbent is uniformly and quickly heated, and the time required for the regeneration process is shortened. It

【0009】[0009]

【実施例】図1乃至図3は本発明の一実施例であり、本
発明の吸着式冷却システムを適用した車両用空気調和装
置を示すものである。図中、20,21は吸着材20,
21aを収容した第1及び第2吸着器、22は吸着媒体
としての水を収容した冷却容器、23は凝縮器、24は
車内側の熱交換器である。
1 to 3 show one embodiment of the present invention, showing a vehicle air conditioner to which the adsorption cooling system of the present invention is applied. In the figure, 20 and 21 are adsorbents 20,
21a is a first and second adsorber, 22 is a cooling container containing water as an adsorption medium, 23 is a condenser, and 24 is a heat exchanger inside the vehicle.

【0010】各吸着器20,21内はゼオライト等から
なる吸着材を収容し、互いに間隔をおいて配置されてい
る。各吸着器20,21の間には送風機25を備えた外
気導入路26が凝縮器23を介して連結されるととも
に、各吸着器20,21の反対側には各吸着器20,2
1を通過した空気を排出する排気送風路27がそれぞれ
連結されている。また、各吸着器20,21間には空気
の流通方向を切換えるフラップ28が設けられ、外気導
入路26の空気を各吸着器20,21に択一的に給送で
きるようになっている。一方、各吸着器20,21はマ
グネトロン等からなるマイクロ波発振器29(以下、発
振器29という)によって誘電加熱されるようになって
いる。即ち、発振器29は高圧トランス等の電源30に
よって駆動されるとともに、導波路31を介して各吸着
器20,21に接続され、導波路31の切換器31aに
よってマイクロ波を各吸着器20,21に択一的に伝送
できるようになっている。従って、これら発振器29、
電源30及び導波路31によってマイクロ波加熱装置が
構成されている。尚、発振器29で発生するマイクロ波
の周波数は、吸着材の加熱用として適当と思われる24
50MHzに設定されている。また、各吸着器20,2
1の両端はマイクロ波の漏洩を防止するための金網31
bによって覆われている。
Each of the adsorbers 20 and 21 accommodates an adsorbent made of zeolite or the like, and they are arranged at intervals. An outside air introduction path 26 having a blower 25 is connected between the adsorbers 20, 21 via a condenser 23, and the adsorbers 20, 2 are provided on the opposite side of the adsorbers 20, 21.
Exhaust air ducts 27 for discharging the air passing through 1 are connected to each other. A flap 28 for switching the flow direction of air is provided between the adsorbers 20 and 21 so that the air in the outside air introduction passage 26 can be selectively supplied to the adsorbers 20 and 21. On the other hand, each of the adsorbers 20 and 21 is adapted to be dielectrically heated by a microwave oscillator 29 (hereinafter referred to as oscillator 29) including a magnetron or the like. That is, the oscillator 29 is driven by a power supply 30 such as a high-voltage transformer, and is connected to the adsorbers 20 and 21 via a waveguide 31, and the switching device 31 a of the waveguide 31 allows the microwaves to be adsorbed to the adsorbers 20 and 21. Can be transmitted as an alternative. Therefore, these oscillators 29,
The microwave heating device is configured by the power source 30 and the waveguide 31. The frequency of the microwave generated by the oscillator 29 is considered to be appropriate for heating the adsorbent 24.
It is set to 50 MHz. In addition, each adsorber 20, 2
Both ends of 1 are wire mesh 31 for preventing microwave leakage
covered by b.

【0011】冷却容器22は第1蒸気往路32を介して
第1吸着器20に、第2蒸気往路33を介して第2吸着
器21にそれぞれ連結されており、各蒸気往路32,3
3には開閉バルブV1,V2が設けられている。本実施
例では冷却容器22内に収容した吸着媒体に水を用いた
が、アルコール等、他の液体を用いることもできる。ま
た、各蒸気往路32,33は、互いに分岐接続されたバ
イパス通路34によって互いに連通できるようになって
おり、バイパス通路34には二つの開閉バルブV3,V
4が設けられている。更に、バイパス通路34における
各開閉バルブV3,V4の中間には蒸気復路35の一端
が分岐接続され、蒸気復路35には開閉バルブV5が設
けられている。尚、バイパス通路34は機能的には蒸気
復路35の一部を構成するものでもある。また、蒸気復
路35の他端は凝縮器23に接続され、凝縮器23は細
径の凝縮通路36を介して冷却容器22に連結されてい
る。尚、各通路の流通断面は、蒸気復路35及びバイパ
ス通路34の断面積が蒸気往路32(33)の断面積の
約50%に、凝縮通路36の断面積が蒸気復路35及び
バイパス通路34の断面積の約0.6%にそれぞれ設定
されている。
The cooling container 22 is connected to the first adsorber 20 via the first vapor outward path 32 and is connected to the second adsorber 21 via the second vapor outward path 33, respectively.
On-off valves V1 and V2 are provided at 3. In this embodiment, water is used as the adsorption medium contained in the cooling container 22, but other liquid such as alcohol may be used. Further, the respective vapor outward paths 32 and 33 can communicate with each other by a bypass passage 34 which is branched and connected to each other, and the bypass passage 34 has two opening / closing valves V3 and V3.
4 are provided. Further, one end of a steam return path 35 is branched and connected in the middle of each of the opening / closing valves V3 and V4 in the bypass path 34, and an opening / closing valve V5 is provided in the steam return path 35. The bypass passage 34 also functionally constitutes a part of the steam return passage 35. Further, the other end of the vapor return path 35 is connected to the condenser 23, and the condenser 23 is connected to the cooling container 22 via a small-diameter condensation passage 36. In the flow cross section of each passage, the cross-sectional area of the steam return path 35 and the bypass passage 34 is about 50% of the cross-sectional area of the steam outward path 32 (33), and the cross-sectional area of the condensation passage 36 is the steam return path 35 and the bypass passage 34. It is set to about 0.6% of the cross-sectional area.

【0012】熱交換器24は冷却容器22内の水に熱的
に接触する冷却パイプ37に連結され、冷却パイプ37
に設けたポンプ38により冷却容器22側との間で水,
ブライン等の熱媒体を循環するようになっている。ま
た、熱交換器24は車内空気の吸入通風路39と吹出通
風路40との間に配置され、吹出通風路40は運転席や
助手席等に設けられた複数の吹出口41に分岐し、各吹
出口41にはルーバ42が設けられている。
The heat exchanger 24 is connected to a cooling pipe 37 which is in thermal contact with the water in the cooling container 22.
A pump 38 provided in the
A heat medium such as brine is circulated. Further, the heat exchanger 24 is arranged between the intake air passage 39 and the blowout air passage 40 for the air in the vehicle, and the blowout air passage 40 branches into a plurality of air outlets 41 provided in a driver's seat, a passenger seat, etc., Each outlet 41 is provided with a louver 42.

【0013】以上の構成において、例えば第1吸着器2
0で吸着行程を、第2吸着器21で再生行程を行うとき
は、フラップ28及び切換器31aを図中実線で示す位
置に設定し、外気導入路26を第1吸着器20に、導波
路31を第2吸着器21にそれぞれ連通する。これによ
り、外気導入路26に流入した低温空気(外気)が図中
実線矢印で示すように第1吸着器20に給送され、第1
吸着器20が冷却される。その際、外気導入路26中の
凝縮器23も吸入される外気によって同時に冷却され
る。一方、発振器29で発生したマイクロ波は導波路3
1を介して第2吸着器21に伝送され、第2吸着器21
内の吸着材が誘電加熱される。尚、この場合の加熱とは
吸着器の内面に導波されるマイクロ波によって吸着材を
誘電加熱することを示し、吸着器の外側からマイクロ波
を照射する場合とは異なる。また、各吸着器20,21
において前述とは逆の行程を行う場合、フラップ28及
び切換器31aを図中一点鎖線の位置に切換えることに
より、第1吸着器20が加熱、第2吸着器21が冷却さ
れる。
In the above structure, for example, the first adsorber 2
When the adsorption process is performed at 0 and the regeneration process is performed at the second adsorber 21, the flap 28 and the switching device 31a are set to the positions shown by the solid line in the figure, and the outside air introduction path 26 is set to the first adsorber 20 and the waveguide. 31 is connected to the second adsorber 21. As a result, the low-temperature air (outside air) that has flowed into the outside air introduction passage 26 is fed to the first adsorber 20 as indicated by the solid line arrow in the drawing, and
The adsorber 20 is cooled. At this time, the condenser 23 in the outside air introducing passage 26 is also cooled by the outside air taken in at the same time. On the other hand, the microwave generated by the oscillator 29 is generated by the waveguide 3
1 to the second adsorber 21 and the second adsorber 21
The adsorbent therein is dielectrically heated. The heating in this case means that the adsorbent is dielectrically heated by the microwave guided to the inner surface of the adsorber, and is different from the case where the microwave is irradiated from the outside of the adsorber. In addition, each adsorber 20, 21
In the case of performing the process reverse to that described above, the first adsorber 20 is heated and the second adsorber 21 is cooled by switching the flap 28 and the switch 31a to the positions shown by the alternate long and short dash line in the figure.

【0014】次に、本実施例における吸着式冷却システ
ム、即ち各吸着器20,21及び冷却容器22間の動作
を、図2の原理図及び図3のP−1/T線図を参照して
説明する。尚、図2では説明を容易にするために各構成
部分を図1と若干異なった形状で図示してある。また、
図3においてPは水蒸気圧、Tは温度であり、図中に示
されている数値は一例である。
Next, referring to the principle diagram of FIG. 2 and the P-1 / T diagram of FIG. 3, the operation of the adsorption cooling system in this embodiment, that is, the operation between the adsorbers 20 and 21 and the cooling container 22 will be described. Explain. Note that, in FIG. 2, each component is illustrated in a shape slightly different from that in FIG. 1 for the sake of easy description. Also,
In FIG. 3, P is water vapor pressure, T is temperature, and the numerical values shown in the figure are examples.

【0015】即ち、第1吸着器20で吸着行程を、第2
吸着器21で再生行程を行う場合には、まず開閉バルブ
V1,V2,V3,V4を閉じ、開閉バルブV5を開
く。これにより、第1吸着器20内の温度が含水量6%
の水等量線上で150℃まで冷却され(C′→D)、第
2吸着器21内の温度は含水量22%の水等量線上で1
50℃まで加熱される(A′→B)。この時、第1吸着
器20内の水蒸気圧P1は10mbar、第2吸着器21内
の水蒸気圧P2 は450mbarとなる。尚、P3 はP1 及
びP2 の平均値である。次に、開閉バルブV2,V3を
閉じたままで、開閉バルブV1,V4,V5を開く。こ
れにより、冷却容器22内の水が10mbarの圧力下で蒸
発するとともに、第1蒸気往路32を経て第1吸着器2
0の吸着材20aに吸着される。その際、水の蒸発潜熱
によって冷却容器22内の熱が奪われる。そして、第1
吸着器20内の冷却を続けることにより、冷却容器22
内の水が順次吸着材20aに吸着され、第1吸着器20
内が最終的に70℃まで冷却される(D→A)。一方、
第2吸着器21内は450mbarの圧力下で280℃まで
加熱され(B→C)、第2吸着器21の吸着材21aに
吸着されている水が分離して再生され、バイパス通路3
4及び蒸気復路35を経て凝縮器23に流入する。そし
て、凝縮器23内で凝縮した水は凝縮通路36を通って
冷却容器22内に戻される。このような操作は1分〜1
日の周期で行われる。また、各蒸気往路32,33、蒸
気復路35及び凝縮通路36の流通断面積が順に小さく
なっているのは、この順に水蒸気の密度が大きくなるか
らで(凝縮通路36内では液体)、特に凝縮通路36で
は冷却容器22から蒸発して行く水とほぼ同量の流量に
なるのが望ましい。
That is, the adsorption process in the first adsorber 20
When performing the regeneration process in the adsorber 21, first, the opening / closing valves V1, V2, V3, V4 are closed and the opening / closing valve V5 is opened. As a result, the temperature inside the first adsorber 20 has a water content of 6%.
Is cooled to 150 ° C. on the water equivalent line (C ′ → D), and the temperature in the second adsorber 21 is 1 on the water equivalent line having a water content of 22%.
It is heated to 50 ° C. (A ′ → B). At this time, the water vapor pressure P1 in the first adsorber 20 is 10 mbar, and the water vapor pressure P2 in the second adsorber 21 is 450 mbar. Incidentally, P3 is the average value of P1 and P2. Next, the opening / closing valves V1, V4, V5 are opened with the opening / closing valves V2, V3 kept closed. As a result, the water in the cooling container 22 evaporates under the pressure of 10 mbar and the first adsorber 2 passes through the first vapor outward path 32.
It is adsorbed by the adsorbent 20a of 0. At that time, the heat in the cooling container 22 is taken by the latent heat of vaporization of water. And the first
By continuing to cool the inside of the adsorber 20, the cooling container 22
Water in the first adsorber 20 is sequentially adsorbed by the adsorbent 20a.
The inside is finally cooled to 70 ° C. (D → A). on the other hand,
The inside of the second adsorber 21 is heated to 280 ° C. under a pressure of 450 mbar (B → C), the water adsorbed on the adsorbent 21a of the second adsorber 21 is separated and regenerated, and the bypass passage 3
4 and the steam return path 35 to flow into the condenser 23. Then, the water condensed in the condenser 23 is returned to the inside of the cooling container 22 through the condensation passage 36. Such operation is from 1 minute to 1
It takes place on a daily cycle. Further, the reason why the flow cross-sectional areas of the vapor outward paths 32 and 33, the vapor return path 35, and the condensing passage 36 become smaller in order is that the density of water vapor becomes larger in this order (a liquid in the condensing passage 36), and in particular the condensation In the passage 36, it is desirable that the flow rate be almost the same as the amount of water evaporated from the cooling container 22.

【0016】前述の行程が終了した時点では、再生行程
を行った第2吸着器21内は約280℃の高温となって
おり、吸着行程を終えた第1吸着器20は約70℃の低
温となっている。ここで、各吸着器20,21を前述と
逆の行程に切換える前に以下に述べる中間行程を行うこ
とによって各吸着器20,21間のエンタルピーの差を
排熱とならないよう再利用する。即ち、開閉バルブV
1,V2,V5を閉じた状態で、バイパス通路34の開
閉バルブV3,V4のみを開放し、各吸着器20,21
を冷却容器22を介さずに連通させる。これにより、第
2吸着器21内の熱の一部が第1吸着器20内に移動
し、次に再生行程を行おうとする第1吸着器20内の温
度が上昇するとともに、吸着行程を行おうとする第2吸
着器21内の温度が低下する。この中間行程は前記吸着
/再生行程の切換周期の1%〜5%程度の時間だけ行
う。尚、中間行程は図3の線図にはプロットできない
が、吸着/再生行程の一部であると言える。
At the end of the above-mentioned process, the inside of the second adsorber 21 which has undergone the regeneration process has a high temperature of about 280 ° C., and the first adsorber 20 which has completed the adsorption process has a low temperature of about 70 ° C. Has become. Here, before switching the adsorbers 20 and 21 to the reverse process to the above-described process, the following intermediate process is performed to reuse the difference in enthalpy between the adsorbers 20 and 21 so as not to generate waste heat. That is, the open / close valve V
1, V2 and V5 are closed, only the opening / closing valves V3 and V4 of the bypass passage 34 are opened, and the adsorbers 20 and 21 are closed.
Are communicated with each other without the cooling container 22. As a result, a part of the heat in the second adsorber 21 moves into the first adsorber 20, the temperature in the first adsorber 20 that is going to perform the regeneration process next rises, and the adsorption process is performed. The temperature in the intended second adsorber 21 decreases. This intermediate step is performed only for a period of about 1% to 5% of the switching cycle of the adsorption / regeneration step. Although the intermediate stroke cannot be plotted in the diagram of FIG. 3, it can be said that it is part of the adsorption / regeneration stroke.

【0017】このようにして、各吸着器20,21にお
ける吸着行程→中間行程→再生行程→中間行程→吸着行
程…を周期的に繰り返すことにより、冷却容器22内が
連続的に冷却される。尚、図4は前記各行程における各
バルブV1,V2,V3,V4,V5の開閉状態を示す
ものである。
In this way, the inside of the cooling container 22 is continuously cooled by periodically repeating the adsorption process → intermediate process → regeneration process → intermediate process → adsorption process in each adsorber 20, 21. Incidentally, FIG. 4 shows the open / closed state of the valves V1, V2, V3, V4 and V5 in the respective strokes.

【0018】ここで、再び図1に戻り車内側の空調動作
について説明する。即ち、前記冷却システムによって冷
却容器22内が冷却されることにより、冷却容器22内
の冷却パイプ37が冷却され、低温となった冷却パイプ
37内の熱媒体が熱交換器24に流入する。一方、吸入
通風路39内に吸入された車内空気は熱交換器24に給
送され、熱交換器24によって冷却される。そして、冷
却された空気は吹出通風路40を経て各吹出口41から
車内へ吹出される。
Now, returning to FIG. 1, the air conditioning operation inside the vehicle will be described. That is, as the inside of the cooling container 22 is cooled by the cooling system, the cooling pipe 37 in the cooling container 22 is cooled, and the heat medium in the cooling pipe 37 which has become low temperature flows into the heat exchanger 24. On the other hand, the in-vehicle air taken into the intake air passage 39 is fed to the heat exchanger 24 and cooled by the heat exchanger 24. Then, the cooled air is blown out into the vehicle from each air outlet 41 through the blowout air passage 40.

【0019】このように、本実施例の吸着式冷却システ
ムによれば、再生行程の吸着器20(21)を加熱する
手段として、吸着材20a(21a)を誘電加熱するマ
イクロ波加熱装置(発振器29、電源30、導波路3
1)を用いたので、吸着材20a(21a)をムラなく
迅速に加熱することができ、再生行程に要する時間を大
幅に短縮することができる。
As described above, according to the adsorption cooling system of the present embodiment, the microwave heating device (oscillator) for dielectrically heating the adsorbent 20a (21a) is used as a means for heating the adsorber 20 (21) in the regeneration process. 29, power supply 30, waveguide 3
Since 1) is used, the adsorbent 20a (21a) can be rapidly heated without unevenness, and the time required for the regeneration process can be significantly shortened.

【0020】[0020]

【発明の効果】以上説明したように、本発明の吸着式冷
却システムによれば、再生行程に要する時間を大幅に短
縮することができるので、各行程の切換周期が短くな
り、システム全体の運転効率を格段に向上させることが
できる。
As described above, according to the adsorption cooling system of the present invention, the time required for the regeneration process can be greatly shortened, so that the switching cycle of each process is shortened and the operation of the entire system is reduced. The efficiency can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す吸着式冷却システムを
備えた車両用空気調和装置の概略構成図
FIG. 1 is a schematic configuration diagram of a vehicle air conditioner including an adsorption cooling system according to an embodiment of the present invention.

【図2】吸着式冷却システムの原理図[Fig.2] Principle of adsorption cooling system

【図3】吸着式冷却システムの吸着/再生行程を示すP
−1/T線図
FIG. 3 P showing the adsorption / regeneration process of an adsorption cooling system
-1 / T diagram

【図4】各開閉バルブの開閉状態を示す図FIG. 4 is a diagram showing an open / closed state of each open / close valve.

【図5】従来例を示す単一の吸着式冷却システムの原理
FIG. 5: Principle diagram of a single adsorption cooling system showing a conventional example

【図6】従来例を示す二連の吸着式冷却システムの原理
FIG. 6 is a principle diagram of a dual adsorption cooling system showing a conventional example.

【符号の説明】[Explanation of symbols]

20…第1吸着器、21…第2吸着器、20a,21a
…吸着材、22…冷却容器、29…マイクロ波発振器、
30…電源、31…導波路、V1,V2,V3,V4,
V5…開閉バルブ。
20 ... 1st adsorption device, 21 ... 2nd adsorption device, 20a, 21a
... Adsorbent, 22 ... Cooling container, 29 ... Microwave oscillator,
30 ... Power source, 31 ... Waveguide, V1, V2, V3, V4
V5 ... Open / close valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吸着材を収容した一対の吸着器と、各吸
着器に連結された冷却容器と、各吸着器を択一的に冷却
する冷却手段と、各吸着器を択一的に加熱する加熱手段
とを備え、一方の吸着器を冷却することによって冷却容
器内の吸着媒体を該吸着器内に吸着させる吸着行程と、
他方の吸着器を加熱することによって該吸着器内の吸着
媒体を分離させ冷却容器内に戻す再生行程とを各吸着器
において交互に行わせる吸着式冷却システムにおいて、 前記加熱手段を前記吸着器の吸着材を誘電加熱するマイ
クロ波加熱装置から構成したことを特徴とする吸着式冷
却システム。
1. A pair of adsorbers accommodating an adsorbent, a cooling container connected to each adsorber, cooling means for selectively cooling each adsorber, and each adsorber being heated selectively. An adsorbing step of adsorbing the adsorption medium in the cooling container into the adsorber by cooling one of the adsorbers,
In an adsorption type cooling system in which the adsorption medium in the adsorber is separated by heating the other adsorber and the regeneration process of returning the adsorbent to the inside of the cooling vessel is alternately performed in each adsorber, the heating means of the adsorber An adsorption cooling system comprising a microwave heating device for dielectrically heating an adsorbent.
JP13379892A 1992-05-26 1992-05-26 Adsorption type cooling system Pending JPH05322361A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13379892A JPH05322361A (en) 1992-05-26 1992-05-26 Adsorption type cooling system
US08/066,984 US5333471A (en) 1992-05-26 1993-05-25 Adsorption cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13379892A JPH05322361A (en) 1992-05-26 1992-05-26 Adsorption type cooling system

Publications (1)

Publication Number Publication Date
JPH05322361A true JPH05322361A (en) 1993-12-07

Family

ID=15113276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13379892A Pending JPH05322361A (en) 1992-05-26 1992-05-26 Adsorption type cooling system

Country Status (1)

Country Link
JP (1) JPH05322361A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254369A (en) * 1995-03-17 1996-10-01 Nippondenso Co Ltd Adsorption type refrigerator
KR20000055701A (en) * 1999-02-09 2000-09-15 에릭 발리베 Temperature eqality apparatus of coolant for semi hot forging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254369A (en) * 1995-03-17 1996-10-01 Nippondenso Co Ltd Adsorption type refrigerator
KR20000055701A (en) * 1999-02-09 2000-09-15 에릭 발리베 Temperature eqality apparatus of coolant for semi hot forging

Similar Documents

Publication Publication Date Title
KR930005665B1 (en) Method of operating adsorption refrigerator
Wang et al. Design and performance prediction of a novel zeolite–water adsorption air conditioner
US5333471A (en) Adsorption cooling system
US5404728A (en) Sorption agent container device and sorption method with a regenerative heat exchange
JPS625060A (en) Periodic operating drying adsorption cooler and operation method thereof
US5619866A (en) Adsorptive type refrigeration apparatus
JP3831964B2 (en) Adsorption type refrigerator
JPH05322361A (en) Adsorption type cooling system
JPH0674594A (en) Adsorption type cooler
JPH1183235A (en) Refrigerating equipment and air conditioner
JPH05248727A (en) Lower temperature heat source-driven adsorption refrigerating machine system and adsorption refrigerating machine
JP4074399B2 (en) Operation method of adsorption refrigeration system
JPH11117713A (en) Chemical heat-accumulating type intake air cooling device
US5402653A (en) Refrigerating apparatus provided with chemical type refrigerating unit and compression type heat pump
JPH05322359A (en) Adsorption type cooling system
JPH05322362A (en) Adsorption type cooling system
JPH05322360A (en) Adsorption type cooling system
JP4565539B2 (en) Operation method of adsorption refrigerator
JPH0650628A (en) Cooling device
JPH0658645A (en) Adsorptive type cooling system
JP3719307B2 (en) Adsorption refrigeration equipment for vehicles
JPH09196493A (en) Adsorption refrigerating apparatus
JP3348615B2 (en) Adsorption refrigeration equipment
JPH0666455A (en) Absorption type cooling system
JPH0618120A (en) Cooling device