JPH0532145A - Energy absorbing member for car bumper - Google Patents

Energy absorbing member for car bumper

Info

Publication number
JPH0532145A
JPH0532145A JP3073280A JP7328091A JPH0532145A JP H0532145 A JPH0532145 A JP H0532145A JP 3073280 A JP3073280 A JP 3073280A JP 7328091 A JP7328091 A JP 7328091A JP H0532145 A JPH0532145 A JP H0532145A
Authority
JP
Japan
Prior art keywords
absorbing member
energy absorbing
deformation
load
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3073280A
Other languages
Japanese (ja)
Other versions
JP3183464B2 (en
Inventor
Akiji Anahara
明司 穴原
Hiroshi Omori
裕志 大森
Yoshiharu Yasui
義治 安居
Yasumi Miyashita
康己 宮下
Toshiro Kondo
利郎 近藤
Naohiro Tada
直弘 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyoda Automatic Loom Works Ltd filed Critical Toyota Motor Corp
Priority to JP07328091A priority Critical patent/JP3183464B2/en
Publication of JPH0532145A publication Critical patent/JPH0532145A/en
Application granted granted Critical
Publication of JP3183464B2 publication Critical patent/JP3183464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vibration Dampers (AREA)

Abstract

PURPOSE:To provide an energy absorbing member for bumper, which has a large shock absorbing ability even for load applied aslant, is free from generation of stresses exceeding a certain level when deformation is made with collision, and which can absorb a large energy for a specific amount of deformation. CONSTITUTION:A filament is coiled so as to present a ring-shaped section and is formed cylindrically with a fiber-reinforced composite material hardened with a resin, wherein the wall thickness varies in the axial direction. Thereby inter-layer exfoliation due to compressive deformation is generated gradually from the part with larger wall thickness, and no sudden change of stress will arise. Thus a smooth deformation is made with a comparatively small stress to enable absorption of large energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車に装備されるバン
パの衝撃吸収部材として使用されるバンパ用エネルギー
吸収部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bumper energy absorbing member used as a shock absorbing member for a bumper mounted on an automobile.

【0002】[0002]

【従来の技術】自動車には衝突時における車体及び搭乗
者の保護のため、一般に車体の前後に衝突時の衝撃エネ
ルギーを吸収するバンパが取り付けられている。バンパ
は自動車が障害物と衝突した際に加わる大きな負荷に対
して非可逆的にエネルギーを吸収する必要がある。そし
て、吸収エネルギーを大きくするため、従来からバンパ
本体を支持する支持部材の材質や構造の改良が種々なさ
れている。
2. Description of the Related Art In order to protect a vehicle body and an occupant at the time of a collision, an automobile is generally provided with a bumper in front of and behind the vehicle body for absorbing impact energy at the time of a collision. The bumper needs to irreversibly absorb energy against a large load applied when the vehicle collides with an obstacle. In order to increase the absorbed energy, various improvements have been made to the material and structure of the support member that supports the bumper body.

【0003】例えば、1988年2月18日公開のドイ
ツ特許(3626150)には、図9に示すように楕円
環状の減衰成形体21を介してバンパ22を車体のステ
イ23に取り付けたものが開示されている。減衰成形体
21は周方向に繊維が配列されたFRP(繊維強化プラ
スチック)により形成され、楕円形の長手側面がバンパ
22及びステイ23にそれぞれ接触するように取り付け
られている。
For example, a German patent (3626150) published on February 18, 1988 discloses that a bumper 22 is attached to a stay 23 of a vehicle body via an elliptical annular damping molded body 21 as shown in FIG. Has been done. The damping molded body 21 is formed of FRP (fiber reinforced plastic) in which fibers are arranged in the circumferential direction, and is attached such that the elliptical long side surfaces contact the bumper 22 and the stay 23, respectively.

【0004】又、特開昭57−124142号公報には
バンパに使用するエネルギー吸収用構造材として、図1
1に示すように繊維複合材料(例えばエポキシ樹脂含浸
ガラス繊維)製の条帯24からなる網状組織で円筒状に
形成された構造体25が提案されている。構造体25は
筒の軸方向に圧縮負荷が加わる状態で使用され、構造体
25に軸方向の荷重が作用すると網状組織の対向する結
節点26において層間剥離を起こし、剪断降伏が繊維と
マトリックスとの界面で生ずることによりエネルギーを
段階的に吸収するようになっている。又、各結節点26
は約10層の繊維複合材料製の条帯24で形成されてい
る。
Further, Japanese Patent Application Laid-Open No. 57-124142 discloses an energy absorbing structural material used in a bumper as shown in FIG.
As shown in FIG. 1, there is proposed a structure 25 formed in a cylindrical shape with a network structure made of a strip 24 made of a fiber composite material (for example, epoxy resin-impregnated glass fiber). The structure 25 is used in a state in which a compressive load is applied in the axial direction of the cylinder, and when an axial load is applied to the structure 25, delamination occurs at the opposing node points 26 of the network, and shear yield occurs between the fiber and the matrix. Energy is absorbed stepwise by being generated at the interface of. Also, each node 26
Is formed of about 10 layers of fiber composite strip 24.

【0005】[0005]

【発明が解決しようとする課題】前記ドイツ特許には周
方向に繊維が配列されたFRP製の減衰成形体21をエ
ネルギー吸収部材として使用することは開示されている
が、その部材に荷重が加わった際に発生する応力、その
変動、吸収エネルギー等については全く触れられていな
い。周方向に長繊維が配列されたFRP製の環状構造体
の製法としては、フィラメントに樹脂を含浸(付着)さ
せながらマンドレル(芯材)に多層に巻き付けた後、加
熱硬化するフィラメントワインディング(FW)法が一
般に用いられる。FW法で作製した構造体をその側面か
らの荷重で圧縮していくと、湾曲面の集中的な変形と同
時に応力も増大し、ある限度を越えると繊維の層間剥離
を起こし、応力が突発的に低下する。圧縮の初期段階で
はこの激しい応力変動を繰り返して層間剥離が進行し、
次第に応力が低下する傾向をとる。更に変形が大きくな
り、繊維の破断限界を越えると応力は更に減衰する。こ
の圧縮変形過程で発生する応力と変形量の積(具体的に
は圧縮荷重−変位量曲線と変位量を表す軸との間の面
積)がそのときの吸収エネルギーとなる。バンパ支持部
材のように人体への衝撃を小さくするという条件がある
場合には、応力の最大値を人体への影響の低いレベルに
抑える必要があり、応力変動の激しい場合には全体とし
てのエネルギー吸収量が小さくなる。従って、人体への
衝撃を小さく、しかも変形時のエネルギー吸収量を大き
くするという要求を満たすためには、圧縮荷重−変位量
曲線をできるだけ低いレベルで一定に保つことが重要な
ポイントとなる。
The above German patent discloses the use of an FRP damping molding 21 in which fibers are arranged in the circumferential direction as an energy absorbing member, but a load is applied to the member. There is no mention of the stress that occurs when it strikes, its fluctuations, absorbed energy, etc. As a method of manufacturing an FRP annular structure in which long fibers are arranged in the circumferential direction, a filament winding (FW) is performed in which a filament is impregnated (adhered) with a resin, wrapped around a mandrel (core material) in multiple layers, and then cured by heating. The method is commonly used. When the structure manufactured by the FW method is compressed by the load from the side surface, the stress increases simultaneously with the intensive deformation of the curved surface, and when it exceeds a certain limit, delamination of the fiber occurs and the stress suddenly increases. Fall to. In the initial stage of compression, this severe stress fluctuation is repeated and delamination progresses,
The stress gradually decreases. When the deformation is further increased and the breaking limit of the fiber is exceeded, the stress is further attenuated. The product of the stress generated in the compressive deformation process and the amount of deformation (specifically, the area between the compressive load-displacement amount curve and the axis representing the amount of displacement) becomes the absorbed energy at that time. If there is a condition to reduce the impact on the human body like a bumper support member, it is necessary to suppress the maximum value of stress to a level that has a low effect on the human body. Absorption is small. Therefore, in order to satisfy the requirements of reducing the impact on the human body and increasing the amount of energy absorption during deformation, it is important to keep the compression load-displacement amount curve constant at the lowest possible level.

【0006】ドイツ特許に開示されたものと同様に周方
向にガラス繊維が配列されたFRP製で厚さが一定な楕
円環状の構造体を作製し、楕円形の長手方向側面からの
荷重で圧縮した時の荷重と変位量の関係を測定したとこ
ろ図10に示すような結果が得られた。この場合は最初
に剥離の始まる点で荷重の突発的な変化が発生し、その
変動が非常に激しいため、荷重の最大値を人体への影響
の低いレベルに抑えると、エネルギー吸収量が小さくな
り、バンパのエネルギー吸収部材としては不十分であ
る。
Similar to the one disclosed in the German patent, an elliptic ring-shaped structure made of FRP in which glass fibers are arranged in the circumferential direction and having a constant thickness is manufactured, and is compressed by a load from an elliptical longitudinal side surface. When the relationship between the load and the displacement amount was measured, the results shown in FIG. 10 were obtained. In this case, a sudden change in load occurs at the point where delamination first occurs, and the fluctuation is extremely severe.Therefore, if the maximum load value is suppressed to a level that has a low effect on the human body, the amount of energy absorbed will decrease. However, it is insufficient as an energy absorbing member for bumpers.

【0007】一方、特開昭57−124142号公報に
開示された筒状のエネルギー吸収用構造材は、筒の軸方
向に圧縮荷重が加わる場合はその機能が発揮されるが、
斜め方向からの荷重に対してはほとんど対応できない。
又、前記のように吸収エネルギーを大きくするには変位
量が増加しても荷重が一定レベルに保たれることが重要
であるが、このエネルギー吸収用構造材は変位量の増加
に伴って荷重が次第に減衰し、エネルギー吸収量が大き
くなり難いという問題がある。
On the other hand, the tubular energy absorbing structural material disclosed in JP-A-57-124142 exhibits its function when a compressive load is applied in the axial direction of the tube.
Almost no load can be accommodated from diagonal directions.
Further, as described above, in order to increase the absorbed energy, it is important that the load is maintained at a constant level even if the displacement amount increases. Is gradually attenuated, and there is a problem that it is difficult for the amount of energy absorption to increase.

【0008】本発明は前記の問題点に鑑みてなされたも
のであって、その目的は自動車の衝突時の衝撃を和ら
げ、人体への衝撃の伝達を緩和するため、衝突変形時に
ある一定以上の応力を発生せず、一定量の変形に対して
吸収するエネルギーが大きく、しかも斜め方向からの荷
重に対しても高い衝撃吸収能力を持ち、金属に比較して
軽量化されたバンパ用エネルギー吸収部材を提供するこ
とにある。
The present invention has been made in view of the above problems, and its purpose is to reduce the impact at the time of a collision of an automobile and to reduce the transmission of the impact to the human body. An energy-absorbing member for bumpers that does not generate stress, absorbs a large amount of energy for a certain amount of deformation, has a high impact-absorbing capacity even with a load from an oblique direction, and is lighter than metal. To provide.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
め本発明のエネルギー吸収部材は、断面円環状をなすよ
うにフィラメントが周方向に巻き付けられるとともに樹
脂で硬化された繊維強化複合材料で筒状に形成され、そ
の肉厚が軸方向に変化する。
In order to achieve the above object, the energy absorbing member of the present invention is a tube made of a fiber reinforced composite material in which filaments are circumferentially wound so as to form an annular cross section and cured with a resin. It is formed into a shape and its thickness changes in the axial direction.

【0010】[0010]

【作用】本発明のバンパ用エネルギー吸収部材は筒部の
側面から圧縮荷重を受けるように取り付けられる。圧縮
荷重によりエネルギー吸収部材に生じる変形は、内層側
で圧縮、外層側で伸長となり、中立層から離れるほど変
形量は大きくなる。変形量が大きい部分ほど層間剥離が
発生し易いため、肉厚の厚い部分から徐々に剥離を起こ
し、変形応力が激変することなく、比較的小さい応力で
スムーズに変形して大きなエネルギーを吸収する。
The energy absorbing member for the bumper of the present invention is attached so as to receive a compressive load from the side surface of the tubular portion. The deformation of the energy absorbing member due to the compressive load is compression on the inner layer side and extension on the outer layer side, and the amount of deformation increases as the distance from the neutral layer increases. Delamination is more likely to occur in a portion having a larger amount of deformation, so that delamination occurs gradually from a thicker portion, and the deformation stress does not change drastically, and it smoothly deforms with a relatively small stress and absorbs large energy.

【0011】[0011]

【実施例】【Example】

(実施例1)以下、本発明を具体化した第1実施例を図
1,図2に従って説明する。図1に示すようにエネルギ
ー吸収部材1は外径が一定な円筒状に形成され、その肉
厚が軸方向中央部から両端に向かってなだらかに変化す
るように形成されている。
(First Embodiment) A first embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 1, the energy absorbing member 1 is formed in a cylindrical shape having a constant outer diameter, and the thickness thereof is formed so as to change gently from the axial center toward both ends.

【0012】エネルギー吸収部材1は合成樹脂を無端状
の長繊維(フィラメント)で補強したFRPで形成さ
れ、フィラメントが周方向に巻き付けられた状態に形成
されている。この実施例ではフィラメントとしてガラス
繊維を、合成樹脂としてエポキシ樹脂をそれぞれ使用し
た。製法にはガラス繊維に樹脂を付着しながらマンドレ
ル上に巻き付けた後、樹脂を加熱硬化させるフィラメン
トワインディング(FW)法を使用した。加熱硬化後に
エネルギー吸収部材1からの離脱を可能にするため、マ
ンドレルは中央から軸方向に分割可能なものを使用し
た。
The energy absorbing member 1 is made of FRP in which synthetic resin is reinforced by endless long fibers (filaments), and the filaments are wound in the circumferential direction. In this example, glass fiber was used as the filament and epoxy resin was used as the synthetic resin. As a manufacturing method, a filament winding (FW) method was used in which the resin was attached to the glass fiber and wound around a mandrel, and then the resin was heated and cured. A mandrel that can be split in the axial direction from the center was used to enable separation from the energy absorbing member 1 after heat curing.

【0013】前記のように構成されたエネルギー吸収部
材1に対して、その側面から圧縮荷重を作用させた場合
の荷重と変位量との関係を測定した結果を図2に示す。
図から明らかなように図10に示す肉厚が均一な場合に
比較して最大荷重は小さくなるが、圧縮の初期段階にお
ける荷重の突発的な変化が著しく減少するとともに、塑
性変形後半における荷重の低下も小さくなる。これは、
肉厚が均一な場合には圧縮荷重による変形量が軸方向で
一定となり、圧縮エネルギーが蓄積されてある限度を越
えたときに一挙に層間剥離を起こすのに対し、このエネ
ルギー吸収部材1は肉厚が軸方向中央部から両端に向か
って変化するため、肉厚の厚い中央部から逐次層間剥離
が発生するためと考えられる。すなわち、肉厚部におい
ては円筒部の内層ほど繊維巻付け量が少なく、変形量は
大きいため、当該部分から逐次層間剥離が発生する。従
って、このエネルギー吸収部材1は荷重の変動が小さく
エネルギー吸収量と最大荷重との比が従来のものに比較
して大きくなり、バンパ用のエネルギー吸収部材として
好ましい。又、エネルギー吸収部材1の材質が比重約2
近辺のFRPであるため、金属のそれに比してはるかに
小さく、軽量化が計れる。
FIG. 2 shows the result of measuring the relationship between the load and the displacement amount when a compressive load is applied from the side surface of the energy absorbing member 1 configured as described above.
As is clear from the figure, the maximum load is smaller than in the case where the wall thickness shown in FIG. 10 is uniform, but the sudden change of the load in the initial stage of compression is significantly reduced, and the load in the latter half of the plastic deformation is reduced. The decrease is also small. this is,
When the wall thickness is uniform, the amount of deformation due to the compressive load becomes constant in the axial direction, and when the compression energy is accumulated and exceeds a certain limit, delamination occurs at once, whereas this energy absorbing member 1 It is considered that since the thickness changes from the central portion in the axial direction toward both ends, delamination occurs sequentially from the thick central portion. That is, in the thick portion, the inner layer of the cylindrical portion has a smaller amount of fiber winding and a larger amount of deformation, so that delamination occurs sequentially from the portion. Therefore, the energy absorbing member 1 has a small load fluctuation and a larger ratio of the energy absorbing amount to the maximum load than the conventional one, and is preferable as an energy absorbing member for a bumper. The material of the energy absorbing member 1 has a specific gravity of about 2
Since it is an FRP in the vicinity, it is much smaller than that of metal and can be made lighter.

【0014】(実施例2)次に第2実施例を図3,図4
に従って説明する。この実施例のエネルギー吸収部材1
は断面がほぼ楕円形の筒状に形成されるとともに、その
内径が階段状に変化するように形成されている点が前記
実施例と異なっている。この実施例のエネルギー吸収部
材1をFW法により形成した場合、金属製のマンドレル
を使用すると、樹脂を加熱硬化した後のマンドレル除去
作業が困難となる。そこで、この実施例ではマンドレル
を発泡ポリプロピレンで作製し、成形したエネルギー吸
収部材1の中に残留させた。残留させずに発泡ポリプロ
ピレン製のマンドレルを破壊、除去してもよい。発泡ポ
リプロピレン製のマンドレルを残留させた場合は、エネ
ルギー吸収部材1に圧縮荷重が作用した際に、発泡ポリ
プロピレンも共に変形し、吸収エネルギー量の向上と荷
重変動の鎮静に寄与する。
(Second Embodiment) Next, a second embodiment will be described with reference to FIGS.
Follow the instructions below. Energy absorbing member 1 of this embodiment
Is different from the above-mentioned embodiment in that it is formed in a tubular shape having a substantially elliptical cross section, and its inner diameter is changed stepwise. When the energy absorbing member 1 of this embodiment is formed by the FW method and a metal mandrel is used, it becomes difficult to remove the mandrel after the resin is heated and cured. Therefore, in this example, the mandrel was made of expanded polypropylene and left in the molded energy absorbing member 1. The mandrel made of expanded polypropylene may be destroyed and removed without being left. When the mandrel made of expanded polypropylene is left, when the compressive load acts on the energy absorbing member 1, the expanded polypropylene is also deformed, which contributes to the improvement of the absorbed energy amount and the suppression of the load fluctuation.

【0015】発泡ポリプロピレン製のマンドレルを残留
させたエネルギー吸収部材1に対して、その側面から圧
縮荷重を作用させた場合の荷重と変位量との関係を測定
した結果を図4に示す。この場合も荷重の突発的な変化
が著しく減少するとともに、塑性変形後半における荷重
の低下も小さい。 (実施例3)次に第3実施例を図5,図6に従って説明
する。この実施例のエネルギー吸収部材1は外径が一定
な円筒状に形成され、両端部に肉厚の薄い部分が、軸方
向中央部に肉厚の厚い部分がそれぞれ存在するととも
に、その間で肉厚がなだらかに変化する形状に形成され
ている。このエネルギー吸収部材1を製作する場合は、
前記第1実施例と同様に中央から軸方向に分割可能なマ
ンドレルが使用される。エネルギー吸収部材1に対し
て、その側面から圧縮荷重を作用させた場合の荷重と変
位量との関係を測定した結果を図6に示す。この場合も
荷重の突発的な変化が減少するとともに、塑性変形後半
における荷重の低下も小さい。
FIG. 4 shows a result of measuring the relationship between the load and the displacement amount when a compressive load is applied from the side surface of the energy absorbing member 1 in which the mandrel made of expanded polypropylene is left. Also in this case, the sudden change of the load is significantly reduced, and the decrease of the load in the latter half of the plastic deformation is small. (Third Embodiment) Next, a third embodiment will be described with reference to FIGS. The energy absorbing member 1 of this embodiment is formed in a cylindrical shape with a constant outer diameter, and has thin-walled portions at both ends and a thick-walled portion at the central portion in the axial direction. Is formed in a shape that changes gently. When manufacturing this energy absorbing member 1,
As in the first embodiment, a mandrel that is axially separable from the center is used. FIG. 6 shows the result of measuring the relationship between the load and the displacement amount when a compressive load is applied to the energy absorbing member 1 from the side surface thereof. Also in this case, the sudden change of the load is reduced, and the decrease of the load in the latter half of the plastic deformation is small.

【0016】(実施例4)次に第4実施例を図7,図8
に従って説明する。この実施例のエネルギー吸収部材1
は円環状の筒部が複数組み合わされた構造となっている
点が前記各実施例と大きく異なっている。エネルギー吸
収部材1は第1実施例のものと同様な形状の2個の円筒
部2が間隔をあけて平行に配列され、その外側に楕円筒
部3が両円筒部2に外接する状態で一体に形成されてい
る。このエネルギー吸収部材1はまず円筒部2に相当す
る円筒をFW法で作製した後、2個の円筒を間隔をあけ
て平行に配列し、その外周部に樹脂が付着したガラス繊
維をFW方式で巻き付け、樹脂を加熱硬化することによ
り作製される。
(Fourth Embodiment) Next, a fourth embodiment will be described with reference to FIGS.
Follow the instructions below. Energy absorbing member 1 of this embodiment
Is greatly different from each of the above-described embodiments in that it has a structure in which a plurality of annular tubular portions are combined. The energy absorbing member 1 has two cylindrical portions 2 having the same shape as those of the first embodiment, which are arranged in parallel with each other with a space therebetween, and an elliptic cylindrical portion 3 is externally integrated with the cylindrical portions 2 circumscribing both cylindrical portions 2. Is formed in. In the energy absorbing member 1, first, a cylinder corresponding to the cylindrical portion 2 is manufactured by the FW method, and then two cylinders are arranged in parallel with each other at intervals, and glass fibers having a resin adhered to the outer peripheral portion thereof are processed by the FW method. It is produced by winding and heating and curing the resin.

【0017】エネルギー吸収部材1に対して、その側面
から圧縮荷重を作用させた場合の荷重と変位量との関係
を測定した結果を図8に示す。荷重の突発的な変化が減
少するとともに、塑性変形後半に至るまで荷重がほぼ一
定となり、エネルギー吸収量と最大荷重との比が前記各
実施例のものよりも大きくなる。これは円筒部2が複数
個存在するため荷重の平均化が行われるためと考えられ
る。
FIG. 8 shows the result of measuring the relationship between the load and the displacement amount when a compressive load is applied to the energy absorbing member 1 from the side surface thereof. The sudden change in the load is reduced, the load becomes almost constant until the latter half of the plastic deformation, and the ratio between the energy absorption amount and the maximum load becomes larger than that in each of the embodiments. It is considered that this is because the loads are averaged because there are a plurality of cylindrical portions 2.

【0018】なお、本発明は前記実施例に限定されるも
のではなく、例えば、エネルギー吸収部材1の筒部の断
面形状としては円形、楕円形に限らず曲率の異なる円弧
の組み合わせ等実質的に円環状であればよい。又、素材
のFRPを構成する樹脂はエポキシ樹脂に限らずフェノ
ール樹脂、不飽和ポリエステルなどの熱硬化性樹脂を使
用したり、強化繊維としてガラス繊維に代えてカーボン
繊維、アラミド繊維等の高弾性、高強度の物性をもった
各種の機能繊維が用いられるが、自動車のバンパ用途の
場合には、耐熱性などの点からコスト的にガラス繊維が
好適である。又、第4実施例のように複数の円筒部を組
み合わせた構造の場合、円筒部の数を増やしたり円筒部
の径を違えてもよい。
The present invention is not limited to the above-mentioned embodiment, and for example, the cross-sectional shape of the cylindrical portion of the energy absorbing member 1 is not limited to circular or elliptical, but a combination of arcs having different curvatures is substantially used. Any ring shape will do. Further, the resin forming the FRP of the material is not limited to epoxy resin, but thermosetting resin such as phenol resin and unsaturated polyester may be used, or high elasticity such as carbon fiber or aramid fiber may be used as the reinforcing fiber instead of glass fiber. Although various functional fibers having high-strength physical properties are used, in the case of automobile bumper applications, glass fibers are preferable in terms of heat resistance in terms of cost. Further, in the case of the structure in which a plurality of cylinders are combined as in the fourth embodiment, the number of cylinders may be increased or the diameters of the cylinders may be different.

【0019】[0019]

【発明の効果】以上詳述したように本発明によれば、エ
ネルギー吸収部材が断面円環状に形成されてその側面か
ら圧縮荷重を受ける状態で使用されるため、斜め方向か
らの荷重に対しても高い衝撃吸収能力を持つ。又、筒状
に形成されたエネルギー吸収部材の厚さが軸方向に変化
しているため、圧縮変形による層間剥離が徐々に発生し
て突発的な応力変化が起きず、自動車の衝突時に人体に
与える衝撃を緩和でき、しかも大きなエネルギーを吸収
することができる。
As described above in detail, according to the present invention, since the energy absorbing member is formed in an annular cross section and used in a state of receiving a compressive load from its side surface, it is possible to cope with a load from an oblique direction. Also has a high shock absorption capacity. In addition, since the thickness of the energy absorbing member formed in a tubular shape changes in the axial direction, delamination due to compressive deformation does not gradually occur and sudden stress change does not occur, and the human body is not affected by a car collision. The impact given can be relaxed and a large amount of energy can be absorbed.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例のエネルギー吸収部材を示し、
(a)は(b)のA−A線断面図、(b)は側面図であ
る。
FIG. 1 shows an energy absorbing member of a first embodiment,
(A) is the sectional view on the AA line of (b), (b) is a side view.

【図2】第1実施例のエネルギー吸収部材の圧縮荷重−
変位量曲線である。
FIG. 2 is a compression load of the energy absorbing member of the first embodiment-
It is a displacement curve.

【図3】第2実施例のエネルギー吸収部材を示し、
(a)は(b)のB−B線断面図、(b)は側面図であ
る。
FIG. 3 shows an energy absorbing member of a second embodiment,
(A) is a BB line sectional view of (b), (b) is a side view.

【図4】第2実施例のエネルギー吸収部材の圧縮荷重−
変位量曲線である。
FIG. 4 is a compression load of the energy absorbing member of the second embodiment-
It is a displacement curve.

【図5】第3実施例のエネルギー吸収部材を示し、
(a)は(b)のC−C線断面図、(b)は側面図であ
る。
FIG. 5 shows an energy absorbing member of a third embodiment,
(A) is the CC sectional view taken on the line of (b), (b) is a side view.

【図6】第3実施例のエネルギー吸収部材の圧縮荷重−
変位量曲線である。
FIG. 6 is a compressive load of the energy absorbing member according to the third embodiment-
It is a displacement curve.

【図7】第4実施例のエネルギー吸収部材の概略斜視図
である。
FIG. 7 is a schematic perspective view of an energy absorbing member of a fourth embodiment.

【図8】第4実施例のエネルギー吸収部材の圧縮荷重−
変位量曲線である。
FIG. 8 is a compressive load of the energy absorbing member according to the fourth embodiment-
It is a displacement curve.

【図9】従来のバンパ支持部材によるバンパ支持状態を
示す概略平面図である。
FIG. 9 is a schematic plan view showing a bumper support state by a conventional bumper support member.

【図10】従来のバンパ支持部材の圧縮荷重−変位量曲
線である。
FIG. 10 is a compression load-displacement amount curve of a conventional bumper support member.

【図11】従来のエネルギー吸収用構造材を示す概略斜
視図である。
FIG. 11 is a schematic perspective view showing a conventional energy absorbing structural material.

【符号の説明】[Explanation of symbols]

1…エネルギー吸収部材、2…円筒部。 1 ... Energy absorbing member, 2 ... Cylindrical part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安居 義治 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 宮下 康己 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 近藤 利郎 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 (72)発明者 多田 直弘 愛知県豊田市トヨタ町1番地 トヨタ自動 車 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiharu Yasui 2-chome Toyota-cho, Kariya city, Aichi stock company Toyota Industries Corporation (72) Inventor Yasumi Miyashita 2-chome Toyota-cho, Kariya city, Aichi stock Incorporated company Toyota Industries Corporation (72) Inventor Toshiro Kondo 2-chome Toyota Town, Kariya City, Aichi Stock Company Toyota Industries Corporation (72) Inventor Naohiro Tada 1 Toyota Town, Aichi Prefecture Toyota Automobile Within the corporation

Claims (1)

【特許請求の範囲】 【請求項1】 断面円環状をなすようにフィラメントが
周方向に巻き付けられるとともに樹脂で硬化された繊維
強化複合材料で筒状に形成され、その肉厚が軸方向に変
化するバンパ用エネルギー吸収部材。
Claim: What is claimed is: 1. A filament is wound in the circumferential direction so as to have an annular cross section, and is formed into a tubular shape from a fiber-reinforced composite material cured by a resin, and its wall thickness changes in the axial direction. Energy absorbing member for bumpers.
JP07328091A 1991-04-05 1991-04-05 Energy absorbing member Expired - Lifetime JP3183464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07328091A JP3183464B2 (en) 1991-04-05 1991-04-05 Energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07328091A JP3183464B2 (en) 1991-04-05 1991-04-05 Energy absorbing member

Publications (2)

Publication Number Publication Date
JPH0532145A true JPH0532145A (en) 1993-02-09
JP3183464B2 JP3183464B2 (en) 2001-07-09

Family

ID=13513577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07328091A Expired - Lifetime JP3183464B2 (en) 1991-04-05 1991-04-05 Energy absorbing member

Country Status (1)

Country Link
JP (1) JP3183464B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124168A (en) * 1978-02-27 1979-09-26 Budd Co Energy attenuator and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124168A (en) * 1978-02-27 1979-09-26 Budd Co Energy attenuator and method of producing same

Also Published As

Publication number Publication date
JP3183464B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
US5419416A (en) Energy absorber having a fiber-reinforced composite structure
US5997077A (en) Deformable structure for protection of vehicle occupants
US5116092A (en) Bumper arrangement for motor vehicles, particularly passenger cars
US9598035B2 (en) Impact absorber
JP3246041B2 (en) Energy absorbing material
US6840542B2 (en) Side member for use in vehicle frame and method of manufacturing the same
KR0159279B1 (en) Shock damper in the form of a shock absorber
US20030218326A1 (en) Tubular honeycomb articles for use in energy absorption
JPH0532145A (en) Energy absorbing member for car bumper
KR100232312B1 (en) High performance vehicle bumper
JP3007744B2 (en) Energy absorbing material
JP2892854B2 (en) Energy absorbing material
US6715593B1 (en) Crush tube assembly
JP2975443B2 (en) Energy absorbing member
JP3544994B2 (en) Fiber reinforced composite material and energy absorbing member
JP2931119B2 (en) Energy absorbing member
JP2552450Y2 (en) Energy absorbing material
JP2975444B2 (en) Tubular structure
JPH06123323A (en) Energy absorbing member
JP2000240706A (en) Energy absorbing member and manufacture thereof
US4798101A (en) Core material for steering wheels made of long fiber-reinforced resin
JP3141569B2 (en) Energy absorbing material
JP2008202714A (en) Impact energy absorber and its manufacturing method
JPH03121982A (en) Frp structure body
JPH04296229A (en) Energy absorbing system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

EXPY Cancellation because of completion of term