JPH03121982A - Frp structure body - Google Patents

Frp structure body

Info

Publication number
JPH03121982A
JPH03121982A JP1259793A JP25979389A JPH03121982A JP H03121982 A JPH03121982 A JP H03121982A JP 1259793 A JP1259793 A JP 1259793A JP 25979389 A JP25979389 A JP 25979389A JP H03121982 A JPH03121982 A JP H03121982A
Authority
JP
Japan
Prior art keywords
frp
cylindrical bodies
cylindrical body
impact
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1259793A
Other languages
Japanese (ja)
Other versions
JPH07100459B2 (en
Inventor
Kunihisa Kawamura
川村 訓久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1259793A priority Critical patent/JPH07100459B2/en
Publication of JPH03121982A publication Critical patent/JPH03121982A/en
Publication of JPH07100459B2 publication Critical patent/JPH07100459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To absorb impact energy by connecting two cylindrical bodies of different diameters at a stepped part, then forming plural protruding parts at the inner or outer peripheral surface of one of the cylindrical bodies, and fitting both cylindrical bodies mutually while destructing the protruding parts successively at the time of impact. CONSTITUTION:Two FRP made cylindrical bodies 1, 2 of mutually different diameters are connected longitudinally at a stepped part where strength is the weakest. Plural protruding parts 4 are further provided longitudinally at the inner or outer peripheral surface of one of the cylindrical bodies 1, 2. With this constitution, at the time of receiving longitudinal impact, the stepped part 3 is first destructed, then one cylindrical body is fitted at the inner or outer part of the other cylindrical body so as to destruct plural protruding parts 4 continuously, and thus absorbing impact energy successively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はFRP構造体、更に詳しくは衝撃的な圧縮力を
吸収することができるFRP構造体に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an FRP structure, and more particularly to an FRP structure capable of absorbing impactive compressive forces.

〔従来の技術〕[Conventional technology]

FRP (繊維強化樹脂)構造体は軽量で強度が大きく
、耐腐食性や成形性に優れているなどの種々の利点を有
することから、各種の分野における応用が検討されてい
る。例えば自動車への応用においては、部品や外板のみ
ならず構造部材への応用も検討されている。ところで鋼
製のフレームを有するトラックやトラクタなどの重量の
大きな車両用として、実開昭59−196373号公報
には、車両フレームの前端又は後端部分におけるサイト
レールに適数の凹所を設け、フレーム長手方向に作用す
る設定値以上の衝撃力によって上記サイトレールが上記
凹所の部分で座屈変形を生起するように構成したことを
特徴とする車両用衝撃吸収装置が開示されている。
FRP (fiber-reinforced resin) structures have various advantages such as being lightweight, having high strength, excellent corrosion resistance and moldability, and are therefore being considered for application in various fields. For example, in applications to automobiles, applications are being considered not only for parts and outer panels but also for structural members. By the way, for heavy vehicles such as trucks and tractors having steel frames, Japanese Utility Model Application Publication No. 59-196373 discloses that an appropriate number of recesses are provided in the sight rail at the front or rear end of the vehicle frame. A shock absorbing device for a vehicle is disclosed, characterized in that the site rail is configured to cause buckling deformation in the recessed portion due to an impact force acting in the longitudinal direction of the frame that exceeds a set value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

FRP構造体の衝撃エネルギー吸収特性は第7図に示す
如く、材料そのものが持つ脆性的な破壊特性のために鋼
製構造物に比べて衝撃エネルギー吸収量が少ない。その
ため、前述の衝撃吸収の技術をFRP構造体に応用する
場合には、FRP構造体を大型化することで所望とする
エネルギー吸収量を満足することが考えられるが、大型
化によりFRP構造体の持つ有意性がそこなわれてしま
う。又、強化繊維の配向角を調整することによりエネル
ギー吸収量を高める検討が行なわれている。しかし、強
化繊維を所定方向に配向させるためには例えばフィラメ
ントワインディング法などの方法を用いて別途製造する
必要があり、製造工程も複雑となる。
As shown in FIG. 7, the impact energy absorption characteristics of FRP structures are smaller than those of steel structures due to the brittle fracture characteristics of the material itself. Therefore, when applying the above-mentioned shock absorption technology to an FRP structure, it is possible to satisfy the desired amount of energy absorption by increasing the size of the FRP structure. The significance of the system will be lost. Further, studies are being conducted to increase the amount of energy absorption by adjusting the orientation angle of reinforcing fibers. However, in order to orient the reinforcing fibers in a predetermined direction, it is necessary to separately manufacture the reinforcing fibers using a method such as a filament winding method, and the manufacturing process becomes complicated.

又、強化繊維を配向させたFRP部品と他のFRP部品
とは特性が異なるため、相互の接合が非常に困難である
。それ故、簡単な構造で衝撃エネルギー吸収力を向上さ
せたFRP構造体が望まれていた。
Furthermore, since the FRP parts with oriented reinforcing fibers and other FRP parts have different characteristics, it is very difficult to join them together. Therefore, there has been a desire for an FRP structure that has a simple structure and improved impact energy absorption ability.

本発明は上記従来技術における問題点を解決するための
ものであり、その目的とするところは充分な衝撃エネル
ギー吸収量を有し、且つ製造が容易なFRP構造体を提
供することにある。
The present invention is intended to solve the problems in the prior art described above, and its purpose is to provide an FRP structure that has sufficient impact energy absorption and is easy to manufacture.

[課題を解決するための手段〕 すなわち本発明のFRP構造体は、互いに径を異にする
少なくとも二つのFRP製の筒状体が長手方向に沿って
強度が最も弱い部分である段差部を設けて接続され、前
記筒状体の少なくとも一つの内周面又は外周面に、長手
方向に沿って衝撃を受けることにより前記段差部で破壊
されて一つの筒状体が他の筒状体の内部又は外部に嵌合
する際に破壊される複数の凸部が、長手方向に沿って設
けられていることを特徴とする。
[Means for Solving the Problem] That is, in the FRP structure of the present invention, at least two cylindrical bodies made of FRP having different diameters are provided with a stepped portion in the longitudinal direction where the strength is the weakest. When the inner circumferential surface or outer circumferential surface of at least one of the cylindrical bodies receives an impact along the longitudinal direction, the one cylindrical body is destroyed at the step part, and one cylindrical body is damaged inside the other cylindrical body. Alternatively, it is characterized in that a plurality of convex portions that are destroyed when fitting to the outside are provided along the longitudinal direction.

本発明の構造体に用いるFRPは慣用のものであってよ
い。例えば基材樹脂としては熱硬化性樹脂例えば不飽和
ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、メ
ラミン樹脂、熱可塑性樹脂例えばポリ塩化ビニル樹脂、
ポリアミド樹脂、ポリスチレン樹脂、等を挙げることが
できる。強化繊維としては無機繊維例えばガラス繊維、
炭素繊維、硼素繊維、有機繊維例えばポリアラミド繊維
、等の短繊維、長繊維又は連続繊維を挙げることができ
る。前記基材樹脂及び強化繊維は各々単独又は組合せて
用いてよい。
The FRP used in the structure of the present invention may be a conventional FRP. For example, base resins include thermosetting resins such as unsaturated polyester resins, epoxy resins, phenolic resins, melamine resins, thermoplastic resins such as polyvinyl chloride resins,
Examples include polyamide resin, polystyrene resin, and the like. Examples of reinforcing fibers include inorganic fibers such as glass fibers,
Short fibers, long fibers or continuous fibers such as carbon fibers, boron fibers, organic fibers such as polyaramid fibers can be mentioned. The base resin and reinforcing fibers may be used alone or in combination.

FRP製の筒状体の大きさ及び形状は適宜選択する。形
状は例えば円筒状、角筒状などであってよい。又、筒状
体の数は二つ以上の適当数を用いる。
The size and shape of the FRP cylindrical body are selected as appropriate. The shape may be, for example, cylindrical or prismatic. Further, an appropriate number of cylindrical bodies of two or more is used.

少なくとも二つのFRP製の筒状体の接続部である段差
部は、長手方向に衝撃を受けた場合にこの箇所で破壊さ
れるように強度を最も弱くする。段差部は筒状体ととも
に一体成形してもよいし、又は予め筒状体を別々に成形
した後、接着剤又は接続部材を用いて筒状体を接続する
ことにより形成してもよい。尚、段差部は厚さを薄くす
ること以外に、切欠を設けることにより強度を弱くして
もよい。
The strength of the stepped portion, which is the connecting portion of at least two FRP cylindrical bodies, is made the weakest so that it will be broken at this point when subjected to an impact in the longitudinal direction. The stepped portion may be integrally molded with the cylindrical body, or may be formed by separately molding the cylindrical body in advance and then connecting the cylindrical bodies using an adhesive or a connecting member. In addition to reducing the thickness of the stepped portion, the strength may be reduced by providing a notch.

筒状体の接続方法は特に限定されず、例えば順に大きさ
を異ならしめて接続してもよいし、又はそうでなくても
よい。又、筒状体は、二つ以上が間隙を設けて嵌合され
た多重筒として、その間隙に凸部(又は両側の凸部が連
結した区画壁)を設けたものを用いることもできる。
The method of connecting the cylindrical bodies is not particularly limited, and for example, the cylindrical bodies may be connected in order of different sizes, or may not be connected. Further, the cylindrical body may be a multi-tube structure in which two or more tubes are fitted with a gap between them, and a convex portion (or a partition wall in which the convex portions on both sides are connected) is provided in the gap.

凸部は筒状体の内周面のみ又は外周面のみ又は内周面及
び外周面に、長手方向に沿って複数個、所定間隔で設け
る。凸部の大きさ、形状、数、間隔などは衝撃エネルギ
ー吸収特性が最適となるように決定する。凸部は筒状体
と一体成形してもよいし、又は別に成形した後、接着剤
又は接続部材を用いて筒状体に結合させてもよい。
A plurality of convex portions are provided at predetermined intervals along the longitudinal direction only on the inner circumferential surface, only on the outer circumferential surface, or on the inner circumferential surface and the outer circumferential surface of the cylindrical body. The size, shape, number, spacing, etc. of the convex portions are determined to optimize impact energy absorption characteristics. The convex portion may be integrally molded with the cylindrical body, or may be molded separately and then bonded to the cylindrical body using an adhesive or a connecting member.

〔作 用〕[For production]

前述の鋼製構造物の衝撃吸収の技術は衝撃を受けた場合
に塑性変形を生じ、これにより衝撃エネルギーが吸収さ
れるのに対して、本発明のFRP構造体が長手方向に沿
って衝撃を受けると、最初に段差部が破壊され、次いで
一つの筒状体が他の筒状体の内部又は外部に嵌合する際
に複数の凸部が順次破壊されるので、この連続的破壊に
より衝撃エネルギーが順次吸収される。
The above-mentioned impact absorption technology for steel structures generates plastic deformation when subjected to impact, thereby absorbing impact energy, whereas the FRP structure of the present invention absorbs impact along the longitudinal direction. When subjected to impact, the stepped portion is first destroyed, and then when one cylindrical body fits inside or outside of another cylindrical body, the multiple convex portions are successively destroyed, so this continuous destruction causes the impact Energy is absorbed sequentially.

[実施例] 以下の実施例及び比較例により本発明を更に詳細に説明
する。なお、本発明は下記実施例に限定されるものでは
ない。
[Examples] The present invention will be explained in more detail with the following Examples and Comparative Examples. Note that the present invention is not limited to the following examples.

実施例1 ウレタンコアである発泡体5を成形し、これにガラス繊
維(連続繊維)を巻き付けた後成形型内に配置し、次い
で基材樹脂として不飽和ポリエステル樹脂60重量部と
強化繊維としてガラス繊維(平均直径15μm、平均長
さ21nch)40重量部とからなる成形組成物を所定
条件下で注型して外殻を成形することにより、1図に示
す実施例1のFRP構造体を得た。第1図中、1は大径
部、2は小径部、3は最弱部である。
Example 1 A foam 5 which is a urethane core is molded, glass fiber (continuous fiber) is wound around it, and then placed in a mold, and then 60 parts by weight of an unsaturated polyester resin as a base resin and glass as a reinforcing fiber are formed. The FRP structure of Example 1 shown in Figure 1 was obtained by casting a molding composition consisting of 40 parts by weight of fibers (average diameter 15 μm, average length 21 nch) under predetermined conditions to mold the outer shell. Ta. In FIG. 1, 1 is a large diameter part, 2 is a small diameter part, and 3 is the weakest part.

尚、図中の矢印は衝撃力を受ける方向を示す。Note that the arrow in the figure indicates the direction in which the impact force is received.

又、第2図は第1図のA−A線に沿った断面図の中心線
を境とした半分を示す。第2図中、4は凸部、5は発泡
体を示す。
Further, FIG. 2 shows a half of the cross-sectional view taken along the line A--A in FIG. 1, with the center line as the border. In FIG. 2, 4 indicates a convex portion and 5 indicates a foam.

以下、同様の材料及び方法を用いて、実施例2〜4及び
比較例のFRP構遺構製体た。尚、発泡体5は設けなか
った。
Hereinafter, FRP structures of Examples 2 to 4 and a comparative example were constructed using similar materials and methods. Note that the foam 5 was not provided.

実施例2 第3図に実施例2のFRP構遺構製体す。本例では凸部
4を小径部2の外周面に設けた構造とした。
Example 2 FIG. 3 shows the FRP structure of Example 2. In this example, the convex portion 4 is provided on the outer peripheral surface of the small diameter portion 2.

実施例3 第4図に実施例3のFRP構造体を示す。本例では大径
部1と小径部2とからなる二重筒の隙間に凸部4を設け
、これを最弱部3で中径部6と接続した。
Example 3 FIG. 4 shows an FRP structure of Example 3. In this example, a convex portion 4 is provided in the gap between the double tube consisting of the large diameter portion 1 and the small diameter portion 2, and this is connected to the medium diameter portion 6 at the weakest portion 3.

実施例4 第5図に実施例4のFRP構造体を示す。本例では大径
部1の内周面と小径部2の外周面に凸部4を設けた。大
径部1と小径部2の両方に凸部4を設けたことにより凸
部4の破壊頻度が増大し、衝撃エネルギー吸収曲線の変
動が少なく滑らかになる。
Example 4 FIG. 5 shows an FRP structure of Example 4. In this example, convex portions 4 are provided on the inner circumferential surface of the large diameter portion 1 and the outer circumferential surface of the small diameter portion 2. By providing the convex portions 4 on both the large diameter portion 1 and the small diameter portion 2, the frequency of breakage of the convex portions 4 increases, and the impact energy absorption curve becomes smooth with less fluctuation.

比較例 凸部4を設けないこと以外は実施例1と同様にして、比
較例のFRP構造体を得た。
Comparative Example An FRP structure of a comparative example was obtained in the same manner as in Example 1 except that the convex portion 4 was not provided.

〈性能評価〉 実施例1及び比較例のFRP構造体を長手方向に圧縮し
た場合の、ストロークの変化に対する圧縮荷重の変化を
調べた。結果を第6図に示す。図から明らかな如く、本
発明のFRP構造体は従来のFRP構遺構製体べて全体
的に圧縮荷重の変動が少なく且つ初期破断後の圧縮荷重
が遥かに大きい。これは、本発明のFRP構造体におい
ては長手方向に圧縮すると最初に最弱部3が破壊され、
次いで小径部2が大径部1内に潜り込んでいく。この際
、大径NIlの内周面にある一番目の凸部4に小径部2
の先端部が当り最弱部3の破壊後の急激な荷重低下が食
い止められる。そして更に圧縮荷重が加わると一番目の
凸部4が破壊され、二番目の凸部4に小径部2の先端部
が当る。このような破壊を連続的に発生させることによ
り、従来のFRP構造体に比べてエネルギー吸収量を太
き(することができる。尚、凸部4が破壊されていく際
の圧縮荷重は、凸部4の形状、材質等の性状を変化させ
ることにより要求に応じて調節することができる。
<Performance Evaluation> When the FRP structures of Example 1 and Comparative Example were compressed in the longitudinal direction, changes in compression load with respect to changes in stroke were investigated. The results are shown in Figure 6. As is clear from the figure, the FRP structure of the present invention has less overall variation in compressive load than conventional FRP structures, and the compressive load after initial fracture is much larger. This is because in the FRP structure of the present invention, when compressed in the longitudinal direction, the weakest part 3 is destroyed first,
Next, the small diameter portion 2 sinks into the large diameter portion 1. At this time, the small diameter portion 2 is attached to the first convex portion 4 on the inner peripheral surface of the large diameter NIl.
The tip of the contact point hits the weakest part 3 and prevents the sudden drop in load after the weakest part 3 is broken. When a compressive load is further applied, the first convex portion 4 is destroyed, and the tip of the small diameter portion 2 hits the second convex portion 4. By continuously generating such destruction, it is possible to increase the energy absorption amount compared to conventional FRP structures.The compressive load when the convex portion 4 is destroyed is It can be adjusted as required by changing the shape, material, and other properties of the portion 4.

〔発明の効果1 上述の如く本発明のFRP構造体は、筒状体の内周面又
は外周面に筒状体が長手方向に圧縮される際に順次破壊
される複数の凸部が長手方向に沿って設けられているた
め、従来の凸部が設けられていないFRP構遺構製体べ
て衝撃エネルギー吸収量が多く、又、筒状体の圧縮変形
に伴う衝撃エネルギー吸収量の変動が少なく、優れた衝
撃エネルギー吸収特性を示す。又、その製造においても
、凸部を設けること以外は従来のFRP構造体の製造方
法と同様であるので容易に実施可能である。又、種々の
性状のものも一体成形により容易に製造できるので金属
製の衝撃吸収装置に比べて製造が容易である。更に、基
材樹脂や強化繊維の種類や組合せを変えることにより種
々の変形が可能であり、適用範囲が広い。
[Effect of the invention 1 As described above, the FRP structure of the present invention has a plurality of protrusions that are sequentially destroyed when the cylindrical body is compressed in the longitudinal direction on the inner circumferential surface or the outer circumferential surface of the cylindrical body. Because it is provided along the cylindrical body, the amount of impact energy absorbed is large compared to conventional FRP structures without convex parts, and there is little variation in the amount of impact energy absorbed due to compressive deformation of the cylindrical body. , exhibits excellent impact energy absorption properties. Further, the manufacturing method is the same as the manufacturing method of conventional FRP structures except for providing the convex portions, so it can be easily carried out. In addition, since shock absorbers with various properties can be easily manufactured by integral molding, they are easier to manufacture than metal shock absorbers. Furthermore, various modifications can be made by changing the types and combinations of the base resin and reinforcing fibers, and the range of application is wide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のFRP構造体の実施例1の斜視図、 第2図は第1図のA −A #Jlに沿った断面図の中
心線を境とした半分を示す半断面図、第3図ないし第5
図は本発明の実施例2ないし4の第2図と同様の半断面
図、 第6図は本発明及び従来のFRP構造体を長手方向に圧
縮した場合の、ストロークの変化に対する圧縮荷重の変
化を示す図、 第7図は各種材料の脆性的な破壊特性を示す図である。 図中、
FIG. 1 is a perspective view of Embodiment 1 of the FRP structure of the present invention, FIG. 2 is a half sectional view showing half of the cross-sectional view taken along A-A #Jl in FIG. Figures 3 to 5
The figure is a half-sectional view similar to FIG. 2 of Examples 2 to 4 of the present invention, and FIG. 6 is a change in compression load with respect to a change in stroke when the FRP structure of the present invention and a conventional FRP structure are compressed in the longitudinal direction. Figure 7 is a diagram showing the brittle fracture characteristics of various materials. In the figure,

Claims (1)

【特許請求の範囲】[Claims] 互いに径を異にする少なくとも二つのFRP製の筒状体
が長手方向に沿って強度が最も弱い部分である段差部を
設けて接続され、前記筒状体の少なくとも一つの内周面
又は外周面に、長手方向に沿って衝撃を受けることによ
り前記段差部で破壊されて一つの筒状体が他の筒状体の
内部又は外部に嵌合する際に破壊される複数の凸部が、
長手方向に沿って設けられていることを特徴とするFR
P構造体。
At least two cylindrical bodies made of FRP having different diameters are connected with a stepped portion having the weakest strength along the longitudinal direction, and at least one inner circumferential surface or outer circumferential surface of the cylindrical bodies is provided. and a plurality of convex portions that are destroyed at the step portion by receiving an impact along the longitudinal direction and are destroyed when one cylindrical body is fitted inside or outside of another cylindrical body,
FR characterized by being provided along the longitudinal direction
P structure.
JP1259793A 1989-10-04 1989-10-04 FRP structure Expired - Lifetime JPH07100459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1259793A JPH07100459B2 (en) 1989-10-04 1989-10-04 FRP structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1259793A JPH07100459B2 (en) 1989-10-04 1989-10-04 FRP structure

Publications (2)

Publication Number Publication Date
JPH03121982A true JPH03121982A (en) 1991-05-23
JPH07100459B2 JPH07100459B2 (en) 1995-11-01

Family

ID=17339071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1259793A Expired - Lifetime JPH07100459B2 (en) 1989-10-04 1989-10-04 FRP structure

Country Status (1)

Country Link
JP (1) JPH07100459B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5671621A (en) * 1994-08-24 1997-09-30 Nissan Motor Co., Ltd. Key cylinder device for an automobile
JP2005536392A (en) * 2002-08-23 2005-12-02 ゼネラル・エレクトリック・カンパニイ Energy absorber for automobile pedestrian
JP2016527119A (en) * 2013-06-12 2016-09-08 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Side panel assembly for passenger cars

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5671621A (en) * 1994-08-24 1997-09-30 Nissan Motor Co., Ltd. Key cylinder device for an automobile
JP2005536392A (en) * 2002-08-23 2005-12-02 ゼネラル・エレクトリック・カンパニイ Energy absorber for automobile pedestrian
JP2016527119A (en) * 2013-06-12 2016-09-08 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Side panel assembly for passenger cars

Also Published As

Publication number Publication date
JPH07100459B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
US6312028B1 (en) Motor vehicle energy absorbing member
US5141273A (en) Molded composite bumper
JPH1052515A (en) Ball bat and method for making same
JP5797713B2 (en) Shock absorber
JP3246041B2 (en) Energy absorbing material
JP2011530054A (en) Energy absorption structure
US6840542B2 (en) Side member for use in vehicle frame and method of manufacturing the same
GB2346117A (en) Energy absorbing pocket member
DE102017219061A1 (en) Wheel component and method for producing a wheel component
JPH06101732A (en) Shock absorbing member for composite structure
JPH03121982A (en) Frp structure body
JPS6076409A (en) Fiber reinforced resin suspension arm
KR0159279B1 (en) Shock damper in the form of a shock absorber
JPH06286536A (en) Bumper reinforcement structure body
JPH03204421A (en) Frp structure
KR100232312B1 (en) High performance vehicle bumper
JP2000240706A (en) Energy absorbing member and manufacture thereof
JPH03208623A (en) Frp structural body
JPH04152128A (en) Frp structure
JPH03208624A (en) Frp structural body
JP3473137B2 (en) Energy absorber mounting structure
JP2892854B2 (en) Energy absorbing material
JP3007744B2 (en) Energy absorbing material
JPH0893820A (en) Shock absorbing structural body
JPH03128740A (en) High quality vehicle bumper module