JP3183464B2 - Energy absorbing member - Google Patents

Energy absorbing member

Info

Publication number
JP3183464B2
JP3183464B2 JP07328091A JP7328091A JP3183464B2 JP 3183464 B2 JP3183464 B2 JP 3183464B2 JP 07328091 A JP07328091 A JP 07328091A JP 7328091 A JP7328091 A JP 7328091A JP 3183464 B2 JP3183464 B2 JP 3183464B2
Authority
JP
Japan
Prior art keywords
absorbing member
energy absorbing
load
energy
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07328091A
Other languages
Japanese (ja)
Other versions
JPH0532145A (en
Inventor
明司 穴原
裕志 大森
義治 安居
康己 宮下
利郎 近藤
直弘 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP07328091A priority Critical patent/JP3183464B2/en
Publication of JPH0532145A publication Critical patent/JPH0532145A/en
Application granted granted Critical
Publication of JP3183464B2 publication Critical patent/JP3183464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vibration Dampers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はエネルギー吸収部材に係
り、例えば自動車に装備されるバンパの衝撃吸収部材と
して好適な筒状繊維構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy absorbing member.
For example, the shock absorbing member of a bumper
And a suitable tubular fibrous structure.

【0002】[0002]

【従来の技術】自動車には衝突時における車体及び搭乗
者の保護のため、一般に車体の前後に衝突時の衝撃エネ
ルギーを吸収するバンパが取り付けられている。バンパ
は自動車が障害物と衝突した際に加わる大きな負荷に対
して非可逆的にエネルギーを吸収する必要がある。そし
て、吸収エネルギーを大きくするため、従来からバンパ
本体を支持する支持部材の材質や構造の改良が種々なさ
れている。
2. Description of the Related Art In order to protect a vehicle body and a passenger at the time of a collision, an automobile is generally provided with a bumper for absorbing impact energy at the time of a collision in front and rear of the vehicle body. Bumpers need to irreversibly absorb energy in the event of a large load applied when the vehicle collides with an obstacle. In order to increase the absorbed energy, various improvements in the material and structure of the support member for supporting the bumper body have been conventionally made.

【0003】例えば、1988年2月18日公開のドイ
ツ特許(3626150)には、図9に示すように楕円
環状の減衰成形体21を介してバンパ22を車体のステ
イ23に取り付けたものが開示されている。減衰成形体
21は周方向に繊維が配列されたFRP(繊維強化プラ
スチック)により形成され、楕円形の長手側面がバンパ
22及びステイ23にそれぞれ接触するように取り付け
られている。
[0003] For example, a German patent (3626150) published on February 18, 1988 discloses a structure in which a bumper 22 is attached to a stay 23 of a vehicle body via an elliptical annular damping molded body 21 as shown in FIG. Have been. The damping molded body 21 is formed of FRP (fiber reinforced plastic) in which fibers are arranged in the circumferential direction, and is attached so that the elliptical long sides contact the bumper 22 and the stay 23, respectively.

【0004】又、特開昭57−124142号公報には
バンパに使用するエネルギー吸収用構造材として、図1
1に示すように繊維複合材料(例えばエポキシ樹脂含浸
ガラス繊維)製の条帯24からなる網状組織で円筒状に
形成された構造体25が提案されている。構造体25は
筒の軸方向に圧縮負荷が加わる状態で使用され、構造体
25に軸方向の荷重が作用すると網状組織の対向する結
節点26において層間剥離を起こし、剪断降伏が繊維と
マトリックスとの界面で生ずることによりエネルギーを
段階的に吸収するようになっている。又、各結節点26
は約10層の繊維複合材料製の条帯24で形成されてい
る。
Japanese Patent Application Laid-Open No. 57-124142 discloses an energy absorbing structural material used for a bumper as shown in FIG.
As shown in FIG. 1, there has been proposed a structural body 25 formed in a cylindrical shape with a network structure composed of strips 24 made of a fiber composite material (for example, an epoxy resin impregnated glass fiber). The structure 25 is used in a state where a compressive load is applied in the axial direction of the cylinder. When an axial load is applied to the structure 25, delamination occurs at the opposing nodes 26 of the network, and the shear yield is caused by the fiber and the matrix. The energy is absorbed stepwise by being generated at the interface. In addition, each node 26
Is formed of about ten layers of fiber composite material strips 24.

【0005】[0005]

【発明が解決しようとする課題】前記ドイツ特許には周
方向に繊維が配列されたFRP製の減衰成形体21をエ
ネルギー吸収部材として使用することは開示されている
が、その部材に荷重が加わった際に発生する応力、その
変動、吸収エネルギー等については全く触れられていな
い。周方向に長繊維が配列されたFRP製の環状構造体
の製法としては、フィラメントに樹脂を含浸(付着)さ
せながらマンドレル(芯材)に多層に巻き付けた後、加
熱硬化するフィラメントワインディング(FW)法が一
般に用いられる。FW法で作製した構造体をその側面か
らの荷重で圧縮していくと、湾曲面の集中的な変形と同
時に応力も増大し、ある限度を越えると繊維の層間剥離
を起こし、応力が突発的に低下する。圧縮の初期段階で
はこの激しい応力変動を繰り返して層間剥離が進行し、
次第に応力が低下する傾向をとる。更に変形が大きくな
り、繊維の破断限界を越えると応力は更に減衰する。こ
の圧縮変形過程で発生する応力と変形量の積(具体的に
は圧縮荷重−変位量曲線と変位量を表す軸との間の面
積)がそのときの吸収エネルギーとなる。バンパ支持部
などでは、こうしたエネルギー吸収能の他に衝撃を小
さくする能力も要求されるので、応力の最大値を一定以
下の低いレベルに抑える必要があり、応力変動の激しい
場合には全体としてのエネルギー吸収量が小さくなる。
従って、衝撃を小さく、しかも変形時のエネルギー吸収
量を大きくするという要求を満たすためには、圧縮荷重
−変位量曲線をできるだけ低いレベルで一定に保つこと
が重要なポイントとなる。
The above-mentioned German patent discloses the use of an FRP damping molded body 21 in which fibers are arranged in the circumferential direction as an energy absorbing member, but a load is applied to the member. No mention is made of the stress, fluctuations, absorbed energy, etc., which occur when this occurs. As a method for manufacturing an annular structure made of FRP in which long fibers are arranged in a circumferential direction, filament impregnating (adhering) is performed by winding a mandrel (core material) in multiple layers while impregnating (adhering) resin, and then heating and curing the filament winding (FW). The method is generally used. When the structure produced by the FW method is compressed by the load from the side, the stress increases at the same time as the intensive deformation of the curved surface, and when exceeding a certain limit, the fiber delaminates and the stress suddenly increases. To decline. In the initial stage of compression, this severe stress change is repeated and delamination proceeds,
The stress tends to decrease gradually. The deformation is further increased, and the stress is further attenuated when the breaking limit of the fiber is exceeded. The product of the stress and the deformation amount generated in the compression deformation process (specifically, the area between the compression load-displacement amount curve and the axis indicating the displacement amount) is the absorbed energy at that time. For bumper support members, etc.
Since the ability to reduce the stress is also required, the maximum stress
It is necessary to keep the lower level, and when the fluctuation of the stress is severe, the energy absorption as a whole becomes small.
Therefore, reducing the shock, yet to meet the demands of the increasing amount of energy absorption during deformation, compressive load - be kept constant displacement curve at the lowest possible level is an important point.

【0006】ドイツ特許に開示されたものと同様に周方
向にガラス繊維が配列されたFRP製で厚さが一定な楕
円環状の構造体を作製し、楕円形の長手方向側面からの
荷重で圧縮した時の荷重と変位量の関係を測定したとこ
ろ図10に示すような結果が得られた。この場合は最初
に剥離の始まる点で荷重の突発的な変化が発生し、その
変動が非常に激しいため、荷重の最大値を一定以下の低
いレベルに抑えると、エネルギー吸収量が小さくなり、
バンパのエネルギー吸収部材としては不十分である。
[0006] An elliptical ring-shaped structure made of FRP having glass fibers arranged in the circumferential direction and having a constant thickness is manufactured in the same manner as that disclosed in the German patent, and compressed by a load from the elliptical longitudinal side surface. When the relationship between the load and the amount of displacement was measured, the result shown in FIG. 10 was obtained. In this case, a sudden change in the load occurs at the point where the peeling starts first, and the change is extremely severe.If the maximum value of the load is suppressed to a low level below a certain level, the amount of energy absorption decreases,
It is insufficient as an energy absorbing member for a bumper.

【0007】一方、特開昭57−124142号公報に
開示された筒状のエネルギー吸収用構造材は、筒の軸方
向に圧縮荷重が加わる場合はその機能が発揮されるが、
斜め方向からの荷重に対してはほとんど対応できない。
又、前記のように吸収エネルギーを大きくするには変位
量が増加しても荷重が一定レベルに保たれることが重要
であるが、このエネルギー吸収用構造材は変位量の増加
に伴って荷重が次第に減衰し、エネルギー吸収量が大き
くなり難いという問題がある。
On the other hand, the cylindrical energy absorbing structural material disclosed in JP-A-57-124142 exhibits its function when a compressive load is applied in the axial direction of the cylinder.
It can hardly cope with a load from an oblique direction.
As described above, in order to increase the absorbed energy, it is important that the load is maintained at a constant level even if the displacement amount increases. Is gradually attenuated, and the amount of energy absorption is hardly increased.

【0008】本発明は前記の問題点に鑑みてなされたも
のであって、その目的は衝突変形時にある一定以上の応
力を発生せず、一定量の変形に対して吸収するエネルギ
ーが大きく、しかも斜め方向からの荷重に対しても高い
衝撃吸収能力を持ち、金属に比較して軽量化されたエネ
ルギー吸収部材を提供することにある。
The present invention was made in view of the problems described above, the object does not generate a certain level of stress in the time of collision abrupt change shape, large energy absorbed for a given amount of deformation, In addition, an object of the present invention is to provide an energy absorbing member which has a high impact absorbing ability even with a load from an oblique direction and is lighter in weight than metal.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めに本発明のエネルギー吸収部材は、断面円環状をなす
ように繊維が周方向に巻き付けられるとともに、該繊維
が樹脂により結束硬化された繊維強化複合材料で筒状に
形成され、その肉内径と共に軸方向に沿って変化す
ことを特徴とする。
In order to achieve the above object, an energy absorbing member according to the present invention has a structure in which fibers are wound in a circumferential direction so as to form an annular cross section, and
Is formed of a fiber-reinforced composite material bound and hardened with a resin, and has a thickness that varies along the axial direction with the inner diameter .

【0010】[0010]

【作用】本発明のエネルギー吸収部材は筒部の側面から
圧縮荷重を受けるように取り付けられる。圧縮荷重によ
りエネルギー吸収部材に生じる変形は、内層側で圧縮、
外層側で伸長となり、中立層から離れるほど変形量は大
きくなる。変形量が大きい部分ほど層間剥離が発生し易
いため、肉厚の厚い部分から徐々に剥離を起こし、変形
応力が激変することなく、比較的小さい応力でスムーズ
に変形して大きなエネルギーを吸収する。
[Action] energy absorption member of the present invention is attached from the side of the cylindrical portion to receive a compressive load. The deformation that occurs in the energy absorbing member due to the compressive load is compressed on the inner layer side,
It is elongated on the outer layer side, and the amount of deformation increases as the distance from the neutral layer increases. Since delamination is more likely to occur in a portion having a larger deformation amount, delamination occurs gradually from a thicker portion, and the deformation stress is not changed drastically, but is smoothly deformed with a relatively small stress to absorb a large amount of energy.

【0011】[0011]

【実施例】【Example】

(実施例1)以下、本発明を具体化した第1実施例を図
1,図2に従って説明する。図1に示すようにエネルギ
ー吸収部材1は外径が一定な円筒状に形成され、その肉
厚が軸方向中央部から両端に向かってなだらかに変化す
るように形成されている。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the energy absorbing member 1 is formed in a cylindrical shape having a constant outer diameter, and is formed such that its thickness gradually changes from a central portion in the axial direction toward both ends.

【0012】エネルギー吸収部材1は合成樹脂を無端状
の長繊維(フィラメント)で補強したFRPで形成さ
れ、フィラメントが周方向に巻き付けられた状態に形成
されている。この実施例ではフィラメントとしてガラス
繊維を、合成樹脂としてエポキシ樹脂をそれぞれ使用し
た。製法にはガラス繊維に樹脂を付着しながらマンドレ
ル上に巻き付けた後、樹脂を加熱硬化させるフィラメン
トワインディング(FW)法を使用した。加熱硬化後に
エネルギー吸収部材1からの離脱を可能にするため、マ
ンドレルは中央から軸方向に分割可能なものを使用し
た。
The energy absorbing member 1 is formed of FRP in which synthetic resin is reinforced with endless long fibers (filaments), and is formed in a state where the filaments are wound in the circumferential direction. In this embodiment, a glass fiber is used as a filament and an epoxy resin is used as a synthetic resin. The manufacturing method used was a filament winding (FW) method in which the resin was wound on a mandrel while adhering the resin to the glass fiber, and then the resin was cured by heating. In order to allow the mandrel to be separated from the energy absorbing member 1 after heat curing, a mandrel that can be divided in the axial direction from the center was used.

【0013】前記のように構成されたエネルギー吸収部
材1に対して、その側面から圧縮荷重を作用させた場合
の荷重と変位量との関係を測定した結果を図2に示す。
図から明らかなように図10に示す肉厚が均一な場合に
比較して最大荷重は小さくなるが、圧縮の初期段階にお
ける荷重の突発的な変化が著しく減少するとともに、塑
性変形後半における荷重の低下も小さくなる。これは、
肉厚が均一な場合には圧縮荷重による変形量が軸方向で
一定となり、圧縮エネルギーが蓄積されてある限度を越
えたときに一挙に層間剥離を起こすのに対し、このエネ
ルギー吸収部材1は肉厚が軸方向中央部から両端に向か
って変化するため、肉厚の厚い中央部から逐次層間剥離
が発生するためと考えられる。すなわち、肉厚部におい
ては円筒部の内層ほど繊維巻付け量が少なく、変形量は
大きいため、当該部分から逐次層間剥離が発生する。従
って、このエネルギー吸収部材1は荷重の変動が小さく
エネルギー吸収量と最大荷重との比が従来のものに比較
して大きくなり、バンパ用のエネルギー吸収部材として
好ましい。又、エネルギー吸収部材1の材質が比重約2
近辺のFRPであるため、金属のそれに比してはるかに
小さく、軽量化が計れる。
FIG. 2 shows the result of measuring the relationship between the load and the displacement when a compressive load is applied to the energy absorbing member 1 configured as described above from the side surface.
As is clear from the figure, the maximum load is smaller than the case where the wall thickness is uniform as shown in FIG. 10, but the sudden change in the load in the initial stage of compression is significantly reduced, and the load in the latter half of the plastic deformation is reduced. The drop is also small. this is,
When the wall thickness is uniform, the amount of deformation due to the compressive load becomes constant in the axial direction, and when the compressive energy is stored and exceeds a certain limit, delamination occurs at once. It is considered that the thickness changes from the central portion in the axial direction toward both ends, so that delamination occurs sequentially from the thick central portion. That is, in the thick portion, the inner layer of the cylindrical portion has a smaller fiber winding amount and a larger deformation amount, so that delamination occurs sequentially from the portion. Therefore, the energy absorbing member 1 has a small load variation and a large ratio between the energy absorption amount and the maximum load as compared with the conventional one, and is thus preferable as an energy absorbing member for a bumper. The material of the energy absorbing member 1 has a specific gravity of about 2
Since it is a nearby FRP, it is much smaller than that of metal and can be reduced in weight.

【0014】(実施例2)次に第2実施例を図3,図4
に従って説明する。この実施例のエネルギー吸収部材1
は断面がほぼ楕円形の筒状に形成されるとともに、その
内径が階段状に変化するように形成されている点が前記
実施例と異なっている。この実施例のエネルギー吸収部
材1をFW法により形成した場合、金属製のマンドレル
を使用すると、樹脂を加熱硬化した後のマンドレル除去
作業が困難となる。そこで、この実施例ではマンドレル
を発泡ポリプロピレンで作製し、成形したエネルギー吸
収部材1の中に残留させた。残留させずに発泡ポリプロ
ピレン製のマンドレルを破壊、除去してもよい。発泡ポ
リプロピレン製のマンドレルを残留させた場合は、エネ
ルギー吸収部材1に圧縮荷重が作用した際に、発泡ポリ
プロピレンも共に変形し、吸収エネルギー量の向上と荷
重変動の鎮静に寄与する。
(Embodiment 2) Next, a second embodiment will be described with reference to FIGS.
It will be described according to. Energy absorbing member 1 of this embodiment
The second embodiment is different from the first embodiment in that the cross section is formed in a substantially elliptical cylindrical shape and the inner diameter is changed stepwise. When the energy absorbing member 1 of this embodiment is formed by the FW method, the use of a metal mandrel makes it difficult to remove the mandrel after heating and curing the resin. Therefore, in this example, the mandrel was made of foamed polypropylene, and was left in the formed energy absorbing member 1. The mandrel made of expanded polypropylene may be destroyed and removed without remaining. When a mandrel made of expanded polypropylene is left, when a compressive load is applied to the energy absorbing member 1, the expanded polypropylene is also deformed, thereby contributing to improvement in the amount of absorbed energy and mitigation of load fluctuation.

【0015】発泡ポリプロピレン製のマンドレルを残留
させたエネルギー吸収部材1に対して、その側面から圧
縮荷重を作用させた場合の荷重と変位量との関係を測定
した結果を図4に示す。この場合も荷重の突発的な変化
が著しく減少するとともに、塑性変形後半における荷重
の低下も小さい。 (実施例3)次に第3実施例を図5,図6に従って説明
する。この実施例のエネルギー吸収部材1は外径が一定
な円筒状に形成され、両端部に肉厚の薄い部分が、軸方
向中央部に肉厚の厚い部分がそれぞれ存在するととも
に、その間で肉厚がなだらかに変化する形状に形成され
ている。このエネルギー吸収部材1を製作する場合は、
前記第1実施例と同様に中央から軸方向に分割可能なマ
ンドレルが使用される。エネルギー吸収部材1に対し
て、その側面から圧縮荷重を作用させた場合の荷重と変
位量との関係を測定した結果を図6に示す。この場合も
荷重の突発的な変化が減少するとともに、塑性変形後半
における荷重の低下も小さい。
FIG. 4 shows the result of measuring the relationship between the load and the amount of displacement when a compressive load is applied from the side to the energy absorbing member 1 in which the mandrel made of expanded polypropylene is left. Also in this case, the sudden change of the load is remarkably reduced, and the reduction of the load in the latter half of the plastic deformation is also small. (Embodiment 3) Next, a third embodiment will be described with reference to FIGS. The energy absorbing member 1 of this embodiment is formed in a cylindrical shape having a constant outer diameter, a thin portion exists at both ends, and a thick portion exists at an axial center portion. Is formed in a shape that changes smoothly. When manufacturing this energy absorbing member 1,
As in the first embodiment, a mandrel that can be divided axially from the center is used. FIG. 6 shows the result of measuring the relationship between the load and the amount of displacement when a compressive load is applied to the energy absorbing member 1 from the side. In this case as well, the sudden change of the load decreases, and the decrease of the load in the latter half of the plastic deformation is also small.

【0016】(実施例4)次に第4実施例を図7,図8
に従って説明する。この実施例のエネルギー吸収部材1
は円環状の筒部が複数組み合わされた構造となっている
点が前記各実施例と大きく異なっている。エネルギー吸
収部材1は第1実施例のものと同様な形状の2個の円筒
部2が間隔をあけて平行に配列され、その外側に楕円筒
部3が両円筒部2に外接する状態で一体に形成されてい
る。このエネルギー吸収部材1はまず円筒部2に相当す
る円筒をFW法で作製した後、2個の円筒を間隔をあけ
て平行に配列し、その外周部に樹脂が付着したガラス繊
維をFW方式で巻き付け、樹脂を加熱硬化することによ
り作製される。
(Embodiment 4) Next, a fourth embodiment will be described with reference to FIGS.
It will be described according to. Energy absorbing member 1 of this embodiment
Is greatly different from the above embodiments in that it has a structure in which a plurality of annular tubular portions are combined. The energy absorbing member 1 has two cylindrical portions 2 having the same shape as that of the first embodiment arranged in parallel at an interval, and an elliptical cylindrical portion 3 is integrated outside the two cylindrical portions 2 in a state of circumscribing the two cylindrical portions 2. Is formed. In this energy absorbing member 1, first, a cylinder corresponding to the cylindrical portion 2 is manufactured by the FW method, and then two cylinders are arranged in parallel at an interval, and glass fibers having resin adhered to the outer peripheral portion thereof are formed by the FW method. It is produced by winding and heating and curing the resin.

【0017】エネルギー吸収部材1に対して、その側面
から圧縮荷重を作用させた場合の荷重と変位量との関係
を測定した結果を図8に示す。荷重の突発的な変化が減
少するとともに、塑性変形後半に至るまで荷重がほぼ一
定となり、エネルギー吸収量と最大荷重との比が前記各
実施例のものよりも大きくなる。これは円筒部2が複数
個存在するため荷重の平均化が行われるためと考えられ
る。
FIG. 8 shows the result of measuring the relationship between the load and the amount of displacement when a compressive load is applied to the energy absorbing member 1 from the side. As the sudden change of the load decreases, the load becomes substantially constant until the latter half of the plastic deformation, and the ratio between the energy absorption amount and the maximum load becomes larger than that of each of the above embodiments. This is presumably because load averaging is performed due to the presence of a plurality of cylindrical portions 2.

【0018】なお、本発明は前記実施例に限定されるも
のではなく、例えば、エネルギー吸収部材1の筒部の断
面形状としては円形、楕円形に限らず曲率の異なる円弧
の組み合わせ等実質的に円環状であればよい。又、素材
のFRPを構成する樹脂はエポキシ樹脂に限らずフェノ
ール樹脂、不飽和ポリエステルなどの熱硬化性樹脂を使
用したり、強化繊維としてガラス繊維に代えてカーボン
繊維、アラミド繊維等の高弾性、高強度の物性をもった
各種の機能繊維が用いられるが、自動車のバンパ用途の
場合には、耐熱性などの点からコスト的にガラス繊維が
好適である。又、第4実施例のように複数の円筒部を組
み合わせた構造の場合、円筒部の数を増やしたり円筒部
の径を違えてもよい。
The present invention is not limited to the above-described embodiment. For example, the cross-sectional shape of the cylindrical portion of the energy absorbing member 1 is not limited to a circle or an ellipse but may be substantially a combination of arcs having different curvatures. It may be an annular shape. Further, the resin constituting the material FRP is not limited to the epoxy resin, a phenol resin, a thermosetting resin such as unsaturated polyester, or a high elasticity such as carbon fiber, aramid fiber instead of glass fiber as the reinforcing fiber, Various functional fibers having high-strength physical properties are used, but in the case of a bumper for an automobile, glass fibers are preferable in terms of heat resistance and the like in terms of cost. In the case of a structure in which a plurality of cylindrical portions are combined as in the fourth embodiment, the number of cylindrical portions may be increased or the diameter of the cylindrical portion may be changed.

【0019】[0019]

【発明の効果】以上詳述したように本発明によれば、エ
ネルギー吸収部材が断面円環状に形成されてその側面か
ら圧縮荷重を受ける状態で使用されるため、斜め方向か
らの荷重に対しても高い衝撃吸収能力を持つ。又、筒状
に形成されたエネルギー吸収部材の肉厚がその内径と共
軸方向に沿って変化しているため、圧縮変形による層
間剥離が肉厚の大きな部分から徐々に発生して突発的な
応力変化が起きず、しかも大きなエネルギーを吸収する
ことができる。
As described above in detail, according to the present invention, since the energy absorbing member is formed in an annular cross section and is used in a state of receiving a compressive load from the side surface thereof, it can withstand a load in an oblique direction. It also has high shock absorption capacity. In addition, the thickness of the cylindrical energy absorbing member is the same as its inner diameter.
To change along the axial direction, delamination due to compressive deformation is gradually generated from a large part of the thickness not occur sudden stress change can be either tooth absorb large energy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例のエネルギー吸収部材を示し、
(a)は(b)のA−A線断面図、(b)は側面図であ
る。
FIG. 1 shows an energy absorbing member of a first embodiment,
(A) is a sectional view taken along line AA of (b), and (b) is a side view.

【図2】第1実施例のエネルギー吸収部材の圧縮荷重−
変位量曲線である。
FIG. 2 shows a compressive load of the energy absorbing member of the first embodiment.
It is a displacement amount curve.

【図3】第2実施例のエネルギー吸収部材を示し、
(a)は(b)のB−B線断面図、(b)は側面図であ
る。
FIG. 3 shows an energy absorbing member of a second embodiment,
(A) is a sectional view taken along line BB of (b), and (b) is a side view.

【図4】第2実施例のエネルギー吸収部材の圧縮荷重−
変位量曲線である。
FIG. 4 shows a compressive load of the energy absorbing member of the second embodiment.
It is a displacement amount curve.

【図5】第3実施例のエネルギー吸収部材を示し、
(a)は(b)のC−C線断面図、(b)は側面図であ
る。
FIG. 5 shows an energy absorbing member of a third embodiment,
(A) is a sectional view taken along line CC of (b), and (b) is a side view.

【図6】第3実施例のエネルギー吸収部材の圧縮荷重−
変位量曲線である。
FIG. 6 shows a compressive load of the energy absorbing member of the third embodiment.
It is a displacement amount curve.

【図7】第4実施例のエネルギー吸収部材の概略斜視図
である。
FIG. 7 is a schematic perspective view of an energy absorbing member according to a fourth embodiment.

【図8】第4実施例のエネルギー吸収部材の圧縮荷重−
変位量曲線である。
FIG. 8 shows a compressive load of the energy absorbing member of the fourth embodiment.
It is a displacement amount curve.

【図9】従来のバンパ支持部材によるバンパ支持状態を
示す概略平面図である。
FIG. 9 is a schematic plan view showing a bumper supporting state by a conventional bumper supporting member.

【図10】従来のバンパ支持部材の圧縮荷重−変位量曲
線である。
FIG. 10 is a compression load-displacement amount curve of a conventional bumper support member.

【図11】従来のエネルギー吸収用構造材を示す概略斜
視図である。
FIG. 11 is a schematic perspective view showing a conventional energy absorbing structural material.

【符号の説明】[Explanation of symbols]

1…エネルギー吸収部材、2…円筒部。 1 ... energy absorbing member, 2 ... cylindrical part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大森 裕志 愛知県刈谷市豊田町2丁目1番地 株式 会社 豊田自動織機製作所 内 (72)発明者 安居 義治 愛知県刈谷市豊田町2丁目1番地 株式 会社 豊田自動織機製作所 内 (72)発明者 宮下 康己 愛知県刈谷市豊田町2丁目1番地 株式 会社 豊田自動織機製作所 内 (72)発明者 近藤 利郎 愛知県刈谷市豊田町2丁目1番地 株式 会社 豊田自動織機製作所 内 (72)発明者 多田 直弘 愛知県豊田市トヨタ町1番地 トヨタ自 動車 株式会社 内 (56)参考文献 特開 昭54−124168(JP,A) (58)調査した分野(Int.Cl.7,DB名) B60R 19/34 B60R 19/30 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Omori 2-1-1, Toyota-cho, Kariya-shi, Aichi Pref. Inside the Toyota Industries Corporation (72) Inventor Yoshiharu Yasui 2-1-1, Toyota-cho, Kariya-shi, Aichi Pref. Inside Toyota Industries Corporation (72) Inventor Yasumi Miyashita 2-1-1 Toyota-cho, Kariya-shi, Aichi Co., Ltd. Inside Toyota Industries Corporation (72) Inventor Toshiro Kondo 2-1-1 Toyota-cho, Kariya-shi, Aichi Japan Toyoda Auto Corporation Loom Works (72) Inventor Naohiro Tada 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (56) References JP-A-54-124168 (JP, A) (58) . 7, DB name) B60R 19/34 B60R 19/30

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 断面円環状をなすように繊維が周方向に
巻き付けられるとともに、該繊維が樹脂により結束硬化
された繊維強化複合材料で筒状に形成され、その肉厚が
内径と共に軸方向に沿って変化するエネルギー吸収部
材。
1. A fiber is wound in a circumferential direction so as to form an annular cross section, and the fiber is formed into a tubular shape from a fiber-reinforced composite material which is bound and cured by a resin , and has a wall thickness.
An energy absorbing member that changes along the axial direction with the inner diameter .
JP07328091A 1991-04-05 1991-04-05 Energy absorbing member Expired - Lifetime JP3183464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07328091A JP3183464B2 (en) 1991-04-05 1991-04-05 Energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07328091A JP3183464B2 (en) 1991-04-05 1991-04-05 Energy absorbing member

Publications (2)

Publication Number Publication Date
JPH0532145A JPH0532145A (en) 1993-02-09
JP3183464B2 true JP3183464B2 (en) 2001-07-09

Family

ID=13513577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07328091A Expired - Lifetime JP3183464B2 (en) 1991-04-05 1991-04-05 Energy absorbing member

Country Status (1)

Country Link
JP (1) JP3183464B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196926A (en) * 1978-02-27 1980-04-08 The Budd Company Energy attenuator and method of manufacturing thereof

Also Published As

Publication number Publication date
JPH0532145A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
US5419416A (en) Energy absorber having a fiber-reinforced composite structure
US5997077A (en) Deformable structure for protection of vehicle occupants
US5577784A (en) Vehicle bumper
EP1892159A2 (en) Corrugated tubular energy absorbing structure.
EP0908300A2 (en) Method for reducing crush initiation forces in composite structures
US9598035B2 (en) Impact absorber
JP3246041B2 (en) Energy absorbing material
US6840542B2 (en) Side member for use in vehicle frame and method of manufacturing the same
JPH08177922A (en) Energy absorbing body of hybridized fiber reinforced compound material
GB1575840A (en) Bumper spring
US5203436A (en) Reinforced tubular door support
JP3183464B2 (en) Energy absorbing member
JP3141570B2 (en) Energy absorbing material
EP0625104B1 (en) High performance vehicle bumper
JP2975443B2 (en) Energy absorbing member
JP3007744B2 (en) Energy absorbing material
JP2892854B2 (en) Energy absorbing material
JP2975444B2 (en) Tubular structure
JP3544994B2 (en) Fiber reinforced composite material and energy absorbing member
JP2931119B2 (en) Energy absorbing member
JP2552450Y2 (en) Energy absorbing material
US6715593B1 (en) Crush tube assembly
US4798101A (en) Core material for steering wheels made of long fiber-reinforced resin
JP3141569B2 (en) Energy absorbing material
WO1997015472A1 (en) Molded bumper system with reinforcement beam

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

EXPY Cancellation because of completion of term