JPH05320766A - Production of grain-oriented silicon steel sheet capable of stably providing superior magnetic property - Google Patents

Production of grain-oriented silicon steel sheet capable of stably providing superior magnetic property

Info

Publication number
JPH05320766A
JPH05320766A JP12378392A JP12378392A JPH05320766A JP H05320766 A JPH05320766 A JP H05320766A JP 12378392 A JP12378392 A JP 12378392A JP 12378392 A JP12378392 A JP 12378392A JP H05320766 A JPH05320766 A JP H05320766A
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
steel sheet
decarburization
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12378392A
Other languages
Japanese (ja)
Inventor
Hiroshi Yano
浩史 矢埜
Ujihiro Nishiike
氏裕 西池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12378392A priority Critical patent/JPH05320766A/en
Publication of JPH05320766A publication Critical patent/JPH05320766A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To usually obtain stable and superior magnetic properties by subjecting a silicon-containing steel containing B to decarburization of specific amount of decarburization in the course between the completion of hot rolling and the completion of final cold rolling. CONSTITUTION:The stock of a silicon-containing steel having a composition containing, by weight, 0.07-0.10% C and 0.0002-0.0050% B is hot-rolled. Cold rolling is done, while performing process annealing between cold rolling stages, and finished to <=0.23mm sheet thickness. The resulting sheet is subjected to decarburizing annealing, and, after the application of a separation agent at annealing to the surface of the sheet, final annealing is done, by which the grain-oriented silicon steel sheet is produced. At this time, decarburization of 0.01-0.06wt.% decarburization amount is done in the stage between the completion of hot rolling and the completion of final cold rolling. By this method, stable and superior characteristics can be obtained even by means of a single cold rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、一方向性けい素薄鋼
板、すなわち板厚が0.23mm以下の磁気特性に優れた一方
向性けい素薄鋼板を、安定して得るための製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stably producing a unidirectional silicon steel sheet, that is, a unidirectional silicon steel sheet having a thickness of 0.23 mm or less and excellent magnetic properties. ..

【0002】[0002]

【従来の技術】一方向性けい素鋼板は、主として変圧器
そのほかの電気機器の鉄心として使用されるもので、磁
気特性としては、磁化特性と鉄損特性に優れていること
が要求される。優れた磁気特性を有する材料を得るため
の基本的な要件は、最終焼鈍過程において、(110)
〔001〕方位の2次再結晶粒を十分発達させることで
ある。そのためには、2次再結晶過程で(110)〔0
01〕方位以外の好ましくない結晶方位を有する結晶粒
の成長を強く抑制するインヒビターの存在と、先鋭に揃
った(110)〔001〕方位の2次再結晶粒が十分に
発達する好適な集合組織の形成が必要であることは知ら
れている。インヒビターとしては一般的にMnS, MnSe, A
lN等の微細析出物が用いられる。また、適切な集合組織
の形成に関しては、従来の熱間圧延および冷間圧延にお
ける、各工程の条件を適切に組み合わせる方法を採って
おり、中間焼鈍を挟む2回の冷間圧延を施す、等の複雑
な工程も採用されている。
2. Description of the Related Art Unidirectional silicon steel sheets are mainly used as iron cores for transformers and other electric equipment, and are required to have excellent magnetic properties and iron loss properties as magnetic properties. The basic requirement for obtaining a material with excellent magnetic properties is that during the final annealing process (110)
This is to sufficiently develop the secondary recrystallized grains in the [001] orientation. For that purpose, (110) [0
The presence of an inhibitor that strongly suppresses the growth of crystal grains having an unfavorable crystal orientation other than the [01] orientation, and a suitable texture in which sharply aligned secondary recrystallized grains of the (110) [001] orientation are sufficiently developed. It is known that the formation of Generally MnS, MnSe, A as inhibitors
Fine precipitates such as lN are used. Further, regarding the formation of an appropriate texture, a method of appropriately combining the conditions of each step in the conventional hot rolling and cold rolling is adopted, and two cold rollings with intermediate annealing are performed, etc. The complicated process of is also adopted.

【0003】このようなけい素鋼板の製造技術の進歩に
より、磁化特性、すなわちB8 値で代表される磁束密度
が1.91Tを超える、優れた特性のものが得られ、変圧器
などの小型化とその騒音の低減に寄与している。また鉄
損特性としては、板厚0.23mmの一方向性けい素薄鋼板で
鉄損W17/50 値が0.90 W/Kg 以下、すなわち磁束密度1.
7 Tおよび周波数50Hzで磁化した場合の鉄損が、材料1
kg当り0.90W以下の、優れた材料も得られるようになっ
た。
Due to such advances in the production technology of silicon steel sheets, magnets having excellent characteristics with a magnetic flux density represented by a B 8 value of more than 1.91 T can be obtained, and miniaturization of transformers and the like can be obtained. And contributes to the reduction of the noise. As for the iron loss characteristics, the iron loss W 17/50 value is 0.90 W / Kg or less for a unidirectional silicon steel sheet having a thickness of 0.23 mm, that is, the magnetic flux density is 1.
Iron loss when magnetized at 7 T and frequency of 50 Hz is
Excellent materials of 0.90 W / kg or less have also been obtained.

【0004】また、けい素鋼板の磁気特性を改善するた
め、Bを添加する試みが数多くなされている。例えば、
特公昭58−43444号、特開昭51−106622
号および特開昭52−39520号各公報には、Bを添
付した0.29mm以上の厚さの方向性けい素鋼板に関する製
造方法の例が示されている。しかし、これらの方法で
は、途中工程におけるCの制御を行わないために、さら
に板厚を薄くした、すなわち0.23mm厚以下の方向性けい
素薄鋼板において、安定して優れた磁気特性を得ること
が不可能であるところに問題を残していた。
Further, many attempts have been made to add B in order to improve the magnetic properties of silicon steel sheets. For example,
JP-B-58-43444, JP-A-51-106622
JP-A-52-39520 and JP-A-52-39520 show examples of a method of manufacturing a grain-oriented silicon steel sheet having a thickness of 0.29 mm or more, to which B is attached. However, in these methods, since the C is not controlled in the intermediate step, the plate thickness is further reduced, that is, stable and excellent magnetic properties can be obtained in the grain-oriented silicon steel sheet having a thickness of 0.23 mm or less. Left problems where it was impossible.

【0005】なお、特開昭54−6809公報には、薄
い鋳造体から中間焼鈍を挟む冷間圧延によって一方向性
けい素鋼板を得る製造方法について開示されている。し
かしながら、熱間圧延時のC量が少ないために、適切な
集合組織を得ることが難しく、特性が不安定になる問題
点があった。さらに、特開昭54−128425号公報
には、基底被覆の性質改善の方法が開示されているが、
基底被覆の性質改善だけでは板厚の薄い高磁束密度の一
方向性けい素鋼板の製造は難しい。
JP-A-54-6809 discloses a method for producing a grain-oriented silicon steel sheet from a thin cast body by cold rolling with intermediate annealing. However, since the amount of C at the time of hot rolling is small, it is difficult to obtain an appropriate texture and there is a problem that the characteristics become unstable. Further, JP-A-54-128425 discloses a method for improving the properties of the base coating,
It is difficult to manufacture a thin high-flux density unidirectional silicon steel sheet only by improving the properties of the base coating.

【0006】また、特開昭62−10213号、同10
214号および同130217号各公報には、誘導加熱
炉を用いた加熱方法による、一方向性けい素鋼板の製造
方法について開示されているが、誘導加熱の制御が難し
く、途中工程におけるCの制御を行わないため、磁気特
性の優れた製品を安定して製造することが難しい。
Further, JP-A-62-1213, 10 and 10
Nos. 214 and 130217 each disclose a method for manufacturing a unidirectional silicon steel sheet by a heating method using an induction heating furnace, but it is difficult to control induction heating and control of C in an intermediate step. Therefore, it is difficult to stably manufacture a product having excellent magnetic properties.

【0007】[0007]

【発明が解決しようとする課題】この発明は、上記問題
点を有利に解決し、磁気特性の優れた板厚0.23mm以下の
方向性けい素薄鋼板を安定して供給できる製造方法につ
いて提案することを目的とする。
SUMMARY OF THE INVENTION The present invention proposes a manufacturing method which can solve the above problems advantageously and can stably supply grain-oriented silicon steel sheets having a thickness of 0.23 mm or less and excellent magnetic properties. The purpose is to

【0008】[0008]

【課題を解決するための手段】板厚の薄い一方向性けい
素鋼板において、磁気特性が不安定となる原因を検討し
た結果、従来の成分系では熱間圧延中に析出するインヒ
ビター、MnS, MnSe および AlNが、2次粒の成長に対し
て十分抑制力を発揮しないことが判明し、そこで、イン
ヒビターを強化する目的でBを添加し、また熱間圧延組
織を改善するために鋼中のCを途中工程において制御し
て、2次再結晶に適した集合組織を発達させることによ
り、磁気特性の優れた薄鋼板を安定して製造できること
を見い出した。
[Means for Solving the Problems] As a result of studying the cause of unstable magnetic properties in a thin unidirectional silicon steel sheet, as a result of the conventional composition, an inhibitor, MnS, which precipitates during hot rolling, It was found that MnSe and AlN did not sufficiently suppress the growth of secondary grains, so B was added for the purpose of strengthening the inhibitor, and in the steel to improve the hot rolling structure. It was found that a thin steel sheet having excellent magnetic properties can be stably manufactured by controlling C in an intermediate step to develop a texture suitable for secondary recrystallization.

【0009】すなわち、この発明は、C: 0.07 〜0.10
wt%(以下単に%と示す)およびB:0.0002〜0.0050%
を含む、含けい素鋼素材を、熱間圧延した後、中間焼鈍
を含む冷間圧延を施して0.23mm以下の板厚に仕上げ、次
いで脱炭焼鈍を施して、鋼板表面に焼鈍分離剤を塗布し
たのち、最終焼鈍を施す、一連の工程によって一方向性
けい素鋼板を製造するに当たり、上記熱間圧延の終了後
でかつ最終冷間圧延終了前の工程において、熱延組織改
善のため、Cを 0.010〜0.06%脱炭する脱炭工程を有す
ることを特徴とする、優れた磁気特性を安定して得られ
る一方向性けい素薄鋼板の製造方法である。
That is, the present invention provides C: 0.07 to 0.10.
wt% (hereinafter simply referred to as%) and B: 0.0002 to 0.0050%
, Containing silicon steel material, after hot rolling, cold rolling including intermediate annealing to finish to a plate thickness of 0.23 mm or less, then subjected to decarburization annealing, an annealing separator on the steel plate surface. After applying, final annealing, in producing a unidirectional silicon steel sheet by a series of steps, in the step after the end of the hot rolling and before the end of the final cold rolling, in order to improve the hot rolling structure, A method for producing a unidirectional thin silicon steel sheet, which has a decarburization step of decarburizing C by 0.010 to 0.06% and stably obtains excellent magnetic properties.

【0010】[0010]

【作用】この発明の製造方法における出発材は、C:
0.07 〜0.10%およびを含む、含けい素鋼素材、具体的
には、方向性けい素鋼用スラブである。ここで、スラブ
厚は特に限定しないが、一般に150 〜350mm 厚が好適
で、連続鋳造や、鋼塊を分塊圧延して得られる。
The starting material in the manufacturing method of the present invention is C:
A slab for a silicon-containing steel material, specifically, a grain-oriented silicon steel, containing 0.07 to 0.10% and. Here, the slab thickness is not particularly limited, but a thickness of 150 to 350 mm is generally suitable, and it can be obtained by continuous casting or slab rolling of a steel ingot.

【0011】次に、上記成分組成の限定理由を述べる。 C: 0.07 〜0.10% Cを0.07〜0.10%に規制することによって、熱間圧延中
にα+γ域を通過させ、熱延集合組織の改善を効果的に
はかるもので、これによって加熱時のスラブ中心温度の
上限を1380℃まで高めることができる。 B:0.0002〜0.005 % Bは0.0002%未満では析出物分散効果が弱く、γ相抑制
効果も小さくなり、一方0.005 %をこえると、析出物が
粗大化し、磁気特性が劣化するため、0.0002〜0.005 %
の範囲とする。
Next, the reasons for limiting the composition of the above components will be described. C: 0.07 to 0.10% By controlling C to 0.07 to 0.10%, the α + γ region is allowed to pass during hot rolling to effectively improve the hot rolling texture. The upper temperature limit can be increased up to 1380 ° C. B: 0.0002 to 0.005% If B is less than 0.0002%, the effect of dispersing the precipitates is weak and the effect of suppressing the γ phase becomes small, while if it exceeds 0.005%, the precipitates become coarse and the magnetic properties deteriorate, so 0.0002 to 0.005%. %
The range is.

【0012】また、その他の成分としては、従来公知の
成分組成のものいずれもが適合するが、代表組成を掲げ
ると次のとおりである。 Si: 2.5〜4.5 % Si量は鋼板の比抵抗を高め鉄損低減に有効であるが、4.
5 %をこえると冷延性が損なわれ、一方2.0 %未満では
鉄損改善効果が弱まる上、α−γ変態による結晶方位の
ランダム化により十分な特性が得られない。
As the other components, any of the conventionally known component compositions are suitable, and the representative compositions are as follows. Si: 2.5-4.5% Si content is effective in increasing iron sheet resistivity and reducing iron loss.
If it exceeds 5%, the cold rolling property is impaired, while if it is less than 2.0%, the iron loss improving effect is weakened, and sufficient properties cannot be obtained due to the randomization of the crystal orientation due to α-γ transformation.

【0013】Mn, Al, S, Se,Sb,Snはいずれもインヒ
ビターとして添加され、最終焼鈍において1次再結晶粒
の成長を抑制し、(110)〔001〕方位の2次再結
晶粒を先鋭に発達させるに必要な成分である。 Mn: 0.02 〜0.15% Mnは0.02〜0.15%とする。すなわち、0.02%未満では熱
間脆化により割れを生じ、一方0.15%をこえると、MnS,
MnSe の固溶温度が高くなり不利をまねく。 Al:0.005 〜0.1 % Alは0.005 %未満ではインヒビターとして機能しないた
め、0.005 %を下限とする。一方、0.1 %をこえると主
に磁気特性が劣化するため、0.1 %を上限とする。S お
よびSeのいずれか1種又は2種を合計で0.005 〜0.10%
含有する。S,Seのいずれか1種または2種の合計が上
記の範囲を外れると、2次再結晶が不安定となり、目的
とする優れた磁気特性が得られないので上記範囲に限定
した。 Sb:0.005 〜0.2 % Sbは0.005 %以下では効果が認められず、0.2 %以上で
は磁気特性が劣化する。 Sn:0.02〜0.5 % Snは0.02%以下では効果が認められず、0.5 %以上では
磁気特性が劣化する。 N:0.003 〜0.01% Nは、AlおよびBをインヒビターとして作用させるた
め、これらとバランスする量のNが必要になるため、
0.003%は必要となる。一方、0.01%をこえると、磁化
特性の劣化をまねくため、0.01%以下に規制することが
望ましい。
Mn, Al, S, Se, Sb, and Sn are all added as inhibitors to suppress the growth of primary recrystallized grains in the final annealing and to suppress the secondary recrystallized grains of (110) [001] orientation. It is a necessary ingredient for sharp development. Mn: 0.02 to 0.15% Mn is 0.02 to 0.15%. That is, if it is less than 0.02%, cracking occurs due to hot embrittlement, while if it exceeds 0.15%, MnS,
The solid solution temperature of MnSe increases, which is disadvantageous. Al: 0.005-0.1% Al does not function as an inhibitor below 0.005%, so 0.005% is the lower limit. On the other hand, if it exceeds 0.1%, the magnetic properties are mainly deteriorated, so 0.1% is made the upper limit. 0.005 to 0.10% in total of one or two of S and Se
contains. If the sum of any one or two of S and Se deviates from the above range, the secondary recrystallization becomes unstable and the desired excellent magnetic properties cannot be obtained, so the above range is limited. Sb: 0.005 to 0.2% If Sb is 0.005% or less, no effect is observed, and if it is 0.2% or more, magnetic properties deteriorate. Sn: 0.02 to 0.5% Sn is not effective at 0.02% or less, and magnetic properties are deteriorated at 0.5% or more. N: 0.003 to 0.01% N causes Al and B to act as inhibitors, so an amount of N that balances with these is required,
0.003% is required. On the other hand, if it exceeds 0.01%, the magnetization characteristics are deteriorated, so it is desirable to regulate the content to 0.01% or less.

【0014】なお、インヒビターとしてはこの他に、A
s, Pb, Bi, Cu, Mo等の粒界偏析型成分が知られてお
り、これらの1種または2種以上を加えても、この発明
の効果が損なわれることはない。
As an inhibitor, in addition to this, A
Grain boundary segregation type components such as s, Pb, Bi, Cu and Mo are known, and the effect of the present invention is not impaired even if one or more of these components are added.

【0015】次いで、上記成分組成を有するスラブを加
熱後、熱間圧延により熱延板とする。スラブ加熱条件、
熱間圧延条件は、特に限定する必要はなく公知の方法で
よい。例えば、スラブは、1350℃以上に加熱し、また、
熱間圧延条件としては、1200℃以上で粗圧延を終了し、
その後仕上圧延を行うことが好ましい。
Then, after heating the slab having the above-mentioned composition, it is hot-rolled into a hot-rolled sheet. Slab heating conditions,
The hot rolling conditions do not need to be particularly limited and may be a known method. For example, slabs are heated above 1350 ° C,
As hot rolling conditions, finish the rough rolling at 1200 ℃ or more,
After that, it is preferable to perform finish rolling.

【0016】引き続き、上記熱延板を、中間焼鈍を含む
冷間圧延によって、0.23mm以下の板厚とする。ここで、
最終冷間圧延前の工程の途中に、脱炭処理を施すことが
肝要である。この脱炭は公知の焼鈍雰囲気を調整して行
い、その脱炭量は、0.010 %以上、0.060 %以下がよ
い。なぜなら、脱炭量が0.010 %未満もしくは0.060 %
をこえる場合は、磁束密度が不足し、鉄損も比較的大き
くなって、磁気特性として不十分な水準となる、おそれ
がある。なお、最終冷間圧延時の圧下率は、60〜90%が
好適である。
Subsequently, the hot-rolled sheet is cold-rolled including intermediate annealing to a sheet thickness of 0.23 mm or less. here,
It is important to perform decarburization treatment during the process before the final cold rolling. This decarburization is performed by adjusting a known annealing atmosphere, and the decarburization amount is preferably 0.010% or more and 0.060% or less. Because the amount of decarburization is less than 0.010% or 0.060%
If it exceeds, the magnetic flux density may be insufficient and the iron loss may be relatively large, resulting in an insufficient magnetic property. Incidentally, the reduction ratio during the final cold rolling is preferably 60 to 90%.

【0017】以上に従って仕上げた、0.23mm厚以下の方
向性けい素鋼冷延板は、さらに、脱炭焼鈍を施したの
ち、焼鈍分離剤を塗布し最終焼鈍を施す。その後、絶縁
コーティングを塗布して製品とする。
The directional silicon steel cold-rolled sheet having a thickness of 0.23 mm or less, which has been finished as described above, is further subjected to decarburizing annealing, then an annealing separator is applied, and final annealing is performed. After that, an insulating coating is applied to obtain a product.

【0018】[0018]

【実施例】実施例1 C:0.092 %, Si:3.17%,Mn:0.074 %, Se:0.006
%, S:0.0032%,Al:0.019 %,B:0.0011%,N:
0.0069%を含む、200mm 厚の一方向性けい素鋼スラブを
溶製し、該スラブを1380℃で1時間の加熱処理後に熱間
圧延して2.0mm厚の熱延コイルに巻取った。次いで、こ
れらのコイルを1000℃で30秒間焼鈍後、0.75mm厚まで冷
間圧延し、さらに、950 ℃にて2分間中間焼鈍した際
に、連続焼鈍雰囲気を公知の方法で、酸化度PH2O /P
H2:0.003 〜0.35の範囲に調整して脱炭量ΔC を、それ
ぞれ0.007 %,0.013 %,0.055 %および0.070 %と
し、その後最終冷間圧延して板厚0.23mmに仕上げた。次
いで、800 ℃の湿水素中で脱炭焼鈍を施した後、MgO を
主体とする分離剤を塗布して1200℃、10時間の最終焼鈍
を施し、さらに絶縁コーティングを塗布して、この発明
による一方向性けい素薄鋼板の製品を得た。
EXAMPLES Example 1 C: 0.092%, Si: 3.17%, Mn: 0.074%, Se: 0.006
%, S: 0.0032%, Al: 0.019%, B: 0.0011%, N:
A 200 mm-thick unidirectional silicon steel slab containing 0.0069% was melted, the slab was heat-treated at 1380 ° C. for 1 hour, then hot-rolled and wound into a 2.0 mm-thick hot rolled coil. Then, after these 30 seconds coil at 1000 ° C. annealing, cold rolled to 0.75mm thick, further, when an intermediate annealing for 2 minutes at 950 ° C., a continuous annealing atmosphere in a known manner, the oxidation degree PH 2 O / P
H 2: 0.003 adjusted to the range of 0.35 to decarburization amount [Delta] C, 0.007% respectively 0.013% and 0.055% and 0.070%, were finished to a thickness 0.23mm was rolled then final cold. Then, after decarburizing annealing in wet hydrogen at 800 ° C, a separating agent mainly composed of MgO is applied and a final annealing is performed at 1200 ° C for 10 hours, and further an insulating coating is applied. A product of unidirectional silicon steel sheet was obtained.

【0019】これら製品の磁気特性を測定した結果は表
1に示すとおりであり、脱炭量ΔCを0.007 %とした場
合は、脱炭過少のため細粒の発生が見られ、脱炭量ΔC
0.070 %では脱炭過多となり結晶粒が粗大化する。すな
わち、脱炭量ΔC が0.010 〜0.060 %の範囲を外れる比
較例においては、2次再結晶に適した集合組織が得られ
ず、鉄損値は高くばらつきが大きい。また、磁束密度は
低くなる。これに対して、この発明に従って得られた鋼
板では、十分に低い鉄損値と高い磁束密度が安定して得
られた。
The results of measuring the magnetic properties of these products are shown in Table 1. When the decarburization amount ΔC is 0.007%, fine particles are generated due to the insufficient decarburization, and the decarburization amount ΔC
At 0.070%, decarburization becomes excessive and the crystal grains become coarse. That is, in the comparative example in which the decarburization amount ΔC is out of the range of 0.010 to 0.060%, the texture suitable for secondary recrystallization cannot be obtained, and the iron loss value is high and the variation is large. Also, the magnetic flux density becomes low. On the other hand, in the steel sheet obtained according to the present invention, a sufficiently low iron loss value and a high magnetic flux density were stably obtained.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例2 C:0.114 %, 0.092 %, 0.073 %および0.058 %の4
水準に、さらにSi:3.05%,Mn:0.070 %,Se:0.025
%, S:0.0028%,Al:0.025 %,B:0.0020%および
N:0.0074%を含む、200mm 厚の一方向性けい素鋼スラ
ブを溶製し、該スラブを1380℃で1時間の加熱処理後に
熱間圧延して2.5mm 厚の熱延コイルに巻取った。次い
で、これらのコイルを 980℃で30秒間焼鈍後、0.80mm厚
まで冷間圧延し、さらに、950 ℃にて2分間中間焼鈍し
た際に、連続焼鈍雰囲気を公知の方法で、酸化度PH2O
/PH2:0.003 〜0.35に調整して脱炭量ΔC を0.048 %
とし、その後最終冷間圧延して板厚0.15mmに仕上げた。
次いで、800 ℃の湿水素中で脱炭焼鈍を施した後、MgO
を主体とする分離剤を塗布して1200℃、10時間の最終焼
鈍を施し、さらに絶縁コーティングを塗布して、この発
明による一方向性けい素薄鋼板の製品を得た。これら製
品の磁気特性について測定した結果を、表2に示す。
Example 2 C: 0.114%, 0.092%, 0.073% and 0.058% of 4
Level: Si: 3.05%, Mn: 0.070%, Se: 0.025
%, S: 0.0028%, Al: 0.025%, B: 0.0020% and N: 0.0074%, a 200 mm thick unidirectional silicon steel slab is melted, and the slab is heat-treated at 1380 ° C. for 1 hour. Then, it was hot rolled and wound into a hot rolled coil having a thickness of 2.5 mm. Then, after these 30 seconds at 980 ° C. The coil annealing, and cold rolled to 0.80mm thick, further, when an intermediate annealing for 2 minutes at 950 ° C., a continuous annealing atmosphere in a known manner, the oxidation degree PH 2 O
/ PH 2 : Adjust 0.003 to 0.35 to decarburize ΔC 0.048%
After that, final cold rolling was performed to finish the plate thickness to 0.15 mm.
Then, after decarburizing annealing in wet hydrogen at 800 ℃, MgO
Was applied for final annealing at 1200 ° C. for 10 hours, and then an insulating coating was applied to obtain a unidirectional silicon steel sheet product according to the present invention. The results of measuring the magnetic properties of these products are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から明らかなように、C量が0.07〜0.
10%の範囲を満足しない比較例においては、集合組織の
改善が認められず、鉄損値は高く磁束密度は低いもので
あった。これに対して、この発明に従って得られた鋼板
では、十分に低い鉄損値と高い磁束密度を安定して得ら
れた。
As is clear from Table 2, the amount of C is 0.07-0.
In Comparative Examples not satisfying the range of 10%, no improvement in texture was observed, the iron loss value was high and the magnetic flux density was low. On the other hand, in the steel sheet obtained according to the present invention, a sufficiently low iron loss value and a high magnetic flux density were stably obtained.

【0024】実施例3 C:0.074 %, Si:3.17%,Mn:0.074 %,Se:0.010
%, S:0.0050%,Al:0.019 %およびN:0.0069%を
含み、さらにB量を、0.0008%,0.0046%,0.0060%の
3水準に変化した、200mm 厚の一方向性けい素鋼スラブ
を溶製し、該スラブを1380℃で1時間の加熱処理後に熱
間圧延して2.0mm 厚の熱延コイルに巻取った。次いで、
これらのコイルを1000℃で30秒間焼鈍後、0.75mm厚まで
冷間圧延し、さらに、950 ℃にて2分間中間焼鈍した際
に、連続焼鈍雰囲気を公知の方法で、酸化度PH2O /P
H2:0.003 〜0.35 に調整して脱炭量ΔC を0.024 %と
し、その後最終冷間圧延して板厚0.23mmに仕上げた。次
いで、800 ℃の湿水素中で脱炭焼鈍を施した後、MgO を
主体とする分離剤を塗布して1200℃、10時間の最終焼鈍
を施し、さらに絶縁コーティングを塗布して、この発明
による一方向性けい素薄鋼板の製品を得た。これら製品
の磁気特性について測定した結果を、表3に示す。
Example 3 C: 0.074%, Si: 3.17%, Mn: 0.074%, Se: 0.010
%, S: 0.0050%, Al: 0.019% and N: 0.0069%, and further, the B content was changed to three levels of 0.0008%, 0.0046%, 0.0060%, and a 200 mm thick unidirectional silicon steel slab was prepared. After smelting, the slab was heat-treated at 1380 ° C. for 1 hour, then hot-rolled and wound into a hot-rolled coil having a thickness of 2.0 mm. Then
After these 30 seconds at 1000 ° C. the coil annealing, cold rolled to 0.75mm thick, further, when an intermediate annealing for 2 minutes at 950 ° C., a continuous annealing atmosphere in a known manner, oxidation degree PH 2 O / P
H 2: 0.003 was adjusted to 0.35 by the decarburization amount ΔC 0.024% and finished to a thickness 0.23mm was rolled then final cold. Then, after decarburizing annealing in wet hydrogen at 800 ° C, a separating agent mainly composed of MgO is applied and a final annealing is performed at 1200 ° C for 10 hours, and further an insulating coating is applied. A product of unidirectional silicon steel sheet was obtained. The results of measuring the magnetic properties of these products are shown in Table 3.

【0025】[0025]

【表3】 [Table 3]

【0026】表3から明らかなように、この発明の範囲
外のB量では効果を認めることができないが、この発明
の要件である、B:0.0002〜0.0050%の範囲を満足した
鋼板は、十分に低い鉄損値と同時に高い磁束密度が得ら
れた。
As is clear from Table 3, the effect cannot be recognized with the amount of B outside the range of the present invention, but a steel plate satisfying the requirement of the present invention, B: 0.0002 to 0.0050%, is sufficient. A low iron loss value and a high magnetic flux density were obtained at the same time.

【0027】実施例4 C:0.076 %, Si:3.27%,Mn:0.082 %,Se:0.023
%, S:0.0032%,Al:0.025 %,B:0.0028%,N:
0.0082%を含み、さらにSbを0.006 〜0.23%およびSnを
0.02〜0.61%の範囲内で変化させて含有した、200mm 厚
の一方向性けい素鋼スラブを溶製し、該スラブを1380℃
で1時間の加熱処理後に熱間圧延して2.0mm 厚の熱延コ
イルに巻取った。次いで、これらのコイルを1000℃で30
秒間焼鈍後、0.75mm厚まで冷間圧延し、さらに、950 ℃
にて2分間中間焼鈍した際に、連続焼鈍雰囲気を公知の
方法で、酸化度PH2O /PH2:0.003 〜0.35の範囲に調
整して脱炭量ΔC を0.020 %とし、その後最終冷間圧延
して板厚0.23mmに仕上げた。次いで、800 ℃の湿水素中
で脱炭焼鈍を施した後、MgO を主体とする分離剤を塗布
して1200℃、10時間の最終焼鈍を施し、さらに絶縁コー
ティングを塗布して、この発明による一方向性けい素薄
鋼板の製品を得た。これら製品の磁気特性について測定
した結果を、表4に示す。
Example 4 C: 0.076%, Si: 3.27%, Mn: 0.082%, Se: 0.023
%, S: 0.0032%, Al: 0.025%, B: 0.0028%, N:
0.0082%, Sb 0.006 to 0.23% and Sn
200mm-thick unidirectional silicon steel slabs containing 0.02 to 0.61% by changing the content were melted, and the slabs were heated to 1380 ℃.
After heat treatment for 1 hour, it was hot rolled and wound into a hot rolled coil having a thickness of 2.0 mm. These coils are then placed at 1000 ° C for 30
Annealed for 2 seconds, cold rolled to 0.75 mm thickness, and then 950 ℃
Upon intermediate annealing for 2 minutes at a continuous annealing atmosphere in a known manner, oxidation degree PH 2 O / PH 2: 0.003 and adjusted to a range of 0.35 to decarburization amount ΔC is 0.020 percent, between subsequent final cold Rolled to a plate thickness of 0.23 mm. Next, after decarburizing annealing in wet hydrogen at 800 ° C, a separating agent mainly composed of MgO is applied, final annealing is performed at 1200 ° C for 10 hours, and an insulating coating is further applied. A product of unidirectional thin silicon steel sheet was obtained. Table 4 shows the results of measuring the magnetic properties of these products.

【0028】[0028]

【表4】 [Table 4]

【0029】表4から明らかなように、この発明に従う
ことにより、SbおよびSnの同時添加においても優れた磁
気特性が得られる。しかし、この発明の範囲外の比較例
においては、鉄損値は高く不安定で、磁束密度も低いも
のであった。
As is apparent from Table 4, according to the present invention, excellent magnetic characteristics can be obtained even when Sb and Sn are added simultaneously. However, in Comparative Examples outside the scope of the present invention, the iron loss value was high and unstable, and the magnetic flux density was low.

【0030】[0030]

【発明の効果】この発明によれば、板厚0.23mm以下の一
方向性けい素薄鋼板において、常に安定して優れた磁気
特性を得ることができる。従って、従来は必要とされて
いた、中間焼鈍を挟む2回の冷間圧延を施す工程を、1
回の冷間圧延のみとしても、安定して優れた特性を得る
ことが可能となった。
According to the present invention, in a unidirectional thin silicon steel sheet having a plate thickness of 0.23 mm or less, it is possible to always stably obtain excellent magnetic characteristics. Therefore, the step of performing the cold rolling twice, which sandwiches the intermediate annealing, which is conventionally required, is performed by one step.
It has become possible to obtain stable and excellent properties even by performing only one cold rolling.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 C: 0.07 〜0.10wt%およびB:0.0002
〜0.0050wt%を含む、含けい素鋼素材を、熱間圧延した
後、中間焼鈍を含む冷間圧延を施して0.23mm以下の板厚
に仕上げ、次いで脱炭焼鈍を施して、鋼板表面に焼鈍分
離剤を塗布したのち、最終焼鈍を施す、一連の工程によ
って一方向性けい素鋼板を製造するに当たり、上記熱間
圧延の終了後でかつ最終冷間圧延終了前の工程におい
て、脱炭量 0.010〜0.060 wt% の脱炭を施すことを特徴
とする、優れた磁気特性を安定して得られる一方向性け
い素薄鋼板の製造方法。
1. C: 0.07 to 0.10 wt% and B: 0.0002
~ 0.0050wt% containing silicon steel material, after hot rolling, cold rolling including intermediate annealing to finish to a thickness of 0.23mm or less, followed by decarburization annealing to the steel sheet surface After the annealing separator is applied, the final annealing is performed, and in producing a unidirectional silicon steel sheet by a series of steps, the decarburization amount in the step after the hot rolling is finished and before the final cold rolling is finished. A method for producing a unidirectional silicon steel sheet, which is capable of stably obtaining excellent magnetic properties, which is characterized by performing decarburization of 0.010 to 0.060 wt%.
JP12378392A 1992-05-15 1992-05-15 Production of grain-oriented silicon steel sheet capable of stably providing superior magnetic property Pending JPH05320766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12378392A JPH05320766A (en) 1992-05-15 1992-05-15 Production of grain-oriented silicon steel sheet capable of stably providing superior magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12378392A JPH05320766A (en) 1992-05-15 1992-05-15 Production of grain-oriented silicon steel sheet capable of stably providing superior magnetic property

Publications (1)

Publication Number Publication Date
JPH05320766A true JPH05320766A (en) 1993-12-03

Family

ID=14869188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12378392A Pending JPH05320766A (en) 1992-05-15 1992-05-15 Production of grain-oriented silicon steel sheet capable of stably providing superior magnetic property

Country Status (1)

Country Link
JP (1) JPH05320766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518253A (en) * 2008-08-08 2011-06-23 宝山鋼鉄股▲分▼有限公司 Method for producing copper-containing directional silicon steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518253A (en) * 2008-08-08 2011-06-23 宝山鋼鉄股▲分▼有限公司 Method for producing copper-containing directional silicon steel

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
EP0307905B1 (en) Method for producing grainoriented electrical steel sheet with very high magnetic flux density
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2003193131A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP4258149B2 (en) Method for producing grain-oriented electrical steel sheet
JPH05320766A (en) Production of grain-oriented silicon steel sheet capable of stably providing superior magnetic property
JP2002348613A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in blanking property without needing decarburization annealing
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
JP3479984B2 (en) Unidirectional silicon steel sheet having stable magnetic properties and method of manufacturing the same
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH10273727A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JP3485475B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3300034B2 (en) Method for producing oriented silicon steel sheet with extremely high magnetic flux density
JPH09143560A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPS6256205B2 (en)
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property
JPH06330174A (en) Production of low iron loss grain oriented silicon steel sheet
JPS60135524A (en) Production of grain oriented silicon steel sheet
JPH11293339A (en) Manufacture of unidirectional magnetic steel plate