JPH05319997A - Production of single crystal silicon carbide - Google Patents

Production of single crystal silicon carbide

Info

Publication number
JPH05319997A
JPH05319997A JP14883492A JP14883492A JPH05319997A JP H05319997 A JPH05319997 A JP H05319997A JP 14883492 A JP14883492 A JP 14883492A JP 14883492 A JP14883492 A JP 14883492A JP H05319997 A JPH05319997 A JP H05319997A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
substrate
plane
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14883492A
Other languages
Japanese (ja)
Inventor
Takashi Kano
隆司 狩野
Kiyoshi Ota
潔 太田
Kazuyuki Koga
和幸 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14883492A priority Critical patent/JPH05319997A/en
Publication of JPH05319997A publication Critical patent/JPH05319997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a method for producing a single crystal silicon carbide in which the labor and time for slicing can be omitted and the crystallinity can further be prevented from deteriorating by slicing. CONSTITUTION:A plate 5 for regulating the growth direction of silicon carbide 6 is installed to grow the silicon carbide in the surface direction of the plate 5 in a method for producing the single crystal silicon carbide by thermally subliming powdery silicon carbide 4, recrystallizing the silicon carbide 4 on a substrate composed of a silicon carbide single crystal and growing the silicon carbide 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶炭化ケイ素の製
造方法に係り、特に、スライシングの手間と時間を省け
る上、スライシングによる結晶性の悪化を防止できるよ
うにした単結晶炭化ケイ素の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing single crystal silicon carbide, and more particularly to the production of single crystal silicon carbide which can save the trouble and time of slicing and can prevent the deterioration of crystallinity due to slicing. Regarding the method.

【0002】[0002]

【従来の技術】炭化ケイ素(SiC)は熱的、化学的に
極めて安定で、耐放射線性に優れていることから、耐環
境デバイス用材料として注目されている。特に、6H形
のSiC単結晶は室温で約3eVの帯制帯幅を持ち、青
色発光ダイオード材料として用いられている。
2. Description of the Related Art Silicon carbide (SiC) is attracting attention as a material for environment-resistant devices because it is extremely stable thermally and chemically and has excellent radiation resistance. In particular, 6H-type SiC single crystal has a bandgap of about 3 eV at room temperature and is used as a blue light emitting diode material.

【0003】SiC単結晶インゴットを成長させる方法
としては、例えば「真空、30巻52〜58ページ(1
987年)」に記載されているように、いわゆる、昇華
法が採用され、この昇華法によって得られたインゴット
をスライサーで板状にスライスすることによりSiC単
結晶基板が得られる。
As a method for growing a SiC single crystal ingot, for example, "Vacuum, 30 volumes, pages 52 to 58 (1
987) ”, a so-called sublimation method is adopted, and a SiC single crystal substrate is obtained by slicing an ingot obtained by this sublimation method into a plate shape with a slicer.

【0004】上記昇華法とは、図3に示すように、6H
−SiC単結晶からなる基板2を固着したホルダー1で
蓋されるルツボ3の下部に原料としてのSiC粉末4を
入れ、例えば高周波誘導法によってこのSiC粉末4を
加熱して昇華させ、低温の基板2にガス化したSiCを
接触させて再結晶させることにより基板2上に単結晶S
iC6を成長させる方法である。
The above-mentioned sublimation method, as shown in FIG.
-A SiC powder 4 as a raw material is put in a lower portion of a crucible 3 which is covered with a holder 1 to which a substrate 2 made of a SiC single crystal is fixed, and the SiC powder 4 is heated and sublimated by, for example, a high frequency induction method to obtain a low temperature substrate. 2 is brought into contact with gasified SiC to recrystallize the single crystal S on the substrate 2.
This is a method of growing iC6.

【0005】また、昇華法において、基板2の結晶面方
位をa軸方向、即ち、{1,1,−2,0}面及び
{1,0,−1,0}面とすることにより、成長したS
iC単結晶6が基板結晶の結晶多形(6H形)を安定的
に引き継ぐことが報告されている(「第52回応用物理
学会学術講演会講演予稿集No.1、309頁(199
1年)秋期」)。
In the sublimation method, the crystal plane orientation of the substrate 2 is set to the a-axis direction, that is, the {1,1, -2,0} plane and the {1,0, -1,0} plane. Mature S
It has been reported that the iC single crystal 6 stably inherits the crystal polymorphism (6H form) of the substrate crystal ("Proceedings of the 52nd Annual Meeting of the Applied Physics Society of Japan", p. 309 (199).
1 year) Autumn ").

【0006】[0006]

【発明が解決しようとする課題】ところで、SiCはモ
ース硬度でダイヤモンドの10に次ぐ9.2から9.3
の機械的強度を持つため、昇華法によって得られたイン
ゴットをスライサーにより板状にスライスする際、ケイ
素(Si)やガリウム砒素(GaAs)に比べるとスラ
イス速度を小さくする必要があり、加工時間が長くなる
上、スライス速度を小さくしてもスライサーの刃の劣化
ないし消耗が著しく、コスト高になる。
By the way, SiC has a Mohs hardness of 9.2 to 9.3, which is second only to that of diamond.
Because of its mechanical strength, when slicing an ingot obtained by the sublimation method into a plate with a slicer, it is necessary to reduce the slicing speed as compared with silicon (Si) or gallium arsenide (GaAs). Moreover, even if the slicing speed is reduced, the blade of the slicer is significantly deteriorated or consumed, resulting in a high cost.

【0007】また、長時間のスライシングによってSi
C単結晶基板がダメージを受けて結晶性が悪化すること
も十分に懸念される。
[0007] Further, by slicing for a long time, Si
It is also sufficiently concerned that the C single crystal substrate will be damaged and the crystallinity will deteriorate.

【0008】本発明は、上記の事情を鑑みてなされたも
のであり、スライシングの手間と時間を省ける上、スラ
イシングによる結晶性の悪化を防止できるようにした単
結晶炭化ケイ素の製造方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and provides a method for producing single crystal silicon carbide capable of saving the labor and time of slicing and preventing deterioration of crystallinity due to slicing. The purpose is to

【0009】[0009]

【課題を解決するための手段】本発明は、粉末状の炭化
ケイ素を加熱して昇華させ、炭化ケイ素単結晶からなる
基板上に再結晶させて炭化ケイ素を成長させる単結晶炭
化ケイ素の製造方法において、炭化ケイ素の成長方向を
規制する板を設け、炭化ケイ素を任意の厚さの板状に成
長させることを特徴とする。
DISCLOSURE OF THE INVENTION The present invention is a method for producing single crystal silicon carbide in which powdery silicon carbide is heated to sublimate and recrystallized on a substrate made of silicon carbide single crystal to grow silicon carbide. In (1), a plate for regulating the growth direction of silicon carbide is provided, and silicon carbide is grown into a plate shape having an arbitrary thickness.

【0010】[0010]

【作用】炭化ケイ素の成長方向を規制するため、例えば
グラファイトカーボンもしくは多孔性カーボンの板を基
板に垂直に配置することにより、炭化ケイ素を任意の厚
さの板状に成長させることができる。
In order to regulate the growth direction of silicon carbide, for example, by arranging a plate of graphite carbon or porous carbon vertically to the substrate, silicon carbide can be grown in a plate shape having an arbitrary thickness.

【0011】また、本発明においては、上記のように、
SiC単結晶基板の結晶面方位をc軸と垂直方向
({1,1,−2,0}面もしくは{1,0,−1,
0}面)とすることにより、c軸({0,0,0,1}
もしくは{0,0,0,−1}面)の欠陥が少なく、ま
た、結晶多形(6H形)の良質な板状の炭化ケイ素単結
晶をスライスすることなく再現性良く、直接成長させる
ことができる。
Further, in the present invention, as described above,
The crystal plane orientation of the SiC single crystal substrate is perpendicular to the c-axis ({1,1, -2,0} plane or {1,0, -1,
0 plane), the c-axis ({0,0,0,1}
Or, there are few defects in {0,0,0, -1} plane, and it is possible to directly grow a plate-like silicon carbide single crystal of good quality of polymorph (6H type) with good reproducibility without slicing. You can

【0012】[0012]

【実施例】本発明の一実施例に係る単結晶炭化ケイ素の
製造方法を図1及び図2に基づいて具体的に説明する。
EXAMPLE A method for producing single crystal silicon carbide according to an example of the present invention will be specifically described with reference to FIGS. 1 and 2.

【0013】この方法においては、ルツボ3の下部に原
料としてのSiC粉末4を入れ、下面に6H−SiC単
結晶からなる基板2を固着したホルダー1でルツボ3を
蓋した後、例えば高周波誘導法によってこのSiC粉末
4を加熱して昇華させる。
In this method, SiC powder 4 as a raw material is put in the lower part of the crucible 3, and the crucible 3 is covered with a holder 1 to which a substrate 2 made of 6H-SiC single crystal is fixed on the lower surface, and then, for example, a high frequency induction method. This SiC powder 4 is heated to sublime.

【0014】上記基板2を低温部とすることによりガス
化したSiCを接触させて再結晶させて基板2上にSi
C単結晶6を成長させる。
When the substrate 2 is set to a low temperature part, gasified SiC is brought into contact with the substrate 2 to recrystallize the substrate 2 to form Si on the substrate 2.
The C single crystal 6 is grown.

【0015】基板2の表面付近には、所定の間隔を置い
て基板2に対して垂直に配置された多数の板5が設けら
れる。これらの板5はグラファイトカーボンもしくは多
孔性カーボンで作られる。
A large number of plates 5 are provided near the surface of the substrate 2 and are arranged vertically with respect to the substrate 2 at a predetermined interval. These plates 5 are made of graphite carbon or porous carbon.

【0016】基板2上に成長するSiC単結晶6は、こ
の板5によって成長方向を規制され、基板2に対して垂
直方向にのみ成長して板状になる。したがって、板5の
間隔によって所望の厚さ及び幅を有する板状のSiC単
結晶基板をスライシングすることなく得ることができ
る。
The growth direction of the SiC single crystal 6 grown on the substrate 2 is restricted by the plate 5, and the SiC single crystal 6 grows only in the direction perpendicular to the substrate 2 and becomes a plate shape. Therefore, a plate-shaped SiC single crystal substrate having a desired thickness and width can be obtained without slicing depending on the distance between the plates 5.

【0017】このようにして得られるSiC単結晶基板
の結晶面方位は、ホルダー1に支持された基板2の結晶
面方位によって決定され、例えば、基板2の結晶面方位
をc軸と垂直な面({1,1,−2,0}面もしくは
{1,0,−1,0}面)にすることにより、基板2と
同じ結晶多形(6H−SiC)で、c軸方向の面方位
({0,0,0,1}面もしくは{0,0,0,−1}
面)の板状のSiC単結晶が安定良く成長する。
The crystal plane orientation of the SiC single crystal substrate thus obtained is determined by the crystal plane orientation of the substrate 2 supported by the holder 1. For example, the crystal plane orientation of the substrate 2 is a plane perpendicular to the c-axis. ({1,1, -2,0} plane or {1,0, -1,0} plane), so that the same crystal polymorph (6H-SiC) as the substrate 2 has a plane orientation in the c-axis direction. ({0,0,0,1} plane or {0,0,0, -1}
The plate-shaped SiC single crystal of (plane) grows stably.

【0018】また、例えば結晶面方位を{1,1,−
2,0}面もしくは{1,0,−1,0}面を数度(例
えば3〜5°)傾斜させた(オフした)基板2を用いれ
ば、{0,0,0,1}面もしくは{0,0,0,−
1}面の数度オフした面方位を持つ板状のSiC単結晶
基板を得ることができる。
Further, for example, the crystal plane orientation is {1,1,-
If the substrate 2 in which the (2,0) plane or the {1,0, -1,0} plane is tilted (turned off) by several degrees (for example, 3 to 5 °) is used, the {0,0,0,1} plane is obtained. Or {0,0,0,-
It is possible to obtain a plate-shaped SiC single crystal substrate having a plane orientation in which the 1} plane is off by several degrees.

【0019】以上のようにして得たSiC単結晶基板
は、任意の厚さ及び幅に形成されているので、スライシ
ングや結晶面方位を出すための研磨をする必要がなく、
工程時間を著しく短縮できるとともに、スライサーの刃
や研磨材を消耗させるおそれもなく、また、スライシン
グによって結晶面が損傷されるおそれもなくなる。
Since the SiC single crystal substrate obtained as described above is formed to have an arbitrary thickness and width, it is not necessary to perform slicing or polishing for obtaining a crystal plane orientation.
The process time can be remarkably shortened, the blade of the slicer and the polishing material are not consumed, and the crystal plane is not damaged by the slicing.

【0020】[0020]

【発明の効果】以上説明したように、本発明方法によれ
ば、例えばその成長方向を規制する板を用いて炭化ケイ
素を所定の厚さの板状に成長させるので、スライシング
をすることなく任意の厚さ及び幅を有する板状のSiC
単結晶基板を得ることができ、スライシングに要してい
る多大の時間及びコストを節約することができる。
As described above, according to the method of the present invention, since silicon carbide is grown into a plate having a predetermined thickness using, for example, a plate whose growth direction is regulated, slicing can be arbitrarily performed. Plate-like SiC with various thickness and width
A single crystal substrate can be obtained, and a great amount of time and cost required for slicing can be saved.

【0021】また、スライシングによる結晶面のダメー
ジが発生するおそれがなくなり、結晶性の高い板状のS
iC単結晶基板を得ることができる。
Further, there is no risk of damage to the crystal plane due to slicing, and plate-like S having high crystallinity is obtained.
An iC single crystal substrate can be obtained.

【0022】更に、基板の結晶面方位を適宜設定するこ
とにより任意の角度にオフさせた結晶面を有する板状の
SiC単結晶基板を得ることができるので、結晶面の面
方位を調整するための研磨工程が不要になり、一層多大
の時間及びコストを節約することができる。
Further, since a plate-shaped SiC single crystal substrate having a crystal plane turned off at an arbitrary angle can be obtained by appropriately setting the crystal plane orientation of the substrate, the plane orientation of the crystal plane can be adjusted. This eliminates the need for the polishing step and saves much time and cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法に用いる装置例の縦断面図である。FIG. 1 is a vertical sectional view of an example of an apparatus used in a method of the present invention.

【図2】本発明方法に用いる装置例のホルダ及び板の底
面図である。
FIG. 2 is a bottom view of a holder and a plate of an apparatus used in the method of the present invention.

【図3】従来例に用いる装置例の縦断側面図である。FIG. 3 is a vertical cross-sectional side view of an example of a device used in a conventional example.

【符号の説明】[Explanation of symbols]

2 基板 4 粉末状の炭化ケイ素 5 板 6 SiC単結晶 2 Substrate 4 Powdered Silicon Carbide 5 Plate 6 SiC Single Crystal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉末状の炭化ケイ素を加熱して昇華さ
せ、炭化ケイ素単結晶からなる基板上に再結晶させて炭
化ケイ素を成長させる単結晶炭化ケイ素の製造方法にお
いて、 炭化ケイ素の成長方向を規制する板を設け、炭化ケイ素
を任意の厚さの板状に成長させることを特徴とする単結
晶炭化ケイ素の製造方法。
1. A method for producing single-crystal silicon carbide in which powdery silicon carbide is heated to sublimate and recrystallized on a substrate made of silicon carbide single crystal to grow silicon carbide. A method for producing single-crystal silicon carbide, which comprises providing a regulating plate and growing silicon carbide into a plate having an arbitrary thickness.
【請求項2】 基板の結晶面方位を{1,1,−2,
0}面及び{1,0,−1,0}面として{0,0,
0,1}面もしくは{0,0,0,−1}面の板状の炭
化ケイ素単結晶を成長させる請求項1に記載の単結晶炭
化ケイ素の製造方法。
2. The crystal plane orientation of the substrate is {1, 1, -2,
0} plane and {1,0, -1,0} plane as {0,0,
The method for producing a single crystal silicon carbide according to claim 1, wherein a plate-like silicon carbide single crystal having a 0,1} plane or a {0,0,0, -1} plane is grown.
JP14883492A 1992-05-15 1992-05-15 Production of single crystal silicon carbide Pending JPH05319997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14883492A JPH05319997A (en) 1992-05-15 1992-05-15 Production of single crystal silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14883492A JPH05319997A (en) 1992-05-15 1992-05-15 Production of single crystal silicon carbide

Publications (1)

Publication Number Publication Date
JPH05319997A true JPH05319997A (en) 1993-12-03

Family

ID=15461779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14883492A Pending JPH05319997A (en) 1992-05-15 1992-05-15 Production of single crystal silicon carbide

Country Status (1)

Country Link
JP (1) JPH05319997A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540316A (en) * 2005-05-13 2008-11-20 クリー インコーポレイテッド Method and apparatus for producing silicon carbide crystal
KR101028116B1 (en) * 2008-12-09 2011-04-08 한국전기연구원 growth apparatus for multiple silicon carbide single crystal
JP2013133274A (en) * 2011-12-27 2013-07-08 Fujikura Ltd Seed crystal holding member, method and device of manufacturing aluminum nitride single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540316A (en) * 2005-05-13 2008-11-20 クリー インコーポレイテッド Method and apparatus for producing silicon carbide crystal
KR101028116B1 (en) * 2008-12-09 2011-04-08 한국전기연구원 growth apparatus for multiple silicon carbide single crystal
JP2013133274A (en) * 2011-12-27 2013-07-08 Fujikura Ltd Seed crystal holding member, method and device of manufacturing aluminum nitride single crystal

Similar Documents

Publication Publication Date Title
Powell et al. SiC materials-progress, status, and potential roadblocks
JP4926556B2 (en) Method for manufacturing silicon carbide single crystal ingot and silicon carbide single crystal substrate
US5441011A (en) Sublimation growth of single crystal SiC
KR100845946B1 (en) Method for forming sic single crystal
JP4174847B2 (en) Single crystal manufacturing method
JPH05262599A (en) Sic single crystal and method for growing the same
US4865659A (en) Heteroepitaxial growth of SiC on Si
US6461944B2 (en) Methods for growth of relatively large step-free SiC crystal surfaces
KR100287793B1 (en) SINGLE CRYSTAL SiC AND PROCESS FOR PREPARING THE SAME
Balkş et al. Growth of bulk AlN and GaN single crystals by sublimation
JP2884085B1 (en) Single crystal SiC and method for producing the same
JP2015224169A (en) Production method of silicon carbide ingot
Hens et al. Sublimation growth of thick freestanding 3C-SiC using CVD-templates on silicon as seeds
US6143267A (en) Single crystal SiC and a method of producing the same
JP3541789B2 (en) Method for growing single crystal SiC
EP1122341A1 (en) Single crystal SiC
JPH05319997A (en) Production of single crystal silicon carbide
Porowski High pressure crystallization of III-V nitrides
JP3848446B2 (en) Method for growing low resistance SiC single crystal
Grzegory et al. Seeded growth of GaN at high N2 pressure on (0 0 0 1) polar surfaces of GaN single crystalline substrates
Tuominen et al. Defect origin and development in sublimation grown SiC boules
JP2005343722A (en) METHOD FOR GROWING AlN CRYSTAL, AlN CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE
JP3254557B2 (en) Single crystal SiC and method for producing the same
JPH0797299A (en) Method for growing sic single crystal
JPH07267795A (en) Growth method of silicon carbide single crystal