JPH05319907A - Carbon-containing basic refractory - Google Patents

Carbon-containing basic refractory

Info

Publication number
JPH05319907A
JPH05319907A JP4152735A JP15273592A JPH05319907A JP H05319907 A JPH05319907 A JP H05319907A JP 4152735 A JP4152735 A JP 4152735A JP 15273592 A JP15273592 A JP 15273592A JP H05319907 A JPH05319907 A JP H05319907A
Authority
JP
Japan
Prior art keywords
refractory
carbon
weight
raw material
containing basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4152735A
Other languages
Japanese (ja)
Inventor
Kunio Tsunetsugu
邦男 恒次
Saburo Miyagawa
三郎 宮川
Masao Oguchi
征男 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP4152735A priority Critical patent/JPH05319907A/en
Publication of JPH05319907A publication Critical patent/JPH05319907A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve durability of a carbon-containing basic refractory by improving spalling resistance, strength and oxidation resistance thereof. CONSTITUTION:To a refractory containing 5 to 30wt.% carbon material and 70 to 95wt.% magnesia as the raw material of the refractory, powdery titanum silicide is added in an amount of 0.1 to 10wt.% on outer percentage base. Titania and silica are formed by a high affinity of titanum silicide to oxygen at a high temperature so as to reinforce a carbon-containing basic refractory from the outside and the inside.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐火物分野における炭
素含有塩基性耐火物に関する。
FIELD OF THE INVENTION The present invention relates to a carbon-containing basic refractory in the refractory field.

【0002】[0002]

【従来の技術】炭素含有耐火物は、優れたスポ−リング
性を備えているとともに、スラグや溶融金属に対する耐
食性を有することから、近年その適用範囲が急速に拡大
しつつある。その中でも、タ−ルピッチやフェノ−ルレ
ジンを結合剤とした不焼成耐火物は、省エネルギ−化の
要請にも適合することから、種々の耐火物原料と組合わ
せた炭素含有耐火物が各種の溶融金属容器や周辺設備に
供せられている。
2. Description of the Related Art Carbon-containing refractories have an excellent scope of application and are rapidly expanding in recent years because they have excellent sponging property and corrosion resistance against slag and molten metal. Among them, unfired refractories using tar pitch or phenolic resin as a binder meet the demand for energy saving. Therefore, carbon-containing refractories combined with various refractory raw materials have various properties. Used for molten metal containers and peripheral equipment.

【0003】これらの炭素含有耐火物のうち、例えば鱗
状黒鉛等の炭素質原料に、焼結マグネシアクリンカ−あ
るいは電融マグネシアクリンカ−等のマグネシア(Mg
O )質原料とを配合したMgO−C耐火物は、転炉・電
気炉等の炉壁に多く使用され、飛躍的に炉寿命を延長し
ている。
Of these carbon-containing refractories, for example, a carbonaceous raw material such as scaly graphite is added to magnesia (Mg) such as a sintered magnesia clinker or an electromelting magnesia clinker.
MgO-C refractory compounded with O.sub.3) is widely used for furnace walls such as converters and electric furnaces, and the life of the furnace is dramatically extended.

【0004】しかしながら、このようなMgO−C質耐
火物は、組織内の結合部が本質的に酸化物との結合性の
ない炭素結合に依存しているため、熱間強度が低いこ
と、および強い酸化性雰囲気下において急速に酸化され
て、溶損速度が著しく増大するという欠点があることも
よく知られている。
However, such MgO-C refractory has a low hot strength because the bond in the structure essentially depends on the carbon bond which has no bond with the oxide. It is also well known that it has a drawback that it is rapidly oxidized in a strong oxidizing atmosphere to significantly increase the dissolution rate.

【0005】[0005]

【発明が解決しようとする課題】このMgO−C質耐火
物の欠点である耐酸化性、熱間強度特性を改善するた
め、Al、Si、Mg等の易酸化性金属を添加したり、
4 C、SiC等の炭化物を添加したり、あるいは六硼
化珪素SiB6 を添加することによって、耐火物の稼働
時にB2 3 - SiO2 系ガラス相、並びにB2 3
耐火骨材とが稼働時の高温下で反応して生成する高粘性
融液による被膜で炭素質原料を被覆させる方法等が提案
されている。
In order to improve the oxidation resistance and hot strength characteristics, which are the drawbacks of this MgO-C type refractory, an easily oxidizable metal such as Al, Si or Mg is added,
By adding a carbide such as B 4 C or SiC, or adding silicon hexaboride SiB 6 , a B 2 O 3 -SiO 2 glass phase as well as B 2 O 3 and a fireproof bone during the operation of the refractory There has been proposed a method of coating a carbonaceous raw material with a coating made of a high-viscosity melt that is generated by a reaction with a material at a high temperature during operation.

【0006】しかしながら、上記の易酸化性金属や炭化
物を添加する方法による炭素質原料の酸化防止効果は、
一定の向上はみられるものの、充分満足のいくものでは
ない。また、上記六硼化珪素を添加する方法では、上記
高粘性融液による安定な被膜を形成するまでに時間がか
かり、稼働条件によっては溶損あるいは摩耗によって耐
火物の表面に損傷を受けることが多い。
However, the effect of preventing the oxidation of the carbonaceous raw material by the method of adding the above-mentioned oxidizable metal or carbide is
Although there is some improvement, it is not completely satisfactory. Further, in the method of adding silicon hexaboride, it takes time to form a stable coating film of the high-viscosity melt, and depending on operating conditions, the surface of the refractory material may be damaged by melting or abrasion. Many.

【0007】[0007]

【課題を解決するための手段】本発明は、上記のような
点に鑑みたもので、上記の課題を解決するために、炭素
質原料5〜30重量%、マグネシア質耐火原料70〜9
5重量%を含有する耐火材料に対し、珪化チタンの粉末
を外掛けで0.1〜10重量%添加したことを特徴とする
炭素含有塩基性耐火物を提供するにある。
The present invention has been made in view of the above points, and in order to solve the above problems, a carbonaceous raw material of 5 to 30% by weight and a magnesia refractory raw material of 70 to 9 are used.
It is another object of the present invention to provide a carbon-containing basic refractory, which is obtained by adding 0.1 to 10% by weight of titanium silicide powder to a refractory material containing 5% by weight.

【0008】[0008]

【作用】本発明によれば、炭素質原料5〜30重量%、
マグネシア質耐火原料70〜95重量%を含有する耐火
材料に対し、珪化チタンの粉末を外掛けで0.1〜10重
量%添加することによって、高温下で炭素により大きい
酸素親和力を示して、チタニア、シリカを生成して耐火
物の内外面を補強し、耐スポ−リング性、強度、耐酸化
性を改善することができる。
According to the present invention, the carbonaceous raw material is 5 to 30% by weight,
By adding 0.1-10% by weight of titanium silicide powder to the refractory material containing 70-95% by weight of magnesia refractory raw material, titanium oxide shows a greater oxygen affinity to carbon at high temperature, and titania , Silica can be generated to reinforce the inner and outer surfaces of the refractory, and the sparkling resistance, strength, and oxidation resistance can be improved.

【0009】[0009]

【実施例】本発明の炭素含有塩基性耐火物は、炭素質原
料5〜30重量%、マグネシア質耐火材料70〜95重
量%を含有する耐火材料に対し、珪化チタンの粉末を外
掛けで0.1〜10重量%添加したことを特徴としてい
る。
EXAMPLE A carbon-containing basic refractory material of the present invention is obtained by applying titanium silicide powder to a refractory material containing 5 to 30% by weight of a carbonaceous raw material and 70 to 95% by weight of a magnesia refractory material. The feature is that 0.1 to 10% by weight is added.

【0010】上記の炭素質原料としては、例えば鱗状黒
鉛、土状黒鉛、石油コ−クス、石炭ピッチ、コ−クス、
鋳物用コ−クス、カ−ボンブラック等の公知の材料を使
用することができる。この中、鱗状黒鉛が最も好まし
い。上記炭素質原料の粒径としては特に制限するもので
なく、適宜選択することができるが、通常1mm以下程度
のものを使用するのが好ましい。
Examples of the above carbonaceous raw materials include scaly graphite, earthy graphite, petroleum coke, coal pitch, coke,
Known materials such as foundry coke and carbon black can be used. Of these, scaly graphite is the most preferable. The particle size of the carbonaceous raw material is not particularly limited and can be appropriately selected, but it is usually preferable to use a particle size of about 1 mm or less.

【0011】マグネシア質耐火原料としては、焼結マグ
ネシアクリンカ−、電融マグネシア、天然マグネシアク
リンカ−等を使用でき、70〜90重量%を配合量とす
るものである。
Sintered magnesia clinker, electrofused magnesia, natural magnesia clinker and the like can be used as the magnesia refractory raw material, and the blending amount is 70 to 90% by weight.

【0012】上記炭素質原料の配合量は、該耐火物の適
用対象によって異なるが、耐火材料全量に対して5〜3
0重量%が好ましい。例えば、鱗状黒鉛を炭素質原料と
して添加する場合、鱗状黒鉛が5重量%未満となると、
耐スポ−リング性が低下する等の炭素含有耐火物の長所
を充分発揮できない。また、その配合量が30重量%を
超えると、耐食性が低下して好ましくない。
The blending amount of the carbonaceous raw material varies depending on the object to which the refractory is applied, but is 5 to 3 with respect to the total amount of the refractory material.
0% by weight is preferred. For example, when scaly graphite is added as a carbonaceous raw material and the scaly graphite is less than 5% by weight,
The advantages of carbon-containing refractory, such as deterioration in sponging resistance, cannot be fully exerted. Further, if the blending amount exceeds 30% by weight, the corrosion resistance decreases, which is not preferable.

【0013】上記の耐火材料に添加する珪化チタン(T
iSi2 )の粉末は、高温下で炭素より大きい酸素親和
力を示し、耐火物表面付近で酸化されて、それぞれTi
2(チタニア)およびSiO2 (シリカ)となって、
耐スポ−リング性、強度、耐酸化性を改善できる。
Titanium silicide (T) added to the above refractory materials
The powder of iSi 2 ) exhibits an oxygen affinity higher than that of carbon at high temperature, and is oxidized near the refractory surface to form Ti
O 2 (titania) and SiO 2 (silica),
The spoiling resistance, strength, and oxidation resistance can be improved.

【0014】すなわち、上記TiO2 、SiO2 の生成
に伴う体積の膨張によって、該耐火物の成形時にできた
表面付近の粒子間隙をほぼ完全に塞いで緻密化し、耐火
物の機械的強度を増すとともに耐酸化性を向上させるこ
とができる。また、SiO2およびTiO2 はMgOと
反応し、SiO2 は2MgO・TiO2 (フォルステラ
イト)を生成し、一方TiO2 は2MgO・TiO2
形成して強度の向上に寄与する。
That is, the expansion of the volume associated with the formation of TiO 2 and SiO 2 almost completely closes the particle gaps formed in the surface of the refractory near the surface to increase the mechanical strength of the refractory. At the same time, the oxidation resistance can be improved. Further, SiO 2 and TiO 2 react with MgO, and SiO 2 produces 2MgO.TiO 2 (forsterite), while TiO 2 forms 2MgO.TiO 2 and contributes to the improvement of strength.

【0015】さらに、上記TiSi2 は、耐火物の内部
においてCOと反応し、TiSi2+6CO → Ti
2 +2SiO2 +6CのようにTiO2 、SiO2
よび炭素を生成し、酸化消失した炭素を補う。また、そ
の1部は炭素と反応し、TiSi2 +3C → TiC
+2SiCのように炭化チタン、炭化珪素を形成して組
織を強固にする。
Further, the TiSi 2 reacts with CO inside the refractory material, and TiSi 2 + 6CO → Ti
Like O 2 + 2SiO 2 + 6C, it forms TiO 2 , SiO 2 and carbon, and supplements carbon that has disappeared due to oxidation. In addition, a part of it reacts with carbon, and TiSi 2 + 3C → TiC
Titanium carbide and silicon carbide are formed like + 2SiC to strengthen the structure.

【0016】TiSi2 の粉末の粒径は、反応性、均一
性、分散性、反応活性等の面から250μm以下、特に
44μm以下のものを使用するのがより好ましい。
The particle size of the TiSi 2 powder is preferably 250 μm or less, more preferably 44 μm or less in view of reactivity, uniformity, dispersibility, reaction activity and the like.

【0017】TiSi2 の粉末の添加量は、炭素質原料
を含む耐火材料に対し、外掛けで0.1〜10重量%とし
ている。上記添加量が0.1重量%未満では所期の効果が
得らず、一方10重量%を超えると耐酸化性の点では支
障はないが、耐食性が低下して好ましくない。
The TiSi 2 powder is added in an amount of 0.1 to 10% by weight based on the refractory material containing the carbonaceous raw material. If the addition amount is less than 0.1% by weight, the desired effect cannot be obtained, while if it exceeds 10% by weight, there is no problem in terms of oxidation resistance, but corrosion resistance decreases, which is not preferable.

【0018】なお、上記炭素含有耐火物には、残留炭素
量の多い、つまり高炭素収率を有し、かつ成形時の作業
性に優れるタ−ルピッチ、フェノ−ルレジン等のバイン
ダ−を配合することができるが、作業性および価格の点
でフェノ−ルレジンの使用が好ましい。
The carbon-containing refractory material contains a binder such as tar pitch or phenol resin, which has a large amount of residual carbon, that is, has a high carbon yield and is excellent in workability during molding. However, the use of phenolic resin is preferable in terms of workability and cost.

【0019】[0019]

【試験例】次に、本発明の実施例を比較例と比較し、本
発明の特徴とするところをより一層明確にする。
[Test Example] Next, the features of the present invention will be further clarified by comparing Examples of the present invention with Comparative Examples.

【0020】次ぺ−ジの表1の実施例1〜5および比較
例1〜6に示す各試料は、焼結マグネシア60重量%、
電融マグネシア20重量%、鱗状黒鉛20重量%、フェ
ノ−ルレジン外掛3重量%、ピッチ外掛2重量%を配合
した耐火材料に、表1の上欄に示すようにTiSi2
末や、金属アルミニウム、金属珪素、炭化硼素を所定量
添加した。そして、常温で約50分間混練した後、10
00Kgf/cm2 の圧力で40×40×160mmの形状に加
圧成形を行い、180℃で18時間熱処理したものであ
る。表1下欄に上記各試片の特性を示している。
The samples shown in Examples 1 to 5 and Comparative Examples 1 to 6 in Table 1 on the next page are 60% by weight of sintered magnesia,
A refractory material containing 20% by weight of electro-melted magnesia, 20% by weight of scaly graphite, 3% by weight of phenol resin outer shell and 2% by weight of outer shell of pitch, as shown in the upper column of Table 1, TiSi 2 powder, metallic aluminum, Predetermined amounts of metallic silicon and boron carbide were added. Then, after kneading at room temperature for about 50 minutes, 10
It is obtained by press-molding into a shape of 40 × 40 × 160 mm at a pressure of 00 Kgf / cm 2 and heat-treating at 180 ° C. for 18 hours. The lower column of Table 1 shows the characteristics of each of the above test pieces.

【0021】比 較 表Comparison table

【表1】 [Table 1]

【0022】表1において、1500℃、2時間の酸化
焼成後の重量減少率および脱炭層の厚さ等の数値は、相
対的に本発明の実施例1〜6が高い値を示し、耐酸化性
が向上したことを示している。
In Table 1, the numerical values such as the weight loss rate after the oxidation firing at 1500 ° C. for 2 hours and the thickness of the decarburized layer are relatively high in Examples 1 to 6 of the present invention, and the oxidation resistance is high. It shows that the property has improved.

【0023】次に、得られた耐火物を塩基度、すなわち
CaO/SiO2 重量比が2.0のスラグをもって、16
50℃、2時間のロ−タリ−スラグテストに供し、比較
例1の侵食量を100として、各試料の侵食量を測定し
て、表1の最下欄に示す溶損指数を算出した。その結
果、本発明例はいずれも低い溶損指数を示しており、本
発明の実施例は比較例に対して、スラグに対する耐食性
が極めて優れている。
Next, the obtained refractory material was treated with a basicity, that is, a slag having a CaO / SiO 2 weight ratio of 2.0 to obtain 16
It was subjected to a rotary slag test at 50 ° C. for 2 hours, the erosion amount of each sample was measured with the erosion amount of Comparative Example 1 being 100, and the erosion index shown in the bottom column of Table 1 was calculated. As a result, all of the examples of the present invention show a low melt loss index, and the examples of the present invention have extremely excellent corrosion resistance against slag as compared with the comparative examples.

【0024】本発明は、上記実施例に限定するものでは
なく、本発明の趣旨を逸脱しない範囲で、珪化チタンの
合金を配合したり、その他に添加物を添加するなど様々
な変形態様が実施可能である。
The present invention is not limited to the above-mentioned embodiments, and various modifications such as addition of an alloy of titanium silicide and addition of other additives are possible without departing from the spirit of the present invention. It is possible.

【0025】[0025]

【発明の効果】以上のように本発明にあっては、従来品
の特徴である優れた耐スポ−リング性に加えて、良好な
強度を有し、耐酸化性にも優れるもので、耐用性を向上
できた炭素含有塩基性耐火物が得られ、炉寿命の一層の
延長に寄与できるものである。
As described above, according to the present invention, in addition to the excellent sponging resistance which is the characteristic of the conventional products, it has good strength and excellent oxidation resistance, so that it is durable. A carbon-containing basic refractory having improved properties can be obtained, which can contribute to further extension of the furnace life.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素質原料5〜30重量%、マグネシア
質耐火原料70〜95重量%を含有する耐火材料に対
し、珪化チタンの粉末を外掛けで0.1〜10重量%添加
したことを特徴とする炭素含有塩基性耐火物。
1. Titanium silicide powder is added 0.1 to 10% by weight to a refractory material containing 5 to 30% by weight of carbonaceous raw material and 70 to 95% by weight of magnesia refractory raw material. Characteristic basic refractory material containing carbon.
JP4152735A 1992-05-19 1992-05-19 Carbon-containing basic refractory Pending JPH05319907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152735A JPH05319907A (en) 1992-05-19 1992-05-19 Carbon-containing basic refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4152735A JPH05319907A (en) 1992-05-19 1992-05-19 Carbon-containing basic refractory

Publications (1)

Publication Number Publication Date
JPH05319907A true JPH05319907A (en) 1993-12-03

Family

ID=15547018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152735A Pending JPH05319907A (en) 1992-05-19 1992-05-19 Carbon-containing basic refractory

Country Status (1)

Country Link
JP (1) JPH05319907A (en)

Similar Documents

Publication Publication Date Title
JPS6343342B2 (en)
JPH0729847B2 (en) Magnesite-Carbon refractory
JPH05319907A (en) Carbon-containing basic refractory
JPH0733513A (en) Magnesia-carbon brick and its production
JPH11322405A (en) Low carbon refractory and its production
JP2950622B2 (en) Carbon containing refractories
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JPH05319902A (en) Carbon-containing basic refractory
JP2001192259A (en) Spinel-carbonaceous brick for hearth of direct current electric furnace
JPH05170519A (en) Magnesia-carbonaceous refractory
JPH07126063A (en) Carbon-containing basic refractory
JPH05170524A (en) Alumina-carbonaceous refractory
JPH07172907A (en) Carbon-containing refractory
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPH05208861A (en) Carbon-containing alumina refractories
JP2687214B2 (en) Carbon containing refractories
JPH078738B2 (en) Refractory brick for refining molten metal containing graphite
JPH0551247A (en) Carbon-containing unfired refractory
JP2610280B2 (en) Mud material for blast furnace taphole
JPH0925156A (en) Refractory material containing carbon
JPH02283656A (en) Carbon-containing refractory
JPH08319151A (en) Refractory containing carbon
JPH04342457A (en) Carbon-containing unburned refractory
KR19990059266A (en) High Magnesium-Carbon Refractory
JPH0465353A (en) Carbon-containing unburnt refractory