JPH04342457A - Carbon-containing unburned refractory - Google Patents

Carbon-containing unburned refractory

Info

Publication number
JPH04342457A
JPH04342457A JP3116295A JP11629591A JPH04342457A JP H04342457 A JPH04342457 A JP H04342457A JP 3116295 A JP3116295 A JP 3116295A JP 11629591 A JP11629591 A JP 11629591A JP H04342457 A JPH04342457 A JP H04342457A
Authority
JP
Japan
Prior art keywords
carbon
refractory
weight
raw material
containing unburned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3116295A
Other languages
Japanese (ja)
Inventor
Kunio Tsunetsugu
恒次 邦男
Saburo Miyagawa
宮川 三郎
Hirotaka Shintani
新谷 宏隆
Masao Oguchi
征男 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP3116295A priority Critical patent/JPH04342457A/en
Publication of JPH04342457A publication Critical patent/JPH04342457A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To further improve the oxidation resistance and the corrosion resistance of a carbon-containing unburned refractory. CONSTITUTION:The objective carbon-containing unburned refractory has a composition obtained by adding an Al-Zr alloy powder having an Al/Zr atomic ratio within a range of (9/1) to (1/3) in an amount of 0.5-10wt.% by outer percentage to a fire-resistant material composed of 5-30wt.% carbonaceous raw material and 70-95wt.% fire-resistant MgO-based material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は耐火物に関し、特に炭素
含有不焼成耐火物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to refractories, and more particularly to carbon-containing unfired refractories.

【0002】0002

【従来の技術】炭素含有耐火物は優れた耐スポーリング
性を備えるとともに、スラグや溶融金属に対する耐食性
を有することから、近年その適用範囲は急速に拡大しつ
つあり、その中でもタールピッチやフェノールレジンを
結合剤とした不焼成耐火物は省エネルギー化の要請にも
適合することから、種々の耐火物原料と組合わせた炭素
含有耐火物が各種溶融金属容器や周辺設備に供せられて
いる。これらの炭素(C)含有不焼成耐火物のうち、例
えば鱗状黒鉛等の炭素質原料に、例えば焼結マグネシア
クリンカーあるいは電融マグネシアクリンカー等のマグ
ネシア(MgO)質原料とを配合したMgO−C質耐火
物は、転炉・電気炉等の炉壁に多く使用され、飛躍的な
炉寿命の延長に寄与している。
[Prior Art] Carbon-containing refractories have excellent spalling resistance and corrosion resistance against slag and molten metal, so their range of application has been rapidly expanding in recent years. Since unfired refractories using carbon as a binder meet the demand for energy conservation, carbon-containing refractories combined with various refractory raw materials are used in various molten metal containers and peripheral equipment. Among these carbon (C)-containing unfired refractories, MgO-C materials are made by blending a carbonaceous raw material such as scaly graphite with a magnesia (MgO) raw material such as sintered magnesia clinker or fused magnesia clinker. Refractories are often used in the walls of converters, electric furnaces, etc., and contribute to dramatically extending the life of the furnace.

【0003】0003

【発明が解決しようとする課題】しかしながら、かかる
MgO−C質耐火物は組織内の結合部が、本質的に酸化
物との結合性のない炭素結合に依存しているため、熱間
強度が低いこと、及び強い酸化性雰囲気下においては急
速に酸化されて溶損速度が著しく増大するという欠点が
あることも良く知られている。
[Problems to be Solved by the Invention] However, the bonding parts in the structure of such MgO-C refractories depend on carbon bonds that essentially have no bonding properties with oxides, so the hot strength is low. It is also well known that it has the disadvantage that it is rapidly oxidized in a strongly oxidizing atmosphere, resulting in a marked increase in the rate of erosion.

【0004】このMgO−C質耐火物の欠点である耐酸
化性、熱間強度特性を改善するため、Al、Si、Mg
等の易酸化性金属を添加したり、B4 C、SiC等の
炭化物を添加したり、あるいは六硼化珪素(SiB6 
)の添加によって耐火物稼働時にB2 O3 −SiO
2 系ガラス相、並びにB2 O3 と耐火骨材とが稼
動時の高温下で反応して生成する高粘性融液による被膜
で炭素質原料を被覆させる方法等が提案されている。
[0004] In order to improve the oxidation resistance and hot strength characteristics, which are the drawbacks of this MgO-C refractory, Al, Si, Mg
Adding easily oxidizable metals such as B4C, carbides such as SiC, or silicon hexaboride (SiB6
) by adding B2 O3 -SiO during refractory operation.
A method has been proposed in which a carbonaceous raw material is coated with a film made of a highly viscous melt produced by the reaction between B2 O3 and refractory aggregate at high temperatures during operation.

【0005】しかしながら、上記易酸化性金属や炭化物
を添加する方法による炭素質原料の酸化防止効果は一定
の向上はみられるものの充分満足のいくものではない。 また、上記六硼化珪素を添加する方法では上記高粘性融
液による安定な被膜を形成するまでに時間がかかり、稼
働条件によっては溶損あるいは摩耗によって耐火物表面
に損傷を受けることが多い。
[0005] However, although the above-mentioned method of adding easily oxidizable metals and carbides improves the oxidation prevention effect of carbonaceous raw materials to a certain extent, it is not fully satisfactory. Further, in the method of adding silicon hexaboride, it takes time to form a stable coating with the high viscosity melt, and depending on operating conditions, the refractory surface is often damaged by melting or abrasion.

【0006】本発明は上記従来の事情に鑑みて提案され
たものであって、耐酸化性及び耐食性の更に優れた炭素
含有不焼成耐火物を提供することを目的とする。
The present invention was proposed in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a carbon-containing unfired refractory having even better oxidation resistance and corrosion resistance.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、この発明では以下の手段を採用した。すなわち、炭
素原料5〜30重量%、MgO質耐火材料70〜95重
量%からなる耐火材料に対し、Al/Zr原子比9/1
〜1/3の範囲にあるAl−Zr合金粉末を外掛けで0
.5〜10重量%添加したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following means. That is, for a refractory material consisting of 5 to 30% by weight of carbon raw material and 70 to 95% by weight of MgO refractory material, the Al/Zr atomic ratio is 9/1.
Al-Zr alloy powder in the range of ~1/3 is applied externally to 0.
.. It is added in an amount of 5 to 10% by weight.

【0008】[0008]

【作用】上記構成の炭素質原料としては、例えば鱗状黒
鉛、土状黒鉛、石油コークス、石炭ピッチコークス、鋳
物用コークス、カーボンブラック等の公知の材料を使用
することができるが、このうち、鱗状黒鉛が最も好まし
い。また、上記炭素原料の粒径は特に制限されず、適宜
選別すればよいが、通常1mm以下程度のものを使用す
る。
[Function] As the carbonaceous raw material having the above structure, known materials such as scaly graphite, earthy graphite, petroleum coke, coal pitch coke, foundry coke, and carbon black can be used. Graphite is most preferred. Further, the particle size of the carbon raw material is not particularly limited and may be selected as appropriate, but a particle size of about 1 mm or less is usually used.

【0009】次に、耐火骨材としては、MgO質原料が
いずれも使用できる。MgO質原料としては焼結マグネ
シアクリンカー、電融マグネシアクリンカー、天然マグ
ネシアクリンカー等が使用できる。上記炭素原料の配合
量は該耐火物の適用対象によって異なるが、耐火材料全
量に対し、5〜30重量%が好ましい。例えば、鱗状黒
鉛を炭素質原料として添加する場合、鱗状黒鉛が5重量
%未満となると耐スポーリング性が低下する等、炭素含
有不焼成耐火物の長所を充分に発揮できず、また、配合
量が30重量%を超えると耐食性が低下し、好ましくな
い。
Next, any MgO raw material can be used as the refractory aggregate. As the MgO raw material, sintered magnesia clinker, fused magnesia clinker, natural magnesia clinker, etc. can be used. The blending amount of the carbon raw material varies depending on the object to which the refractory is applied, but is preferably 5 to 30% by weight based on the total amount of the refractory material. For example, when graphite scales are added as a carbonaceous raw material, if the scale graphite content is less than 5% by weight, the spalling resistance will decrease, and the advantages of carbon-containing unfired refractories cannot be fully demonstrated. If it exceeds 30% by weight, corrosion resistance decreases, which is not preferable.

【0010】本発明において、上記のような耐火材料に
添加するAl−Zr合金粉末は、高温下では炭素より大
きい酸素親和力を示し、耐火物表面付近で酸化されて、
それぞれAl2 O3 (アルミナ)およびZrO2 
(ジルコニア)となり、耐食性を向上させる。さらに、
上記Al2O3 −ZrO2 の生成に伴う体積の膨張
によって、該耐火物の形成時にできた表面付近の粒子間
隙をほぼ完全に塞いで緻密化し、機械的強度を増すとと
もに、耐酸化性をさらに向上させることができる。また
、Al2 O3 はMgOと反応し、MgO−Al2 
O3 スピネルを形成して強度向上に付与する。
In the present invention, the Al-Zr alloy powder added to the refractory material as described above exhibits a greater affinity for oxygen than carbon at high temperatures, and is oxidized near the surface of the refractory material.
Al2O3 (alumina) and ZrO2 respectively
(zirconia) and improves corrosion resistance. moreover,
Due to the volume expansion accompanying the formation of Al2O3 -ZrO2, the particle gaps near the surface created during the formation of the refractory are almost completely closed and densified, thereby increasing mechanical strength and further improving oxidation resistance. Can be done. Also, Al2O3 reacts with MgO, forming MgO-Al2
O3 Forms spinel and improves strength.

【0011】更に、上記Al−Zr合金は耐火物内部に
おいて炭素と反応し、炭化アルミニウム、炭化ジルコニ
ウムを形成し、組織を強固にする。本発明でAl−Zr
合金の組成をAl/Zr原子比9/1〜1/3の範囲に
限定する。なぜなら、前記範囲外の組成では使用時に酸
化されて生成するAl2 O3 −ZrO2 が、該A
l−Zr合金の添加量に見合う量は生成されず、所期の
効果を発揮することができない。
Furthermore, the Al-Zr alloy reacts with carbon inside the refractory to form aluminum carbide and zirconium carbide, thereby strengthening the structure. In the present invention, Al-Zr
The composition of the alloy is limited to an Al/Zr atomic ratio of 9/1 to 1/3. This is because if the composition is outside the above range, Al2O3-ZrO2, which is oxidized and generated during use, is
An amount corresponding to the amount of l-Zr alloy added is not produced, and the desired effect cannot be exhibited.

【0012】また、Al−Zr合金粉末の粒径は反応性
、均一性、分散性、反応活性等の面から250μm以下
、更に好ましくは44μm以下のものを使用するのが好
ましい。Al−Zr合金粉末の添加量は、炭素質原料を
含む耐火材料に対し、外掛けで0.5〜10重量%とし
、上記添加量が0.5重量%未満では所期の効果が得ら
れず、一方、10重量%を超えると耐酸化性の点では支
障はないが、耐食性が低下し好ましくない。
Further, the particle size of the Al-Zr alloy powder is preferably 250 μm or less, more preferably 44 μm or less, from the viewpoint of reactivity, uniformity, dispersibility, reaction activity, etc. The amount of Al-Zr alloy powder added is 0.5 to 10% by weight, based on the refractory material containing the carbonaceous raw material, and if the amount added is less than 0.5% by weight, the desired effect cannot be obtained. On the other hand, if it exceeds 10% by weight, there is no problem in terms of oxidation resistance, but corrosion resistance decreases, which is not preferable.

【0013】尚、上記炭素含有不焼成耐火物には残留炭
素量の多い、つまり高炭化収率を有し、かつ、成形時の
作業性に優れるタールピッチ、フェノールレジン等のバ
インダーを配合することができるが、作業性及びコスト
の点でフェノールレジンの使用が好ましい。
[0013] The above-mentioned carbon-containing unfired refractory should be blended with a binder such as tar pitch or phenol resin, which has a large amount of residual carbon, that is, a high carbonization yield, and has excellent workability during molding. However, from the viewpoint of workability and cost, it is preferable to use phenol resin.

【0014】[0014]

【実施例】以下に本発明による実施例及び従来技術によ
る比較例を示し、本発明の特徴とするところをより一層
明確にする。上記実施例1〜6及び比較例1〜7に示す
各試料は、 焼結マグネシア          62重量%電融マ
グネシア          20重量%鱗状黒鉛  
              18重量%フェノールレ
ジン      外掛3重量%なる配合の耐火材原料に
、表1上欄に示すように、Al/Zr原子比の異なるA
l−Zr合金や、金属アルミニウム、金属珪素、炭化硼
素を所定量添加した後、常温にて20分間混練後、95
0kgf/cm2 の圧力で40×40×160mmの
形状に加圧成形を行い、180℃で18時間熱処理して
得られたものである。
EXAMPLES Examples according to the present invention and comparative examples according to the prior art will be shown below to further clarify the characteristics of the present invention. Each of the samples shown in Examples 1 to 6 and Comparative Examples 1 to 7 above includes: sintered magnesia 62% by weight fused magnesia 20% by weight scaly graphite
As shown in the upper column of Table 1, A with different Al/Zr atomic ratios was added to the refractory material raw material with a composition of 18% by weight phenol resin and 3% by weight.
After adding a predetermined amount of l-Zr alloy, metal aluminum, metal silicon, and boron carbide, kneading at room temperature for 20 minutes, 95%
It was obtained by pressure molding into a shape of 40 x 40 x 160 mm at a pressure of 0 kgf/cm 2 and heat-treating at 180° C. for 18 hours.

【0015】表1の下欄に上記各試料の物性を示す。表
1において1500℃で3時間酸化焼成後の重量減少率
および脱炭層の厚さ等の数値は、相対的に実施例1〜6
が高い値を示し、耐酸化性が向上したことを示している
。尚、従来技術による比較例4、5は、実施例3、6よ
りも大きな値が見られるが、熱間曲げ強さにおいて劣る
The physical properties of each of the above samples are shown in the lower column of Table 1. In Table 1, the weight loss rate and thickness of the decarburized layer after oxidation firing at 1500°C for 3 hours are relative to Examples 1 to 6.
showed a high value, indicating that the oxidation resistance was improved. Note that Comparative Examples 4 and 5 based on the prior art have larger values than Examples 3 and 6, but are inferior in hot bending strength.

【0016】次に得られた耐火物を塩基度すなわちCa
O/SiO2 重量比が2.0のスラグを以て、165
0℃で3時間のロータリースラグテストに供し、比較例
1の侵食量を100として、各試料の侵食量を測定して
、表1の最下欄にしめす溶損指数を算出したところ、本
発明品はいずれも低い溶損指数を示し、本実施例は比較
例に対し、スラグに対する耐食性が極めて優れているこ
とがわかる。
[0016] Next, the obtained refractory was adjusted to basicity, that is, Ca
With a slag with an O/SiO2 weight ratio of 2.0, 165
The erosion amount of each sample was measured by subjecting it to a rotary slag test at 0°C for 3 hours, setting the erosion amount of Comparative Example 1 as 100, and calculating the erosion index shown in the bottom column of Table 1. All of the products showed a low corrosion index, and it can be seen that the present example has extremely superior corrosion resistance against slag compared to the comparative example.

【0017】本発明は上記実施例に限られるものではな
く、本発明の主旨を逸脱しない範囲で様々な応用が可能
であることは言うまでもない。
It goes without saying that the present invention is not limited to the above-mentioned embodiments, and that various applications are possible without departing from the spirit of the present invention.

【0018】[0018]

【表1】[Table 1]

【0019】[0019]

【発明の効果】上記実施例の結果からもわかるように、
炭素質原料を含む耐火材料にAl−Zr合金を添加した
本発明による炭素含有不焼成耐火物は、従来の特徴であ
る優れた耐スポーリング性に加えて、良好な強度を有し
、耐酸化性にも優れる。従って、本発明によると従来品
よりも優れた耐用性を備えた炭素含有不焼成耐火物が得
られ、炉寿命のさらなる延長に寄与するものである。
[Effect of the invention] As can be seen from the results of the above examples,
The carbon-containing unfired refractory according to the present invention, which is made by adding an Al-Zr alloy to a refractory material containing a carbonaceous raw material, has good strength and oxidation resistance in addition to the excellent spalling resistance characteristic of conventional materials. It also has excellent sex. Therefore, according to the present invention, a carbon-containing unfired refractory having superior durability than conventional products can be obtained, contributing to further extension of furnace life.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  炭素質原料5〜30重量%、MgO質
耐火材料70〜95重量%からなる耐火材料に対し、A
l/Zr原子比が9/1〜1/3の範囲にあるAl−Z
r合金粉末を外掛けで0.5〜10重量%添加したこと
を特徴とする炭素含有不焼成耐火物。
Claim 1: A
Al-Z with l/Zr atomic ratio in the range of 9/1 to 1/3
A carbon-containing unfired refractory, characterized in that 0.5 to 10% by weight of r-alloy powder is added thereto.
JP3116295A 1991-05-21 1991-05-21 Carbon-containing unburned refractory Pending JPH04342457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3116295A JPH04342457A (en) 1991-05-21 1991-05-21 Carbon-containing unburned refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3116295A JPH04342457A (en) 1991-05-21 1991-05-21 Carbon-containing unburned refractory

Publications (1)

Publication Number Publication Date
JPH04342457A true JPH04342457A (en) 1992-11-27

Family

ID=14683494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3116295A Pending JPH04342457A (en) 1991-05-21 1991-05-21 Carbon-containing unburned refractory

Country Status (1)

Country Link
JP (1) JPH04342457A (en)

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
JP2015189605A (en) magnesia carbon brick
JPS6343342B2 (en)
JPH04342457A (en) Carbon-containing unburned refractory
JP4160796B2 (en) High thermal shock resistant sliding nozzle plate brick
JPH11322405A (en) Low carbon refractory and its production
JPH01286950A (en) Carbon-containing refractory
JP2868809B2 (en) Magnesia carbon brick
JPH05319902A (en) Carbon-containing basic refractory
JPH0585805A (en) Carbon-containing fire-resistant material
JPH04231371A (en) Carbon-containing refractory
JPH05170519A (en) Magnesia-carbonaceous refractory
JPH0510299B2 (en)
JPH03205339A (en) Carbon-containing refractory
JPH07172907A (en) Carbon-containing refractory
JPH05170524A (en) Alumina-carbonaceous refractory
JPH0551247A (en) Carbon-containing unfired refractory
JPH05319898A (en) Carbon containing refractory
JPH03205350A (en) Carbon-containing unburned refractory
JPH05208861A (en) Carbon-containing alumina refractories
JPH0465352A (en) Carbon-containing unburnt refractory
JPH0465353A (en) Carbon-containing unburnt refractory
JPH05319907A (en) Carbon-containing basic refractory
JPH0416547A (en) Carbon-containing refractory
JPH02283656A (en) Carbon-containing refractory