JPH05317878A - High-temp. anaerobic treatment for organic waste water - Google Patents

High-temp. anaerobic treatment for organic waste water

Info

Publication number
JPH05317878A
JPH05317878A JP12730392A JP12730392A JPH05317878A JP H05317878 A JPH05317878 A JP H05317878A JP 12730392 A JP12730392 A JP 12730392A JP 12730392 A JP12730392 A JP 12730392A JP H05317878 A JPH05317878 A JP H05317878A
Authority
JP
Japan
Prior art keywords
high temperature
acid
tank
methane
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12730392A
Other languages
Japanese (ja)
Other versions
JP3134493B2 (en
Inventor
Takayuki Otsuki
孝之 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP12730392A priority Critical patent/JP3134493B2/en
Publication of JPH05317878A publication Critical patent/JPH05317878A/en
Application granted granted Critical
Publication of JP3134493B2 publication Critical patent/JP3134493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE:To stably and efficiently proceed the reaction in a high-temp. acid producing tank, to minimize the volume of the tank and to enable a stable and high-load operation by specifying a free organic acid concentration in the high-temp. acid producing tank. CONSTITUTION:Raw water is introduced to the high-temp. acid producing tank 1 together with circulating water from a high-temp. methane producing tank 2 which is returned via a piping 13 to produce the acid. The circulating rate is adjusted so that the COD concentration of inflow water to the high-temp. acid producing tank 1 is made at 1000mg/l. In the high-temp. acid producing tank 1, the circulating rate is properly adjusted by considering the relation among the raw water concentration, circulating water quantity, inflow water concentration, residence time and pH so that the free organic acid concentration is <=400mg/l. The pH in the high-temp. acid producing tank 1 is controlled to 6-7 for controlling methane fermentation. Thus, both acid producing efficiency in the high-temp. acid producing tank and methane producing efficiency in the high-temp. methane producing tank can be maintained high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明の有機性排水の高温嫌気性
処理方法に係り、特に、有機性排水を高温酸生成槽に導
き、有機酸を生成させ、次いで高温酸生成槽の流出水を
高温メタン生成槽に導き、メタンを生成させる有機性排
水の高温嫌気性処理方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature anaerobic treatment method for organic wastewater, in particular, introducing the organic wastewater into a high temperature acid generation tank to generate an organic acid, and then treating the outflow water of the high temperature acid generation tank. The present invention relates to improvement of a high-temperature anaerobic treatment method for organic wastewater which is introduced into a high-temperature methane production tank and produces methane.

【0002】[0002]

【従来の技術】従来、有機性排水、特に、糖系排水の高
温嫌気性処理において、45℃以上60℃以下の高温領
域においても、メタン発酵工程の前段階で酸生成を行な
うことにより、メタン発酵槽の安定性を増し、槽負荷を
高めることができることが知られている。
2. Description of the Related Art Conventionally, in the high-temperature anaerobic treatment of organic wastewater, particularly sugar-based wastewater, even in a high temperature range of 45 ° C. or higher and 60 ° C. or lower, acid generation is carried out in the preceding stage of the methane fermentation process to produce methane. It is known that the stability of the fermentor can be increased and the tank load can be increased.

【0003】しかして、このような2槽式の嫌気性処理
において、メタン発酵処理水を原水に混合することによ
り、酸生成槽に必要なpH調整剤(アルカリ)の節減を
図る方法が提案されている(特公平3−7439)。
In such a two-tank type anaerobic treatment, however, a method has been proposed in which the pH adjusting agent (alkali) required for the acid production tank is reduced by mixing the methane fermentation treated water with the raw water. (Japanese Patent Publication No. 3-7439).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来、
高温領域における酸生成及びメタン生成の2槽式嫌気性
処理において、酸生成工程、メタン生成工程のいずれに
ついても詳細な検討結果の報告がなされた例は少なく、
その好適な運転条件等については明確にされていないの
が現状である。
[Problems to be Solved by the Invention] However, in the past,
In the two-tank type anaerobic treatment of acid production and methane production in a high temperature region, there are few cases where detailed examination results have been reported for both the acid production process and the methane production process,
At present, the suitable operating conditions are not clarified.

【0005】特に、pHの最適条件及び原水濃度に関す
る検討はなされておらず、このことが実装置設計及び運
転方法の確立の障害となっていた。
In particular, no study has been made on the optimum conditions of pH and the concentration of raw water, which has been an obstacle to the design of actual equipment and the establishment of operating methods.

【0006】本発明は上記従来の実情に鑑みてなされた
ものであって、有機性排水を高温酸生成槽に導き、有機
酸を生成させ、次いで高温酸生成槽の流出水を高温メタ
ン生成槽に導き、メタンを生成させる有機性排水の高温
嫌気性処理方法において、 高温酸生成槽の反応を安定して効率的に進行させる
ための運転条件を明確にし、高温酸生成槽の容積を最小
化することでイニシャルコストを低減し、かつ、安定し
た高負荷運転を可能とする。又は 原水濃度を必要以上に希釈することなく酸生成及び
メタン発酵を効率的に行なう方法を提供し、昇温に必要
なエネルギーを最小限に抑制しつつ、メタン発酵工程を
効率的に行ない、更に、必要とするアルカリ量の低減効
果によりランニングコストを低減する。有機性排水の高
温嫌気性処理方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, in which organic waste water is introduced into a high temperature acid generation tank to generate an organic acid, and then the outflow water of the high temperature acid generation tank is changed to a high temperature methane generation tank. In the high-temperature anaerobic treatment method for organic wastewater that produces methane, clarify the operating conditions for the stable and efficient progress of the reaction in the high-temperature acid production tank, and minimize the volume of the high-temperature acid production tank. By doing so, the initial cost can be reduced and stable high load operation can be performed. Alternatively, a method for efficiently performing acid generation and methane fermentation without diluting the raw water concentration more than necessary is provided, and the methane fermentation process is efficiently performed while minimizing the energy required for heating. The running cost is reduced by the effect of reducing the required amount of alkali. It is an object to provide a high temperature anaerobic treatment method for organic wastewater.

【0007】[0007]

【課題を解決するための手段】請求項1の有機性排水の
高温嫌気性処理方法は、有機性排水を高温酸生成槽に導
き、有機酸を生成させ、次いで該高温酸生成槽の流出水
を高温メタン生成槽に導き、メタンを生成させる有機性
排水の高温嫌気性処理方法において、前記高温酸生成槽
内の遊離有機酸濃度を400mg/l(即ち400pp
m)以下に調整することを特徴とする。
A method for high temperature anaerobic treatment of organic wastewater according to claim 1, wherein the organic wastewater is introduced into a high temperature acid generation tank to generate an organic acid, and then the outflow water of the high temperature acid generation tank. In a high-temperature anaerobic treatment method of organic waste water for introducing methane to a high-temperature methane production tank to generate methane, the concentration of free organic acid in the high-temperature acid production tank is 400 mg / l (that is, 400 pp
m) It is characterized by adjusting to the following.

【0008】請求項2の有機性排水の高温嫌気性処理方
法は、請求項1の方法において、前記高温メタン生成槽
の流出水の一部を前記高温酸生成槽に循環させることを
特徴とする。
According to a second aspect of the present invention, there is provided a high temperature anaerobic treatment method for organic wastewater, which is characterized in that, in the method of the first aspect, a part of outflow water of the high temperature methane production tank is circulated to the high temperature acid production tank. ..

【0009】請求項3の有機性排水の高温嫌気性処理方
法は、有機性排水を高温酸生成槽に導き、有機酸を生成
させ、次いで該高温酸生成槽の流出水を高温メタン生成
槽に導き、メタンを生成させる有機性排水の高温嫌気性
処理方法において、前記高温メタン生成槽内のpHを6
〜7に調整することを特徴とする。
According to a third aspect of the high temperature anaerobic treatment method of organic waste water, the organic waste water is introduced into a high temperature acid generation tank to generate an organic acid, and then the outflow water of the high temperature acid generation tank is changed into a high temperature methane generation tank. In the high-temperature anaerobic treatment method of organic wastewater, in which the pH is set to 6 in the high-temperature methane production tank.
It is characterized by adjusting to ~ 7.

【0010】請求項4の有機性排水の高温嫌気性処理方
法は、有機性排水を高温酸生成槽に導き、有機酸を生成
させ、次いで該高温酸生成槽の流出水を高温メタン生成
槽に導き、メタンを生成させる有機性排水の高温嫌気性
処理方法において、前記高温酸生成槽内の遊離有機酸濃
度を400mg/l以下に調整するとともに、前記高温
メタン生成槽内のpHを6〜7に調整することを特徴と
する。
In the method for high temperature anaerobic treatment of organic waste water according to claim 4, the organic waste water is introduced into a high temperature acid generation tank to generate an organic acid, and then the outflow water of the high temperature acid generation tank is changed into a high temperature methane generation tank. In the high temperature anaerobic treatment method of organic waste water for producing methane, the free organic acid concentration in the high temperature acid generation tank is adjusted to 400 mg / l or less, and the pH in the high temperature methane generation tank is adjusted to 6 to 7 It is characterized by adjusting to.

【0011】即ち、本発明者らは、2槽式の高温嫌気性
処理方法の運転方法及び処理条件を確立させるべく、高
温領域の酸生成特性及びメタン発酵特性について鋭意検
討を重ねた結果、高温酸生成槽においては遊離有機酸濃
度の総量が400mg/lを超える条件では有機酸生成
反応の速度が著しく損なわれ、一方、高温メタン生成槽
ではpHが7を超える環境では酢酸資化性メタン生成活
性が著しく損なわれることを見出し、この知見をもと
に、本発明を完成させた。
That is, the inventors of the present invention conducted extensive studies on the acid production characteristics and methane fermentation characteristics in the high temperature region in order to establish the operating method and the processing conditions of the two-tank type high temperature anaerobic treatment method, and as a result, In the acid production tank, the rate of organic acid production reaction is significantly impaired under the condition that the total amount of free organic acid concentration exceeds 400 mg / l, while in the high temperature methane production tank, acetic acid assimilating methane production occurs in the environment where pH exceeds 7. It was found that the activity was significantly impaired, and the present invention was completed based on this finding.

【0012】なお、本発明における高温嫌気処理の処理
温度範囲は、通常、45〜60℃の高温領域であり、2
0℃以上45℃未満の一般的な中温領域の嫌気処理に比
べて高い処理温度を採用する。
The treatment temperature range of the high temperature anaerobic treatment in the present invention is usually a high temperature region of 45 to 60 ° C.
A treatment temperature higher than that of a general anaerobic treatment in the medium temperature range of 0 ° C. or more and less than 45 ° C. is adopted.

【0013】また、本発明の方法において、高温酸生成
槽は、懸濁式でも流動床式でも良く、また、UASB
(上向流式スラッジブランケット)式のものであっても
良い。
In the method of the present invention, the high temperature acid generator may be a suspension type or a fluidized bed type, and the UASB may be used.
(Upflow sludge blanket) type may be used.

【0014】一方、高温メタン生成槽は、例えば、特公
平1−59037に開示される流動床式嫌気処理装置で
生成したペレット状の汚泥を高温で馴養して用いたUA
SB装置が好ましい。
On the other hand, the high temperature methane production tank is, for example, a UA which is prepared by acclimatizing pelletized sludge produced at the fluidized bed type anaerobic treatment apparatus disclosed in Japanese Patent Publication No. 1-59037 at high temperature.
SB devices are preferred.

【0015】[0015]

【作用】本発明者は、有機性排水の高温嫌気性処理方法
における高温領域の酸生成特性、特に反応の結果生成す
る有機酸の影響を明らかにするため、合成糖系排水を用
いた検討を行なった結果、遊離形態の有機酸濃度の総量
が400mg/lを超えるような条件では、高温酸生成
槽(ケモスタット槽)での有機酸生成が24時間を超え
ても充分に進まず、系が不安定で、実用的な運転が難し
くなることを見出した。この条件は20℃以上45℃未
満の中温領域で報告されている有機酸濃度よりも厳し
く、中温領域とは異なった運転方法が要求されることが
明らかになった。
The present inventor conducted a study using synthetic sugar-based wastewater in order to clarify the acid generation characteristics in the high temperature region in the high temperature anaerobic treatment method of organic wastewater, especially the influence of the organic acid produced as a result of the reaction. As a result, under the condition that the total amount of organic acid concentration in free form exceeds 400 mg / l, the organic acid production in the high temperature acid production tank (chemostat tank) does not proceed sufficiently even if it exceeds 24 hours, and the system becomes It was found to be unstable and difficult to drive practically. This condition is stricter than the organic acid concentration reported in the medium temperature range of 20 ° C. or higher and lower than 45 ° C., and it has become clear that an operating method different from the medium temperature range is required.

【0016】従って、本発明の請求項1,4の方法で
は、高温酸生成槽において、酸生成が良好に進行する条
件として生成有機酸の遊離態濃度合計の上限を400m
g/lと定め、この条件を基に、この条件を満たすこと
ができるように、原水濃度及び高温酸生成槽のpH範囲
を規定し、安定して効率的な運転を行なう。
Therefore, in the method of claims 1 and 4 of the present invention, the upper limit of the total free state concentration of the produced organic acid is 400 m as a condition for favorably promoting the acid production in the high temperature acid production tank.
g / l, and based on this condition, the raw water concentration and the pH range of the high temperature acid generation tank are defined so that this condition can be satisfied, and stable and efficient operation is performed.

【0017】高温酸生成槽内の遊離有機酸濃度は、原水
の濃度及び高温酸生成槽の制御pH値、並びに滞留時間
によって定められるが、これらの制御因子を遊離態有機
酸濃度総量400mg/l以下を指標に制御することに
よって、ケモスタット槽のような比較的単純な装置形態
でも、酸生成反応を安定して維持し、実用に耐える速度
での運転が可能になる。
The free organic acid concentration in the high temperature acid production tank is determined by the concentration of raw water, the control pH value of the high temperature acid production tank, and the residence time. These control factors are set to a total free organic acid concentration of 400 mg / l or less. By controlling by using as an index, even a relatively simple apparatus such as a chemostat tank can stably maintain the acid generation reaction and operate at a speed that can be practically used.

【0018】実際の装置の制御形態は、原水有機物質の
濃度、生成有機酸成分の種類の検討、及び関連する生物
分解速度の評価をもとに、遊離有機酸濃度を400mg
/lに抑えるような制御条件を予め設定するものであっ
ても、装置を運転しながらオンラインで遊離有機酸濃度
を評価して運転条件を変えるものであっても良く、高温
酸生成槽の遊離有機酸濃度を400mg/l以下とする
ための具体的な手法は問わない。
The actual control mode of the apparatus is 400 mg of free organic acid concentration based on the concentration of raw water organic substance, examination of kinds of organic acid components produced, and evaluation of related biodegradation rate.
/ L may be set in advance, or the operating conditions may be changed by online evaluation of the free organic acid concentration while operating the device. A specific method for adjusting the organic acid concentration to 400 mg / l or less does not matter.

【0019】また、本発明者らは、有機性排水の高温嫌
気性処理方法における高温メタン生成槽のメタン生成特
性について検討を行なった結果、高温メタン生成槽のp
Hが7を超える高pH領域では、酢酸資化メタン生成活
性が低下し、処理効率が低下することを見出した。
Further, the present inventors have examined the methane production characteristics of the high temperature methane production tank in the high temperature anaerobic treatment method of organic waste water, and as a result, p
It has been found that in a high pH region where H exceeds 7, the acetic acid assimilating methane-forming activity decreases and the treatment efficiency decreases.

【0020】従って、請求項3,4の方法においては、
高温メタン生成槽のpHは6〜7、好ましくは6.0以
上6.8未満とする。
Therefore, in the method of claims 3 and 4,
The high temperature methane production tank has a pH of 6 to 7, preferably 6.0 or more and less than 6.8.

【0021】なお、本発明において、高温酸生成槽内の
遊離有機酸濃度の測定法としては、次のような方法が挙
げられる。即ち、液体クロマトグラフィーにより、酢
酸、プロピオン酸、酪酸等の濃度を測定し、これらの酸
のpKa値と、酸生成槽のpH値から、遊離有機酸濃度
を求める。
In the present invention, the method for measuring the concentration of free organic acid in the high temperature acid production tank is as follows. That is, the concentrations of acetic acid, propionic acid, butyric acid, etc. are measured by liquid chromatography, and the free organic acid concentration is determined from the pKa values of these acids and the pH value of the acid generator.

【0022】また、次のような酸、アルカリ滴定を利用
する簡便法も用いることができる。即ち、嫌気性処理で
の酸生成工程のように、解離状態で存在する有機酸の種
類が限定されているような系では、酸滴定及びアルカリ
滴定値を用いておおよその有機酸量を推定できることが
知られている。通常、良好に運転されている酸生成槽で
存在する有機酸は、酪酸、酢酸、プロピオン酸などが主
体となっており、これらの酸のpKa値はいずれも4.
8前後であることを利用する。
Further, the following simple method utilizing acid or alkali titration can also be used. That is, in a system in which the types of organic acids existing in the dissociated state are limited, such as the acid generation step in anaerobic treatment, it is possible to estimate the approximate amount of organic acid using acid titration and alkali titration values. It has been known. Usually, butyric acid, acetic acid, propionic acid, and the like are the main organic acids present in a well-operated acid generator, and the pKa values of these acids are all 4.
Use that is around 8.

【0023】操作は概略以下のような手順に従う。ま
ず、一定量の高温酸生成槽内液に、酸を加え、pHを一
旦所定の値(例えば1.5)にまで低下させる。この時
点で、アルカリ度測定に影響を与える溶存炭酸ガスは除
去される。その後、アルカリ滴定を行ない、pH4.8
前後のアルカリ要求量を滴定曲線から測定する。存在す
る酸のpKaはいずれも4.8前後であることから存在
する有機酸総量がアルカリ要求量から推定することが可
能である。これらの測定は、pH計と連動した自動滴定
装置があれば直ちに可能な操作であり、解析のためのパ
ーソナルコンピュータを付属させればリアルタイムで有
機酸濃度を推定することができる。
The operation generally follows the following procedure. First, an acid is added to a fixed amount of the solution in the high temperature acid generator to temporarily lower the pH to a predetermined value (for example, 1.5). At this point, the dissolved carbon dioxide gas that affects the alkalinity measurement is removed. After that, alkali titration was performed to obtain pH 4.8.
The alkali demand before and after is measured from the titration curve. Since the pKas of the acids present are all around 4.8, the total amount of organic acids present can be estimated from the alkali demand. These measurements can be performed immediately if there is an automatic titrator linked with a pH meter, and if a personal computer for analysis is attached, the organic acid concentration can be estimated in real time.

【0024】請求項2の方法では、請求項1の方法にお
いて、高温メタン生成槽の流出水の一部を高温酸生成槽
に循環させる。この流出水循環による作用機構は以下の
通りである。
According to the method of claim 2, in the method of claim 1, a part of the outflow water of the high temperature methane production tank is circulated to the high temperature acid production tank. The action mechanism of this effluent circulation is as follows.

【0025】即ち、前述の如く、酸生成反応において良
好な速度を維持するためには、遊離の有機酸濃度が40
0mg/lを超えることがないように、高温酸生成槽の
原水の濃度をより薄くするか、もしくは、制御pHの値
を高くするか、いずれかの制御が必要となる。
That is, as described above, in order to maintain a good rate in the acid production reaction, the concentration of free organic acid is 40%.
It is necessary to control either the concentration of the raw water in the high temperature acid generation tank to be thinner or the control pH value to be higher so as not to exceed 0 mg / l.

【0026】今、原水中の糖成分としてグルコースやシ
ュークロースなどの生分解が問題とならない物質を仮定
すると、この遊離の有機酸濃度から、酸生成槽のpHに
応じたおおよその許容原水糖濃度を求めることができ
る。例えば、グルコースをモデル基質として実験的に検
討した結果を基に、有機酸を酪酸(pKa=4.90
1)で代表し、糖の有機酸総量への変換率(40.25
%)から逆算すると、高温酸生成槽で酸生成可能なグル
コース濃度は、pH4.5では1400mg/l、pH
5.0では2200mg/l、pH5.5では4900
mg/l、pH6.0では13000mg/l程度とな
る。
Assuming now that substances such as glucose and sucrose that do not pose a problem of biodegradation as sugar components in the raw water, the free organic acid concentration gives an approximate allowable raw water sugar concentration according to the pH of the acid production tank. Can be asked. For example, based on the results of an experimental study using glucose as a model substrate, the organic acid was changed to butyric acid (pKa = 4.90).
As represented by 1), the conversion rate of sugar to total organic acid (40.25
%), The glucose concentration capable of acid production in the high temperature acid production tank is 1400 mg / l at pH 4.5,
2200 mg / l at 5.0, 4900 at pH 5.5
It becomes about 13000 mg / l at mg / l and pH 6.0.

【0027】一方、常温排水の高温嫌気処理の場合、当
該処理における原水に含有される有機物質から発生させ
たメタンでの昇温を前提とすると、原水COD濃度は1
0000mg/l以上である必要があるが、この場合、
高温酸生成槽のpHは5.8前後に制御する必要があ
る。なお、高温酸生成槽内部でのメタン発酵を抑制する
ためには、pHを6.0以下にすることが望ましいこと
はよく知られている。
On the other hand, in the case of the high temperature anaerobic treatment of normal temperature wastewater, the COD concentration of the raw water is 1 if the temperature is raised by methane generated from the organic substances contained in the raw water in the treatment.
It is necessary to be 0000 mg / l or more, but in this case,
It is necessary to control the pH of the high temperature acid production tank to around 5.8. It is well known that the pH is preferably 6.0 or less in order to suppress methane fermentation inside the high temperature acid production tank.

【0028】更に、高温酸生成槽のpHは、後工程の高
温メタン生成槽のpHから規定されることも考慮する必
要がある。一般に、高温メタン生成槽では、高温酸生成
槽における有機酸成分が消費されるため、カウンタイオ
ンであるアルカリ成分が残留しpHは上がる傾向にあ
る。また、原水中のNやSの含有量も多ければpHが上
がる方向に働くため、高温酸生成槽で必要以上にpHを
上げると、高温メタン生成槽でのpH上昇を招き、メタ
ン生成活性に影響を与える。即ち、本発明者らの研究に
より、メタン生成槽は、pH7を超える高pH領域で
は、酢酸資化メタン生成活性が低下することが判明し
た。特に、高温嫌気ではこの問題は重要になる。この意
味では、原水の濃度が低い方が高温酸生成槽でのpH上
昇のために加えるアルカリ量が低下し、結果的に高温メ
タン生成槽でのpH上昇も抑えられるため有利であるこ
とになる。
Furthermore, it is necessary to consider that the pH of the high temperature acid production tank is regulated by the pH of the high temperature methane production tank in the subsequent step. Generally, in the high temperature methane production tank, the organic acid component in the high temperature acid production tank is consumed, so that the alkaline component which is a counter ion remains and the pH tends to rise. Further, if the content of N or S in the raw water is large, the pH tends to increase. Therefore, raising the pH in the high temperature acid generation tank more than necessary will cause the pH increase in the high temperature methane generation tank, which may affect the methane generation activity. Influence. That is, the research conducted by the present inventors has revealed that the methane production tank has a reduced acetic acid assimilating methane production activity in a high pH range exceeding pH 7. This problem becomes particularly important in high temperature anaerobic conditions. In this sense, it is advantageous that the concentration of raw water is low because the amount of alkali added to increase the pH in the high temperature acid production tank is reduced, and as a result, the pH increase in the high temperature methane production tank is suppressed. ..

【0029】以上の知見をまとめると、高温嫌気処理に
おいて、原水の昇温エネルギーを低減すること、及び、
高温酸生成槽での滞留時間をより長く取るという観点か
らは、原水はできるだけ希釈せず高濃度のまま処理を行
なうことが望ましい。反面、高温酸生成槽での菌体当り
の処理速度や高温メタン生成槽でのpHの上昇を抑制す
ることを考慮すると原水の濃度は低い方が良いことにな
る。このような相反する条件に対する一つの解決策とし
て、請求項2の方法では、高温メタン生成槽の流出水を
高温酸生成槽の流入水の希釈水として循環して用いる。
これにより、高温酸生成槽のpH及び高温メタン生成槽
のpHを適切な値に制御するため、原水を過度に希釈す
る必要がなくなり、従って、昇温に要するエネルギーも
最小限に抑えることが可能となる。また、アルカリ消費
量も低減される。
To summarize the above findings, in the high temperature anaerobic treatment, the heating energy of the raw water is reduced, and
From the viewpoint of taking a longer residence time in the high temperature acid production tank, it is desirable to treat the raw water as high concentration as possible without diluting it. On the other hand, the lower the concentration of raw water is, the better the concentration of raw water in consideration of the treatment rate per cell in the high temperature acid production tank and the suppression of the increase in pH in the high temperature methane production tank. As one solution to such contradictory conditions, in the method of claim 2, the outflow water of the high temperature methane production tank is circulated and used as dilution water of the inflow water of the high temperature acid production tank.
As a result, the pH of the high temperature acid production tank and the pH of the high temperature methane production tank are controlled to appropriate values, so there is no need to excessively dilute the raw water, and therefore the energy required to raise the temperature can also be minimized. Becomes Also, the alkali consumption is reduced.

【0030】なお、この場合、更に、原水のNやSの濃
度をも考慮した上で、原水の最適な希釈倍率を決定する
ことが重要である。本発明では、高温酸生成槽の遊離有
機酸量及び高温メタン生成槽のpH(前述の如く、pH
6〜7とする。)をもとに最適な循環比率を定めること
が好ましく、循環比率は以下のような条件を基に定める
のが好適である。
In this case, it is important to determine the optimum dilution ratio of the raw water after considering the N and S concentrations of the raw water. In the present invention, the amount of free organic acid in the high temperature acid production tank and the pH of the high temperature methane production tank (as described above,
6 to 7. It is preferable to determine the optimum circulation ratio based on the above), and it is preferable to determine the circulation ratio based on the following conditions.

【0031】 高温酸生成槽における原水濃度を10
000mg−COD/l以下にするように、循環水量を
定める。この条件下では、遊離有機酸の合計濃度を40
0mg/l以下に抑えても、pHを5.8以下に抑制で
き、高温酸生成槽内でのメタン発酵を抑制しつつ酸生成
を良好に維持することができる。
The raw water concentration in the high temperature acid generation tank is set to 10
The circulating water amount is determined so as to be 000 mg-COD / l or less. Under these conditions, the total concentration of free organic acid should be 40
Even if it is suppressed to 0 mg / l or less, the pH can be suppressed to 5.8 or less, and the acid production can be favorably maintained while suppressing the methane fermentation in the high temperature acid production tank.

【0032】 の条件で酸生成を行なった場合に、
高温メタン発酵槽内のpHが7を超える場合には、更に
循環水量を上げ、高温酸生成槽でのアルカリ添加量を減
少させ、高温メタン発酵槽のpHを低下させる。
When acid is produced under the conditions of
When the pH in the high temperature methane fermentation tank exceeds 7, the amount of circulating water is further increased, the amount of alkali added in the high temperature acid generation tank is reduced, and the pH of the high temperature methane fermentation tank is lowered.

【0033】 原水濃度が10000mg−COD/
lよりも低い場合に関しても、高温酸生成槽でのアルカ
リ消費量を低減するために、高温酸生成槽流入水の濃度
を低下させる目的で循環を行なうことが望ましい。この
場合の循環量は、過大な循環による動力エネルギーの増
加や、循環水と原水との合計流速を元にした見かけの滞
留時間の低下による短絡流の防止などの観点から、原水
流量の3倍を限度とするのが適当である。
Raw water concentration is 10000 mg-COD /
Even when it is lower than 1, it is desirable to perform circulation for the purpose of reducing the concentration of the inflow water of the high temperature acid generation tank in order to reduce the alkali consumption in the high temperature acid generation tank. In this case, the circulation amount is 3 times the flow rate of raw water from the viewpoint of increasing the power energy due to excessive circulation and preventing short-circuit flow due to the apparent retention time decrease based on the total flow velocity of circulating water and raw water. Is appropriate.

【0034】また、上記〜の運転条件から、原水濃
度についても次のような条件が定められる。 原水の濃度の上限は40000mg−COD/l程
度と考えられ、それ以上の濃度をもつ原水は40000
mg−COD/l以下になるように希釈を行なう。
Further, from the above operating conditions (1) to (4), the following conditions are defined for the raw water concentration. The upper limit of the concentration of raw water is considered to be about 40,000 mg-COD / l, and the raw water having a concentration higher than that is 40000
Dilute so that the concentration becomes mg-COD / l or less.

【0035】[0035]

【実施例】以下に図面を参照して本発明の実施例につい
て詳細に説明する。図1は本発明の一実施方法を示す系
統図である。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a system diagram showing an implementation method of the present invention.

【0036】図中、1は高温酸生成槽、2は高温メタン
生成槽であり、原水は、ポンプP1を備える配管11を
経て高温酸生成槽1に導入され、高温酸生成槽1の流出
水はポンプP2 を備える配管12を経て高温メタン生成
槽2に導入され、この高温メタン生成槽2の流出水の一
部はポンプP3 を備える配管13、11を経て高温酸生
成槽1に循環され、残部は処理水として配管14より系
外へ排出される。高温酸生成槽1及び高温メタン生成槽
2には、それぞれ、NaOH貯槽3,4内のNaOH水
溶液がポンプP4 ,P5 を備える配管15,16を経て
供給される。このポンプP4 ,P5 は各々高温酸生成槽
1及び高温メタン生成槽2に設けたpHコントローラ
5,6に連動する構成とされている。
In the figure, 1 is a high temperature acid production tank, 2 is a high temperature methane production tank, and raw water is introduced into the high temperature acid production tank 1 via a pipe 11 equipped with a pump P 1 and flows out of the high temperature acid production tank 1. Water is introduced into the high temperature methane production tank 2 via a pipe 12 equipped with a pump P 2, and a part of the outflow water of this high temperature methane production tank 2 is introduced into the high temperature acid production tank 1 via pipes 13 and 11 equipped with a pump P 3. It is circulated and the rest is discharged as treated water from the pipe 14 to the outside of the system. The high temperature acid production tank 1 and the high temperature methane production tank 2 are respectively supplied with the NaOH aqueous solution in the NaOH storage tanks 3 and 4 through pipes 15 and 16 equipped with pumps P 4 and P 5 . The pumps P 4 and P 5 are configured to interlock with the pH controllers 5 and 6 provided in the high temperature acid production tank 1 and the high temperature methane production tank 2, respectively.

【0037】本実施例においては、原水を配管13を経
て返送される高温メタン生成槽2からの循環水と共に、
高温酸生成槽1に導入し、酸生成させる。
In this embodiment, the raw water together with the circulating water from the high temperature methane production tank 2 which is returned through the pipe 13,
It is introduced into the high-temperature acid generator tank 1 to generate an acid.

【0038】ここで、原水は、40000mg−COD
/l以下であることが好ましく、原水COD濃度が40
000mg/lを超える場合には、予め希釈を行なう。
Here, the raw water is 40,000 mg-COD.
/ L or less, the raw water COD concentration is 40
If it exceeds 000 mg / l, dilute in advance.

【0039】また、高温酸生成槽1への流入水のCOD
濃度は10000mg/lとなるように、循環水量を調
整する。なお、この循環水量は、原水量の3倍以下とす
るのが好ましい。
COD of the inflow water into the high temperature acid production tank 1
The circulating water amount is adjusted so that the concentration becomes 10000 mg / l. The circulating water amount is preferably 3 times or less than the raw water amount.

【0040】高温酸生成槽1においては、原水濃度、循
環水量、流入水濃度、滞留時間及びpHの関係におい
て、遊離有機酸濃度が400mg/l以下となるように
適宜調整を行なう。なお、高温酸生成槽1内のpHは、
前述の如く、メタン発酵の抑制のために6.0以下とす
るのが好ましい。
In the high temperature acid production tank 1, the free organic acid concentration is appropriately adjusted in view of the raw water concentration, circulating water amount, inflow water concentration, residence time and pH. The pH in the high temperature acid production tank 1 is
As described above, it is preferably 6.0 or less in order to suppress methane fermentation.

【0041】高温酸生成槽1の流出水は次いで配管12
より高温メタン生成槽2に導入され、メタン発酵が行な
われる。この高温メタン生成槽2内のpHは、6〜7、
好ましくは6.0以上6.8未満とするように制御す
る。
The outflow water from the high temperature acid production tank 1 is then piped 12.
It is introduced into the higher temperature methane production tank 2 and methane fermentation is performed. The pH in the high temperature methane production tank 2 is 6 to 7,
Preferably, the control is made to be 6.0 or more and less than 6.8.

【0042】しかして、高温メタン生成槽2の流出水の
一部は配管13より循環水として返送すると共に、残部
は配管14より処理水として排出する。
Therefore, a part of the outflow water from the high temperature methane production tank 2 is returned as circulating water through the pipe 13, and the rest is discharged as treated water through the pipe 14.

【0043】本実施例の方法によれば、高温酸生成槽に
おける酸生成効率及び高温メタン生成槽におけるメタン
生成効率を共に高く維持して、低コストにて効率的な処
理が行なえる。
According to the method of this embodiment, both the acid production efficiency in the high temperature acid production tank and the methane production efficiency in the high temperature methane production tank can be kept high, and efficient processing can be performed at low cost.

【0044】以下に具体的な実験例及び実施例を挙げ
て、本発明をより詳細に説明する。 実験例1 遊離有機酸濃度の高温酸生成への影響をみるために、1
0g/lの濃度のグルコースを単一炭素原とする合成糖
系排水(過剰量のN,P及び微量金属を添加)をモデル
排水として、pHの高温酸生成への影響を検討した。
The present invention will be described in more detail with reference to specific experimental examples and examples. Experimental Example 1 To see the effect of the concentration of free organic acid on high temperature acid production, 1
The effect of pH on high temperature acid production was examined using synthetic sugar-based wastewater (addition of excessive amounts of N, P and trace metals) using glucose at a concentration of 0 g / l as a single carbon source as model wastewater.

【0045】酸生成槽として1.05リットル容のケモ
スタット槽を使用し、温度55℃でpHは4.0、4.
5、5.0、5.5、5.8を下限に、1N NaOH
で各々調整を行なった。表1は、各条件での90%の糖
分解率を目安にした最短滞留時間であるが、実用的には
上限と考えられる24時間の滞留時間でも、pH5.0
以下の条件ではpHが5.0以下に下がるにも至らず系
は維持できなかった。pHを5.5に上げた条件でも系
は非常に不安定で、菌体のウオッシュアウトがしばしば
観察された。
A chemostat tank having a capacity of 1.05 liters was used as an acid generator, and the pH was 4.0 at a temperature of 55 ° C.
Lower limit of 5, 5.0, 5.5, 5.8 to 1N NaOH
Each adjustment was done by. Table 1 shows the shortest retention time based on a 90% sugar decomposition rate under each condition. However, even if the retention time is 24 hours, which is considered to be the upper limit in practice, the pH is 5.0.
Under the following conditions, the pH could not be lowered to 5.0 or lower and the system could not be maintained. Even when the pH was raised to 5.5, the system was very unstable, and washout of bacterial cells was often observed.

【0046】pHを5.8に上げると系を維持すること
が可能になり、この場合最小滞留時間は10時間となっ
た。このpH5.8近傍での酸生成状況の大きな変化
は、遊離有機酸の濃度の影響を示唆しており、この場合
の遊離有機酸濃度の合計は400mg/lであった。
Raising the pH to 5.8 allowed the system to be maintained, in which case the minimum residence time was 10 hours. This large change in the acid generation state near pH 5.8 suggests the influence of the concentration of free organic acid, and the total concentration of free organic acid in this case was 400 mg / l.

【0047】[0047]

【表1】 [Table 1]

【0048】実施例1 原水がグルコースやシュークロースなどの易分解性の糖
基質からなっている場合は、400mg/lの遊離有機
酸濃度の上限値から、原水濃度と高温酸生成槽制御pH
の望ましい領域を規定することができる。その領域を図
2に示す。なお、図2は、高温酸生成が良好に行なわれ
る、遊離有機酸濃度400mg/l以下の領域をハッチ
で示す、原水糖濃度とpHとの関係を示すグラフであっ
て、糖当たりの有機酸生成量の割合は、実際の結果から
0.3g−有機酸/g−糖とし、検討時に主な生成有機
酸成分となった酪酸のpKa値4.9を使用して求めた
ものである。本実施例では、この条件をもとに、図1に
示す本発明に従って、高温酸生成槽の運転条件を定め、
易分解性の糖系排水に対して高負荷処理を実施した例を
示す。
Example 1 When the raw water is composed of an easily decomposable sugar substrate such as glucose or sucrose, the raw water concentration and the high temperature acid production tank control pH are determined from the upper limit of the free organic acid concentration of 400 mg / l.
Of the desired area can be defined. The area is shown in FIG. Note that FIG. 2 is a graph showing the relationship between raw water sugar concentration and pH, in which the region where the concentration of free organic acid is 400 mg / l or less, in which high-temperature acid production is favorably performed, is shown by a hatching, and shows the organic acid per sugar. The ratio of the amount produced is 0.3 g-organic acid / g-sugar based on the actual result, and is obtained by using the pKa value of 4.9 of butyric acid, which was the main produced organic acid component at the time of study. In this example, based on this condition, the operating conditions of the high temperature acid production tank were determined according to the present invention shown in FIG.
An example of high-load treatment of easily degradable sugar-based wastewater is shown.

【0049】原水COD濃度は平均で7960mg/l
であったが、高温メタン生成槽からの処理水を用いて高
温酸生成槽への流入原水を3倍に希釈した(即ち、循環
水量は原水流量の2倍)。酸生成槽への流入CODは平
均2480mg/lであるので、図2のハッチで示した
領域より、pHは5.1以上に制御した。温度は55℃
とした。
COD concentration of raw water is 7960 mg / l on average
However, the raw water flowing into the high temperature acid production tank was diluted three times with the treated water from the high temperature methane production tank (that is, the circulating water amount was twice the raw water flow rate). Since the average COD flowing into the acid production tank was 2480 mg / l, the pH was controlled to 5.1 or higher from the region shown by the hatch in FIG. Temperature is 55 ℃
And

【0050】高温酸生成槽の滞留時間5〜10時間で酸
生成を行ない、高温メタン生成槽への原水としたが、9
5%以上の糖分解率を安定して維持することが可能であ
り、メタン生成槽での汚泥負荷を3.5kg−COD/
kg−VSS/dayに高めることが可能であった。
Acid was produced with a residence time of 5 to 10 hours in the high-temperature acid production tank to obtain raw water for the high-temperature methane production tank.
It is possible to stably maintain a sugar decomposition rate of 5% or more, and the sludge load in the methane production tank is 3.5 kg-COD /
It was possible to increase to kg-VSS / day.

【0051】別の検討から得られている1槽方式での、
糖基質に対する最大汚泥負荷は0.9kg−COD/k
g−VSS/dayであり、明らかな効果が認められ
た。また、高温酸生成槽の処理水を循環しない場合(原
水COD7960mg/l,pH5.7)に予想された
アルカリ消費量0.2g−NaOH/lは、処理水の循
環により0.1g−NaOH/lに低減されることも確
認された。なお、実施例での各部の平均COD値を表2
に、また、メタン生成槽の最大汚泥活性を1槽方式の場
合と比較して表3に、更に、アルカリ消費量を、処理水
の循環を行なわない場合に比較して表4に、それぞれ示
す。
In the one-tank system obtained from another study,
Maximum sludge load on sugar substrate is 0.9 kg-COD / k
It was g-VSS / day, and a clear effect was recognized. In addition, the alkali consumption of 0.2 g-NaOH / l expected when the treated water in the high temperature acid production tank was not circulated (raw water COD7960 mg / l, pH 5.7) was 0.1 g-NaOH / l due to the circulation of the treated water. It was also confirmed that it was reduced to 1. The average COD value of each part in the example is shown in Table 2.
In addition, the maximum sludge activity of the methane production tank is shown in Table 3 in comparison with the case of the single tank system, and the alkali consumption is shown in Table 4 in comparison with the case where the treated water is not circulated. ..

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【表4】 [Table 4]

【0055】実施例2 図1に示す方法において、高温メタン生成槽のpHを表
5及び図3に示す値にそれぞれ制御して、各々のpH値
に対する酢酸資化メタン生成活性を求め結果を表5、図
3に示した。表5、図3より、高温メタン生成槽のpH
を6〜7、特に6.8未満に調整することにより、メタ
ン生成活性が著しく高められることが明らかである。
Example 2 In the method shown in FIG. 1, the pH of the high temperature methane production tank was controlled to the values shown in Table 5 and FIG. 3, respectively, and the acetic acid assimilating methane production activity was calculated for each pH value. 5, shown in FIG. From Table 5 and Figure 3, the pH of the high temperature methane production tank
It is apparent that the methanogenic activity is remarkably enhanced by adjusting the value of 6 to 7, particularly less than 6.8.

【0056】[0056]

【表5】 [Table 5]

【0057】[0057]

【発明の効果】以上詳述した通り、請求項1の有機性排
水の高温嫌気性処理方法によれば、有機性排水を高温酸
生成槽に導き、有機酸を生成させ、次いで高温酸生成槽
の流出水を高温メタン生成槽に導き、メタンを生成させ
る有機性排水の高温嫌気性処理方法において、 高温領域においても、酸生成反応を安定して維持
し、実用的な反応速度を得ることができる。 高負荷な酸生成を安定して維持できるため、糖系排
水でも高負荷なメタン生成反応が実現できる。 ,より、高温酸生成槽の容積を低減することが
でき、イニシャルコストの低減が図れる。
As described in detail above, according to the method for high temperature anaerobic treatment of organic waste water according to claim 1, the organic waste water is introduced into the high temperature acid generating tank to generate the organic acid, and then the high temperature acid generating tank. In the high temperature anaerobic treatment method of organic wastewater that guides the effluent of the wastewater to the high temperature methane production tank and produces methane, it is possible to maintain the acid production reaction stably even in the high temperature region and obtain a practical reaction rate. it can. Since high-load acid production can be stably maintained, high-load methane production reaction can be realized even with sugar-based wastewater. As a result, the volume of the high temperature acid production tank can be reduced, and the initial cost can be reduced.

【0058】等の効果が奏される。The effects such as the above are exhibited.

【0059】請求項2の有機性排水の高温嫌気性処理方
法によれば、 高温酸生成槽及び高温メタン生成槽のpH制御に必
要なアルカリ消費量の低減が図れる。 原水を必要以上に希釈する必要がなくなり、昇温に
要するエネルギーを最小限に抑えることができる。 等の効果が奏される。
According to the method for high temperature anaerobic treatment of organic waste water according to the second aspect, it is possible to reduce the alkali consumption required for pH control of the high temperature acid production tank and the high temperature methane production tank. It is not necessary to dilute the raw water more than necessary, and the energy required for heating can be minimized. And the like.

【0060】請求項3の有機性排水の高温嫌気性処理方
法によれば、 高温メタン生成槽のメタン生成活性が大幅に高めら
れ、処理効率が向上する。 等の効果が奏される。
According to the method for high temperature anaerobic treatment of organic waste water according to claim 3, the methane production activity of the high temperature methane production tank is significantly increased, and the treatment efficiency is improved. And the like.

【0061】請求項4の有機性排水の高温嫌気性処理方
法によれば、上記請求項1,3の方法による効果がとも
に奏され、より一層効率的な処理及び安定した高負荷運
転が可能とされる。
According to the method for high temperature anaerobic treatment of organic wastewater according to claim 4, the effects of the methods according to claims 1 and 3 are exhibited together, and more efficient treatment and stable high load operation are possible. To be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の有機性排水の高温嫌気性処理方法の一
実施方法を示す系統図である。
FIG. 1 is a system diagram showing an implementation method of a high temperature anaerobic treatment method for organic wastewater according to the present invention.

【図2】原水濃度と高温酸生成槽制御pHとの好適領域
を示すグラフである。
FIG. 2 is a graph showing a preferable range of raw water concentration and high temperature acid production tank control pH.

【図3】実施例2の結果を示すグラフである。FIG. 3 is a graph showing the results of Example 2.

【符号の説明】[Explanation of symbols]

1 高温酸生成槽 2 高温メタン生成槽 3,4 NaOH貯槽 5,6 pHコントローラ 1 High temperature acid production tank 2 High temperature methane production tank 3,4 NaOH storage tank 5,6 pH controller

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機性排水を高温酸生成槽に導き、有機
酸を生成させ、次いで該高温酸生成槽の流出水を高温メ
タン生成槽に導き、メタンを生成させる有機性排水の高
温嫌気性処理方法において、 前記高温酸生成槽内の遊離有機酸濃度を400mg/l
以下に調整することを特徴とする有機性排水の高温嫌気
性処理方法。
1. A high-temperature anaerobic effluent of organic wastewater, which introduces organic wastewater into a high-temperature acid production tank to produce an organic acid, and then introduces effluent of the high-temperature acid production tank into a high-temperature methane production tank to produce methane. In the treatment method, the concentration of the free organic acid in the high temperature acid generator is 400 mg / l.
A method for high-temperature anaerobic treatment of organic wastewater, comprising the following adjustments.
【請求項2】 前記高温メタン生成槽の流出水の一部を
前記高温酸生成槽に循環させることを特徴とする請求項
1に記載の有機性排水の高温嫌気性処理方法。
2. The high-temperature anaerobic treatment method for organic wastewater according to claim 1, wherein a part of the outflow water of the high-temperature methane production tank is circulated to the high-temperature acid production tank.
【請求項3】 有機性排水を高温酸生成槽に導き、有機
酸を生成させ、次いで該高温酸生成槽の流出水を高温メ
タン生成槽に導き、メタンを生成させる有機性排水の高
温嫌気性処理方法において、 前記高温メタン生成槽内のpHを6〜7に調整すること
を特徴とする有機性排水の高温嫌気性処理方法。
3. A high temperature anaerobic effluent of an organic wastewater, which guides the organic wastewater to a high temperature acid generation tank to generate an organic acid, and then guides the effluent of the high temperature acid generation tank to a high temperature methane generation tank to generate methane. In the treatment method, the pH in the high temperature methane production tank is adjusted to 6 to 7, which is a high temperature anaerobic treatment method for organic wastewater.
【請求項4】 有機性排水を高温酸生成槽に導き、有機
酸を生成させ、次いで該高温酸生成槽の流出水を高温メ
タン生成槽に導き、メタンを生成させる有機性排水の高
温嫌気性処理方法において、 前記高温酸生成槽内の遊離有機酸濃度を400mg/l
以下に調整するとともに、前記高温メタン生成槽内のp
Hを6〜7に調整することを特徴とする有機性排水の高
温嫌気性処理方法。
4. A high temperature anaerobic effluent of organic wastewater, which guides organic wastewater to a high temperature acid generation tank to generate an organic acid, and then guides outflow water of the high temperature acid generation tank to a high temperature methane generation tank to generate methane. In the treatment method, the concentration of the free organic acid in the high temperature acid generator is 400 mg / l.
Adjust in the following and p in the high temperature methane production tank
A high-temperature anaerobic treatment method for organic wastewater, which comprises adjusting H to 6 to 7.
JP12730392A 1992-05-20 1992-05-20 High-temperature anaerobic treatment of organic wastewater Expired - Fee Related JP3134493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12730392A JP3134493B2 (en) 1992-05-20 1992-05-20 High-temperature anaerobic treatment of organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12730392A JP3134493B2 (en) 1992-05-20 1992-05-20 High-temperature anaerobic treatment of organic wastewater

Publications (2)

Publication Number Publication Date
JPH05317878A true JPH05317878A (en) 1993-12-03
JP3134493B2 JP3134493B2 (en) 2001-02-13

Family

ID=14956620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12730392A Expired - Fee Related JP3134493B2 (en) 1992-05-20 1992-05-20 High-temperature anaerobic treatment of organic wastewater

Country Status (1)

Country Link
JP (1) JP3134493B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235391A (en) * 1997-02-25 1998-09-08 Kurita Water Ind Ltd Two-phase anaerobic wastewater treatment apparatus
JP2001000985A (en) * 1999-06-22 2001-01-09 Toshiba Corp Method and apparatus for treating organic solid- containing wastewater
JP2001017989A (en) * 1999-07-07 2001-01-23 Ebara Corp Anaerobic treatment of oil and fat-containing waste water or oil and fat-containing sludge
JP2006205087A (en) * 2005-01-28 2006-08-10 Fuji Electric Holdings Co Ltd Methane fermentation method
CN107815405A (en) * 2017-12-14 2018-03-20 黑龙江省能源环境研究院 One kind is used for yellow storage stalk diphasic anaerobic fermentation methane device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235391A (en) * 1997-02-25 1998-09-08 Kurita Water Ind Ltd Two-phase anaerobic wastewater treatment apparatus
JP2001000985A (en) * 1999-06-22 2001-01-09 Toshiba Corp Method and apparatus for treating organic solid- containing wastewater
JP2001017989A (en) * 1999-07-07 2001-01-23 Ebara Corp Anaerobic treatment of oil and fat-containing waste water or oil and fat-containing sludge
JP2006205087A (en) * 2005-01-28 2006-08-10 Fuji Electric Holdings Co Ltd Methane fermentation method
JP4543947B2 (en) * 2005-01-28 2010-09-15 富士電機ホールディングス株式会社 Methane fermentation treatment method
CN107815405A (en) * 2017-12-14 2018-03-20 黑龙江省能源环境研究院 One kind is used for yellow storage stalk diphasic anaerobic fermentation methane device and method
CN107815405B (en) * 2017-12-14 2023-07-14 黑龙江省能源环境研究院 Device and method for producing methane through two-phase anaerobic fermentation of yellow-stored straws

Also Published As

Publication number Publication date
JP3134493B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
JP5717188B2 (en) Waste water treatment method and waste water treatment equipment
JPS6058296A (en) Method of controlling anaerobic treatment method
JPH05317878A (en) High-temp. anaerobic treatment for organic waste water
CN107098466B (en) Real-time regulation and control method of anaerobic membrane bioreactor and reactor adopting same
JPH0889988A (en) Anaerobic treating method
JP3275636B2 (en) Anaerobic treatment of high-concentration organic wastewater
JP2013169523A (en) Methane fermentation apparatus, and water return control method at supply stop of stock solution in the same
JPS58112095A (en) Method and device for manufacturing methane gas through anaerobic treatment of waste water
CN113060899B (en) Recycling method for generating carbon source by utilizing sludge resource of sewage plant
JP2531418B2 (en) Treatment method of beet sugar manufacturing wastewater
JP3906509B2 (en) Two-phase anaerobic wastewater treatment equipment
SE1251085A1 (en) A method and apparatus for the simultaneous removal of thiosalt and nitrogen compounds in wastewater
CN114133027A (en) Method for realizing stable operation of continuous flow anaerobic ammonia oxidation reactor
CN106186610B (en) A kind of process handling low concentration feces of livestock and poultry
JPH0311835B2 (en)
JP2001137887A (en) Anaerobic biological treating method
JP4206504B2 (en) Anaerobic treatment method and anaerobic treatment device
JP6829956B2 (en) Anaerobic treatment method and anaerobic treatment equipment
JPH11347588A (en) Methane fermentation treatment apparatus and method
JPH06154785A (en) High temperature anaerobic processing method and device
CN111620441B (en) Synchronous sewage nitrification and denitrification control method and device
JPH08155486A (en) Anaerobic treatment method for organic drainage
JP4695177B2 (en) Control method of excess sludge volume reduction treatment
JP4688714B2 (en) Organic acid generation method
JP7266440B2 (en) Anaerobic treatment apparatus and anaerobic treatment method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees