JPH05317662A - Hydrogen separation membrane and its production - Google Patents

Hydrogen separation membrane and its production

Info

Publication number
JPH05317662A
JPH05317662A JP13142092A JP13142092A JPH05317662A JP H05317662 A JPH05317662 A JP H05317662A JP 13142092 A JP13142092 A JP 13142092A JP 13142092 A JP13142092 A JP 13142092A JP H05317662 A JPH05317662 A JP H05317662A
Authority
JP
Japan
Prior art keywords
palladium
hydrogen
separation membrane
hydrogen separation
metal support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13142092A
Other languages
Japanese (ja)
Other versions
JP3213053B2 (en
Inventor
Akira Kobuchi
彰 小渕
Koichi Hanada
浩一 花田
Satoshi Koga
聡 古賀
Hiromitsu Hoshi
弘充 星
Akiyasu Ikeda
了康 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd, Sumitomo Metal Industries Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP13142092A priority Critical patent/JP3213053B2/en
Publication of JPH05317662A publication Critical patent/JPH05317662A/en
Application granted granted Critical
Publication of JP3213053B2 publication Critical patent/JP3213053B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation

Abstract

PURPOSE:To easily produce a hydrogen separation membrane with a short time and a small labor, excellent in heat resistance, mechanical strength, and separation ability at a high temp. and having good machinability, capable of recovering high purity hydrogen. CONSTITUTION:The hydrogen separation membrane 10 is obtained by sticking and forming the alloy membrane 12 composed of palladium and silver having 1-50mum thickness on one face of a stainless steel-made metallic supporting body 11 perforated by etching to form many narrow pores of 10-500etam pore diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素含有ガス中の水素
を拡散分離する水素分離膜およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen separation membrane for diffusing and separating hydrogen in a hydrogen-containing gas and a method for producing the same.

【0002】[0002]

【従来の技術】従来、水素ガスは、天然ガス、LPG、
ナフサ、またはメタノールなどの炭化水素を原料として
水蒸気改質法などで製造され、また石油精製などのオフ
ガスからも製造されている。上記方法で製造された水素
含有ガスから水素を精製回収する方法としては、吸着剤
を利用したPSA法(Pressure Swing
Absorption)などで不純物を分離除去する方
法や、有機または無機の水素分離膜によって水素を拡散
分離する方法などがあり、そのなかでも膜分離法は、省
エネルギー、分離効率、装置の簡易な構成および運転の
容易性などの観点から注目されている。
2. Description of the Related Art Conventionally, hydrogen gas is a natural gas, LPG,
It is produced by a steam reforming method using hydrocarbons such as naphtha or methanol as a raw material, and is also produced from off-gas for petroleum refining. As a method for purifying and recovering hydrogen from the hydrogen-containing gas produced by the above method, a PSA method (Pressure Swing) using an adsorbent is used.
There are methods for separating and removing impurities by means of absorption, etc., and methods for diffusing and separating hydrogen with an organic or inorganic hydrogen separation membrane. Among them, the membrane separation method is energy-saving, separation efficiency, simple configuration and operation of the device. It is attracting attention from the viewpoint of ease of use.

【0003】膜分離法に用いられる水素分離膜として
は、ポリイミドやポリスルホンなどの有機高分子膜、多
孔質ガラスや多孔質セラミックスなどの無機多孔質膜、
およびパラジウムまたはパラジウム合金膜などがある。
このうち、有機高分子膜は耐熱性や高温時での分離効率
低下に問題があり、また無機多孔質膜においても分離効
率が低い欠点があり、さらにパラジウムまたはパラジウ
ム合金膜においては耐熱性もあり、また極めて高純度の
水素を得ることができるが、機械的強度や薄膜製造技術
の難しさなどの問題がある。
Hydrogen separation membranes used in the membrane separation method include organic polymer membranes such as polyimide and polysulfone, inorganic porous membranes such as porous glass and porous ceramics,
And palladium or palladium alloy film.
Among them, the organic polymer membrane has a problem in heat resistance and reduction in separation efficiency at high temperature, and also has a defect that the separation efficiency is low even in the inorganic porous membrane, and also in the palladium or palladium alloy membrane, there is heat resistance. Further, although hydrogen of extremely high purity can be obtained, there are problems such as mechanical strength and difficulty of thin film manufacturing technology.

【0004】上記パラジウムまたはパラジウム合金膜の
機械的強度を高めた水素分離膜として、特開昭62−1
21616号公報、特開昭62−273030号公報、
特開昭63−171617号公報には、多孔質ガラス、
多孔質セラミックス、あるいは多孔質酸化アルミニウム
などの無機多孔質支持体の表面に、パラジウムまたはパ
ラジウム合金膜を被着した膜が開示されており、またこ
れらの公報には、その水素分離膜の製造方法も記載され
ている。
As a hydrogen separation membrane in which the mechanical strength of the above palladium or palladium alloy membrane is increased, Japanese Patent Laid-Open No. 62-1
21616, JP-A-62-273030,
Japanese Patent Laid-Open No. 63-171617 discloses a porous glass,
Membranes in which a palladium or palladium alloy membrane is deposited on the surface of an inorganic porous support such as porous ceramics or porous aluminum oxide are disclosed, and in these publications, a method for producing the hydrogen separation membrane is disclosed. Is also described.

【0005】上記公報に記載された水素分離膜の製造方
法において、特開昭62−121616号公報に記載さ
れた方法では、厚さ1mm程度の無機多孔質支持体の表
面にパラジウムまたはパラジウム合金膜を気相化学反応
や真空蒸着法などで被着しているが、装置が複雑で高度
な製造技術を必要とし、さらに厚膜製造に時間がかかる
欠点がある。また、特開昭62−273030号公報の
方法では、無機多孔質体の表面を化学的に活性化処理し
たのち、化学メッキ法でパラジウム主体膜を被着してい
るが、化学メッキ法に時間および手間がかかる欠点があ
る。さらに、特開昭63−171617号公報の方法で
は、例えば金属アルミニウムを陽極酸化処理したのち、
エッチング法で金属アルミニウムを溶解除去して厚さ5
0μm程度の多孔質酸化アルミニウム膜を製造し、該膜
にスパッタ法でパラジウムまたはパラジウム合金を蒸着
したのち、さらにパラジウム塩水溶液でパラジウムを担
持しているが、非常に手間がかかり、また高度の成膜技
術を必要とする欠点がある。
In the method for producing a hydrogen separation membrane described in the above publication, the method disclosed in Japanese Patent Laid-Open No. 62-121616 discloses a palladium or palladium alloy membrane on the surface of an inorganic porous support having a thickness of about 1 mm. Is deposited by a vapor phase chemical reaction or a vacuum deposition method, but it has a drawback that the equipment is complicated and requires a high-level manufacturing technique, and that it takes time to manufacture a thick film. Further, in the method disclosed in Japanese Patent Laid-Open No. 62-273030, after the surface of the inorganic porous material is chemically activated, the palladium-based film is deposited by the chemical plating method. And there is a drawback that it takes time. Further, in the method disclosed in Japanese Patent Laid-Open No. 63-171617, for example, after anodizing the metallic aluminum,
Metallic aluminum is dissolved and removed by etching method to a thickness of 5
A porous aluminum oxide film having a thickness of about 0 μm is manufactured, and palladium or a palladium alloy is deposited on the film by a sputtering method, and then palladium is further supported by an aqueous solution of a palladium salt, which is very time-consuming and requires a high degree of performance. There are drawbacks that require membrane technology.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記従来技
術の課題を背景になされたもので、所定の孔径の細孔が
穿孔された金属支持体により支持されているため、耐熱
性、機械的強度に優れ、高純度の水素の回収が可能であ
り、かつ高温においても分離性能に優れ、さらに加工性
も良好な水素分離膜を短時間かつ少ない労力で容易に製
造することができる水素分離膜およびその製造方法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and since it is supported by a metal support in which pores having a predetermined pore diameter are perforated, heat resistance and mechanical properties are improved. Hydrogen separation membrane that can recover high-purity hydrogen with high mechanical strength, has excellent separation performance even at high temperatures, and has good processability in a short time and with little labor. It is an object of the present invention to provide a membrane and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明は、孔径10〜5
00μmの細孔がエッチングにより多数穿孔された金属
支持体の片面に、膜厚1〜50μmのパラジウムと他の
金属からなる合金膜(以下「パラジウム合金膜」という
ことがある)が被着形成されてなる水素分離膜を提供す
るものである。
The present invention has a hole diameter of 10 to 5
An alloy film (hereinafter sometimes referred to as "palladium alloy film") made of palladium and another metal having a film thickness of 1 to 50 μm is adhered and formed on one surface of a metal support in which a large number of 00 μm pores are formed by etching. The present invention provides a hydrogen separation membrane.

【0008】また、本発明は、次の各工程からなる前記
水素分離膜の製造方法を提供するものである。 (1)金属支持体の片面にパラジウムと他の金属の薄膜
をそれぞれ電気メッキ法により交互積層する第1工程。 (2)前記第1工程で得られる金属支持体の他方の片面
にエッチング法により細孔を穿孔する第2工程。 (3)前記第2工程で得られる金属支持体のパラジウム
−他の金属薄膜層を500〜900℃で熱処理し合金化
する第3工程。
The present invention also provides a method for producing the hydrogen separation membrane, which comprises the following steps. (1) A first step in which thin films of palladium and another metal are alternately laminated on one surface of a metal support by electroplating. (2) A second step of forming pores on the other surface of the metal support obtained in the first step by an etching method. (3) A third step of heat-treating the palladium-other metal thin film layer of the metal support obtained in the second step at 500 to 900 ° C. for alloying.

【0009】以下、本発明の水素分離膜の一例を図面を
参照しつつ説明する。図1は、水素分離膜製造工程の一
部を示す概略図であり、図1(A)は金属支持体の片面
にパラジウム−他の金属薄膜層が被着・形成した状態を
説明するための拡大断面構成図、図1(B)は図1
(A)の金属支持体の他方の片面をエッチング処理して
得られる本発明の水素分離膜の拡大断面構成図である。
An example of the hydrogen separation membrane of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view showing a part of a hydrogen separation membrane manufacturing process, and FIG. 1 (A) is for explaining a state in which a palladium-other metal thin film layer is deposited / formed on one surface of a metal support. 1 is an enlarged cross-sectional configuration diagram, FIG.
It is an expanded sectional lineblock diagram of the hydrogen separation membrane of the present invention obtained by etching the other side of the metal support of (A).

【0010】本発明の水素分離膜10は、孔径10〜5
00μm、好ましくは50〜200μmの細孔hがエッ
チングにより多数穿孔された金属支持体11の片面11
aに、膜厚1〜50μm、好ましくは5〜30μmのパ
ラジウム合金膜12が被着形成されてなるものである
〔図1(B)参照〕。
The hydrogen separation membrane 10 of the present invention has a pore size of 10-5.
One side 11 of the metal support 11 in which a large number of pores h of 00 μm, preferably 50 to 200 μm are perforated by etching.
The palladium alloy film 12 having a film thickness of 1 to 50 μm, preferably 5 to 30 μm is deposited and formed on a (see FIG. 1B).

【0011】ここで、金属支持体11の材質としては、
ステンレス、ニッケル、銅合金、ニッケル基合金、鉄−
ニッケル合金などの金属が挙げられる。水素分離膜10
の支持体として金属支持体11を採用することにより、
200℃以上の温度で水素分離処理を行っても、水素分
離膜10と図示しない取付け部材(枠など)とを熔接な
どの手段で連結することができるため、シール性が低下
することもない。金属支持体11の代わりにセラミック
スなどの無機材料を用いた場合には、直接、電気メッキ
が不可能なために膜形成速度の遅い無電解メッキが必要
であるというという不都合が生じる。この金属支持体1
1に多数穿孔される細孔hの孔径dは、10〜500μ
m、好ましくは50〜200μmであり、10μm未満
では流通抵抗が大きくなり、一方500μmを超える
と、被着膜であるパラジウム合金膜12が陥没してピン
ホールが生じやすくなる。なお、細孔hの穿孔密度は、
好ましくは150〜3,000個/cm2 程度である。
Here, as the material of the metal support 11,
Stainless steel, nickel, copper alloy, nickel base alloy, iron −
Examples include metals such as nickel alloys. Hydrogen separation membrane 10
By adopting the metal support 11 as the support of
Even if the hydrogen separation treatment is performed at a temperature of 200 ° C. or higher, the hydrogen separation membrane 10 and the mounting member (frame or the like) (not shown) can be connected by means such as welding, so that the sealing property does not deteriorate. When an inorganic material such as ceramics is used instead of the metal support 11, there is a disadvantage that electroless plating with a low film formation rate is necessary because electroplating cannot be directly performed. This metal support 1
The pore diameter d of the large number of pores h perforated in 1 is 10 to 500 μm.
m, preferably 50 to 200 μm. When it is less than 10 μm, the flow resistance becomes large, while when it exceeds 500 μm, the palladium alloy film 12 as the adherend film is depressed and pinholes are easily generated. The perforation density of the pores h is
It is preferably about 150 to 3,000 pieces / cm 2 .

【0012】金属支持体11の厚みは、通常、10〜5
00μm、好ましくは50〜200μm程度であり、1
0μm未満では支持体としての機械的強度が弱く実用的
ではなく、一方500μmを超えると孔径の大きい穿孔
をエッチングする必要があり好ましくない。なお、金属
支持体11の形状は、図1に示すような板状のほか、管
状でもよく、その目的とするところにより任意の形状が
採用できる。
The thickness of the metal support 11 is usually 10-5.
00 μm, preferably about 50 to 200 μm, and 1
If it is less than 0 μm, the mechanical strength of the support is weak and it is not practical, while if it exceeds 500 μm, it is necessary to etch the perforations having a large pore size, which is not preferable. The shape of the metal support 11 may be tubular as well as plate-like as shown in FIG. 1, and any shape may be adopted depending on the purpose.

【0013】一方、パラジウム合金膜12は、パラジウ
ムを主体とする合金の薄膜であり、パラジウムと、パラ
ジウム以外の周期律表第VIII族元素(例えば、コバル
ト、ニッケル)、IB族(例えば、銅、銀、金)、およ
び IIIB族(例えば、イットリウム)の群から選ばれた
少なくとも1種の他の金属との合金、好ましくはパラジ
ウムと銀との合金から構成されている。このパラジウム
合金膜12中のパラジウム以外の他の金属の含量は、1
〜50重量%、好ましくは10〜30重量%である。パ
ラジウムを合金化する主目的は、パラジウムの水素脆化
防止と高温時の分離効率向上にあり、パラジウム以外の
他の金属の含量が1重量%未満では、パラジウムの水素
脆化防止、高温時の分離効率向上の効果が少なくなり、
一方50重量%を超えると、水素の透過速度が遅くなり
すぎて実用的でない。
On the other hand, the palladium alloy film 12 is a thin film of an alloy containing palladium as a main component, and is composed of palladium, a Group VIII element (for example, cobalt and nickel) other than palladium, and an IB group (for example, copper). Silver, gold), and an alloy with at least one other metal selected from the group IIIB (eg, yttrium), preferably an alloy of palladium and silver. The content of metals other than palladium in the palladium alloy film 12 is 1
˜50% by weight, preferably 10 to 30% by weight. The main purpose of alloying palladium is to prevent hydrogen embrittlement of palladium and to improve the separation efficiency at high temperatures. If the content of other metals other than palladium is less than 1% by weight, the prevention of hydrogen embrittlement of palladium and high temperature The effect of improving the separation efficiency decreases,
On the other hand, if it exceeds 50% by weight, the hydrogen permeation rate becomes too slow, which is not practical.

【0014】パラジウム合金膜12の総厚は、1〜50
μm、好ましくは5〜30μmである。パラジウム合金
膜12の総厚が1μm未満では、この合金膜12にピン
ホールが生じやすく正常な被着が困難となり、かつ分離
水素の純度も低下することになり、一方50μmを超え
ると、水素の透過速度が遅くなり過ぎて実用的ではな
い。
The total thickness of the palladium alloy film 12 is 1 to 50.
μm, preferably 5 to 30 μm. If the total thickness of the palladium alloy film 12 is less than 1 μm, pinholes are likely to occur in the alloy film 12 and normal deposition becomes difficult, and the purity of the separated hydrogen is lowered. The transmission speed is too slow to be practical.

【0015】次に、本発明の水素分離膜の製造方法を、
前記図1を参照して説明する。まず、第1工程では、前
記金属支持体11の片面11aにパラジウムと他の金属
の薄膜をそれぞれ電気メッキ法により交互積層する。
Next, the method for producing the hydrogen separation membrane of the present invention will be described.
This will be described with reference to FIG. First, in the first step, thin films of palladium and another metal are alternately laminated on one surface 11a of the metal support 11 by electroplating.

【0016】次に、このようにして無電解メッキが施さ
れた金属支持体11の片面11aに、さらに電気メッキ
法でパラジウムおよび他の金属を交互に積層被着させ
る。この電気メッキ法では、慣用されている電気メッキ
装置が用いられる。パラジウムの薄膜をメッキする場合
には、電気メッキ液としてパラジウム塩と電解質が溶解
した水溶液が用いられ、該電気メッキ液が充填された電
解槽内にマイナス側に接続された金属支持体11の片面
11aと、プラス側に接続された白金板とを浸漬して直
流電源を通電することにより被着形成される。この電気
メッキ液の一例としては、例えば次のようなものが挙げ
られるが、この組成に限定されるものではなく、電気メ
ッキ法によってパラジウム膜または他の金属膜が積層被
着される組成であれば特に限定されない。
Then, palladium and another metal are alternately laminated and deposited on one surface 11a of the metal support 11 thus electroless plated by the electroplating method. In this electroplating method, a commonly used electroplating apparatus is used. When plating a thin film of palladium, an aqueous solution in which a palladium salt and an electrolyte are dissolved is used as an electroplating solution, and one side of a metal support 11 is connected to the minus side in an electrolytic bath filled with the electroplating solution. 11a and a platinum plate connected to the positive side are immersed and a direct current power source is energized to form a deposit. Examples of this electroplating solution include, for example, the following, but are not limited to this composition, and may be a composition in which a palladium film or another metal film is laminated and deposited by an electroplating method. There is no particular limitation.

【0017】Pd膜用;〔Pd(NH3 4 〕Cl2
2H2 O;30g/l、NH4 Cl;60g/l、 Ag膜用;AgCN;36g/l、KCN;60g/
l、K2 CO3 ;15g/l Ni膜用;NiSO4 ;240g/l、NiCl2 ;4
5g/l、H3 BO3 ;30g/l
For Pd film; [Pd (NH 3 ) 4 ] Cl 2 ·
2H 2 O; 30 g / l, NH 4 Cl; 60 g / l, for Ag membrane; AgCN; 36 g / l, KCN; 60 g /
l, K 2 CO 3 ; 15 g / l for Ni film; NiSO 4 ; 240 g / l, NiCl 2 ; 4
5 g / l, H 3 BO 3 ; 30 g / l

【0018】Co膜用;CoSO4 ;300g/l、N
4 Cl;20g/l、H3 BO3 ;15g/l、 Cu膜用;CuSO4 ・5H2 O;250g/l、H2
SO4 ;75g/l
For Co film; CoSO 4 ; 300 g / l, N
H 4 Cl; 20 g / l, H 3 BO 3 ; 15 g / l, for Cu film; CuSO 4 .5H 2 O; 250 g / l, H 2
SO 4 ; 75 g / l

【0019】この電気メッキ法による電流密度は、電気
メッキ液の性状によっても異なるが、0.1〜3A/d
2 である。また、薄膜(パラジウム膜および他の金属
膜)の総厚は、電気メッキ時間を可変にすることにより
前記の所定の膜厚とすることができる。
The current density by this electroplating method varies depending on the properties of the electroplating solution, but is 0.1-3 A / d.
m 2 . Further, the total thickness of the thin films (palladium film and other metal film) can be set to the above-mentioned predetermined film thickness by making the electroplating time variable.

【0020】なお、パラジウム合金膜12は、パラジウ
ムと他の金属との交互積層のほかに、例えばまず無電解
メッキ法によりパラジウム薄膜を形成させ、この薄膜の
上に合金化金属の薄膜を積層被着させてもよく、あるい
は逆の工程で被着してもよく、さらには含浸法、吸着
法、イオン交換法、真空蒸着法(PVD)、気相化学反
応法(CVD)などの利用も可能である。
The palladium alloy film 12 is formed by alternately depositing palladium and another metal, for example, a palladium thin film is first formed by electroless plating, and a thin film of an alloyed metal is laminated on the thin film. It may be deposited or may be deposited in the reverse process, and it is also possible to use the impregnation method, adsorption method, ion exchange method, vacuum deposition method (PVD), vapor phase chemical reaction method (CVD), etc. Is.

【0021】次に、第2工程では、第1工程で得られる
金属支持体11の他方の片面11bにエッチング法によ
り細孔を穿孔する。この場合、金属支持体11の他方の
片面11bをエッチングする方法としては、例えばこの
片面11bに図示しないネガ型レジストをスピンコート
法などで塗布し、ベーキング後、細孔hに相当するパタ
ーンが形成された図示しないマスクを介して紫外線など
の光を照射し、現像後、ポストベークし、さらにエッチ
ングし、残存するレジスト皮膜を除去することによって
実施される。
Next, in the second step, fine holes are formed in the other surface 11b of the metal support 11 obtained in the first step by an etching method. In this case, as a method for etching the other surface 11b of the metal support 11, for example, a negative resist (not shown) is applied to the one surface 11b by a spin coating method or the like, and after baking, a pattern corresponding to the pores h is formed. It is implemented by irradiating light such as ultraviolet rays through a mask (not shown), developing, post-baking, and further etching to remove the remaining resist film.

【0022】すなわち、レジストを塗布するに先立ち、
金属支持体11へのレジストの密着性を確保するため
に、前処理として例えば70℃、10%水酸化ナトリウ
ム水溶液でのアルカリ洗浄と水洗、中和、水洗、乾燥を
行い、レジスト塗布面の清浄化を行う。使用するレジス
トは、カゼインタイプ、PVAタイプなどの水溶性タイ
プ、およびアクリルポリマー系の溶剤溶解性タイプのい
ずれかのネガタイプレジストが使用可能であるが、本発
明では、ネガタイプアクリルポリマー〔東京応化工業
(株)製、PMER−N40DP〕を使用した。このレ
ジストを、前述の洗浄化した金属支持体11へ塗布する
方法としては、ロールコート法、スピンコート法、ディ
ップ引上げコート法などにより塗布するが、ディップ引
上げ法が好適である。
That is, prior to applying the resist,
In order to secure the adhesiveness of the resist to the metal support 11, as a pretreatment, for example, alkali cleaning with 10% sodium hydroxide aqueous solution at 70 ° C., water washing, neutralization, water washing, and drying are performed to clean the resist coated surface. To convert. The resist to be used may be a water-soluble type resist such as casein type, PVA type, etc., and an acrylic polymer solvent-soluble type negative type resist, but in the present invention, a negative type acrylic polymer [Tokyo Ohka Kogyo ( Co., Ltd., PMER-N40DP] was used. As a method for applying the resist to the cleaned metal support 11, a roll coating method, a spin coating method, a dip pulling coating method, or the like is used, and a dip pulling method is preferable.

【0023】塗布する厚みは、レジスト粘度、引上げス
ピードで決定されるが、露光時の解像度の面からは、1
5μm以下が好ましく、エッチング時の耐酸性、レジス
ト皮膜の強度保持の点からは、3μm以上が好ましい。
従って、乾燥膜厚が3〜15μmの範囲となるように引
上げスピードを決定すればよい。塗布するレジストに
は、例えばアクリル系ポリマーを主体とした固形分濃度
30%、トルエンなどを主体とした溶剤分70%を含有
するものを用いた場合には、露光に先立って70℃温風
中で10分以上乾燥を行い、溶剤分を乾燥除去する。こ
のように、金属支持体11にコートされたレジスト皮膜
の支持体側にあらかじめ作画された細孔部のパターンが
画像形成されたフィルムマスクを密着させ、超高圧水銀
灯により発生させた波長375nm前後の紫外線を60
〜70秒(照射量=300〜350mJ)照射する。
The thickness to be applied is determined by the resist viscosity and pulling speed, but from the viewpoint of resolution during exposure, it is 1
The thickness is preferably 5 μm or less, and more preferably 3 μm or more from the viewpoint of acid resistance during etching and maintaining the strength of the resist film.
Therefore, the pulling speed may be determined so that the dry film thickness is in the range of 3 to 15 μm. When the resist to be applied contains, for example, an acrylic polymer as a main component and a solid content concentration of 30% and a solvent as a main component such as toluene of 70%, the resist is exposed to hot air at 70 ° C. before exposure. And dry for 10 minutes or more to remove the solvent content by drying. In this way, a film mask on which the pattern of the preformed pores is imaged is brought into close contact with the support side of the resist film coated on the metal support 11, and ultraviolet rays having a wavelength of about 375 nm generated by an ultra-high pressure mercury lamp are attached. 60
-70 seconds (irradiation amount = 300-350 mJ).

【0024】露光工程で金属支持体11側のレジスト面
に画像形成された細孔パターン部は、次の現像工程によ
りエッチング穿孔部のみ(未露光部分)、レジストが溶
解除去され、金属面が露出される。この現像の条件とし
ては、アルカリ系の専用薬液〔東京応化工業(株)製、
N−A5〕により、25±2.5℃で行う。この現像工
程により、開孔すべき穴のパターンが形成されたレジス
ト皮膜は、エッチング工程に先立ち、膜の耐酸強度、塗
膜密着性、塗膜強度をさらにに向上させるため、ポスト
ベークを行う。このポストベークの熱源は、熱風あるい
は遠紫外線輻射など、いずれでも構わないが、温度は1
00〜120℃で15〜30分行う。100℃未満では
熱重合が不充分で、充分な塗膜性能が得られず、一方1
20℃を超えると膜が脆くなる。
In the fine hole pattern portion image-formed on the resist surface on the metal support 11 side in the exposure step, the resist is dissolved and removed only in the etching perforation portion (unexposed portion) in the next development step, and the metal surface is exposed. To be done. The conditions for this development are as follows: Alkaline-only chemical solution [Tokyo Ohka Kogyo Co., Ltd.,
N-A5] at 25 ± 2.5 ° C. The resist film on which the pattern of holes to be opened is formed by this developing step is post-baked prior to the etching step in order to further improve the acid resistance strength, coating adhesion and coating strength of the film. The heat source for this post-baking may be either hot air or far-ultraviolet radiation, but the temperature is 1
It is carried out at 00 to 120 ° C. for 15 to 30 minutes. If the temperature is less than 100 ° C, thermal polymerization is insufficient and sufficient coating performance cannot be obtained.
If it exceeds 20 ° C, the film becomes brittle.

【0025】以降、エッチング工程に入るが、エッチン
グ液は、通常、42〜47°Be(ボーメ)の塩化第2
鉄水溶液をスプレーにて対象物面に吹きつけて行う。こ
の場合、量産性の面から、水平搬送方式による上下スプ
レー吹きつけで行うとよい。液温度は45〜65℃の間
で行う。エッチング速度のコントロールは、搬送スピー
ドで決定する。なお、エッチング条件の安定化を図り、
精度をコントロールするため、水や塩酸を用い、比重、
pH値の制御も併せて行う。このエッチングにより、片
面より穿孔された金属支持体11は、水洗によるエッチ
ング液の洗浄後、マスキングのために用いたレジスト皮
膜の残分を表面より剥離後、充分に洗浄を行い、製品と
なる。この剥離液は、通常、5〜10%の水酸化ナトリ
ウム水溶液を、50〜70℃に加温した液に浸漬し、レ
ジスト皮膜を膨潤剥離により除去する。
After that, the etching process is started, but the etching solution is usually a second chloride of 42 to 47 ° Be (Baume).
The iron solution is sprayed onto the surface of the object. In this case, from the viewpoint of mass productivity, it is preferable to spray the upper and lower parts by a horizontal transfer method. The liquid temperature is between 45 and 65 ° C. The control of the etching rate is determined by the transport speed. In addition, to stabilize the etching conditions,
To control the accuracy, use water or hydrochloric acid,
The pH value is also controlled. By this etching, the metal support 11 perforated from one surface is washed with water to wash the etching solution, and after removing the residue of the resist film used for masking from the surface, it is sufficiently washed to obtain a product. The stripping solution is usually prepared by immersing a 5 to 10% aqueous sodium hydroxide solution in a solution heated to 50 to 70 ° C. to remove the resist film by swelling and stripping.

【0026】この第2工程によって、図1(B)に示す
ように金属支持体11の他方の片面11b側から貫通穴
である細孔hが多数穿孔される。なお、図1(B)にお
いて、符号wは、パラジウム合金膜12と金属支持体1
1の最短接点距離であり、この距離は、通常、100〜
1,000μm程度である。
By this second step, as shown in FIG. 1 (B), a large number of fine holes h, which are through holes, are punched from the other one surface 11b side of the metal support 11. In addition, in FIG. 1B, the symbol w indicates the palladium alloy film 12 and the metal support 1.
1 is the shortest contact distance, and this distance is usually 100-
It is about 1,000 μm.

【0027】さらに、第3工程では、前記第2工程で得
られる金属支持体のパラジウム−他の金属薄膜層を50
0〜900℃で熱処理し合金化する。前記第1工程で被
着された薄膜は、パラジウムと他の金属とが積層した膜
であり、合金化したパラジウム合金膜とするには、第2
工程で得られた水素分離膜10を電気炉などで加熱処理
することにより、金属どうしを相互拡散させて形成す
る。加熱処理温度は、500〜900℃、好ましくは6
00〜800℃であり、500℃未満では金属どうしの
相互拡散が起こらず、一方900℃を超えると、金属支
持体11からの拡散混合が無視できないほど多くなり、
また熱処理中にメッキ層が溶融して空隙を生じ、膜とし
ての機能を害する可能性があるため好ましくない。ま
た、この加熱処理時間は、0.1〜10時間が好まし
い。
Further, in the third step, the palladium-other metal thin film layer of the metal support obtained in the second step is added to 50
It heat-processes at 0-900 degreeC and alloys. The thin film deposited in the first step is a film in which palladium and another metal are laminated, and in order to form an alloyed palladium alloy film,
The hydrogen separation membrane 10 obtained in the step is heat-treated in an electric furnace or the like to form metals by mutual diffusion. The heat treatment temperature is 500 to 900 ° C., preferably 6
It is from 00 to 800 ° C, and mutual diffusion of metals does not occur below 500 ° C, while when it exceeds 900 ° C, the diffusion and mixing from the metal support 11 becomes so large that it cannot be ignored.
Further, the plating layer is melted during the heat treatment to generate voids, which may impair the function of the film, which is not preferable. The heat treatment time is preferably 0.1 to 10 hours.

【0028】次に、この水素分離膜10を用いた水素分
離方法の一例を図2を用いて説明する。ここで、図2
は、本発明の水素分離膜を用いた水素分離方法の工程概
略図である。図2において、セパレータSは、本発明の
水素分離膜10を組み込んだ水素分離機20とこれを覆
う加熱器30から構成されている。ここで、水素分離膜
10は、水素分離機20内において、金属支持体11が
下方、パラジウム合金膜12が上方になるように水平配
置されている。このセパレータSを用いて水素を含有す
る原料ガスから水素ガスを分離するには、原料ガスG1
を水素分離機20の上部21に導入する。原料ガスG1
中の水素ガスは、水素分離膜10のパラジウム合金膜1
2を透過し、透過ガスHとして取り出される。一方、原
料ガスG1から水素ガスが分離された非透過ガスG2
は、水素分離機10の上方より系外へ取り出される。
Next, an example of the hydrogen separation method using the hydrogen separation membrane 10 will be described with reference to FIG. Here, FIG.
FIG. 4 is a schematic process diagram of a hydrogen separation method using the hydrogen separation membrane of the present invention. In FIG. 2, the separator S is composed of a hydrogen separator 20 incorporating the hydrogen separation membrane 10 of the present invention and a heater 30 covering the hydrogen separator 20. Here, the hydrogen separation membrane 10 is horizontally arranged in the hydrogen separator 20 such that the metal support 11 is located below and the palladium alloy membrane 12 is located above. In order to separate hydrogen gas from the raw material gas containing hydrogen using this separator S, the raw material gas G1
Is introduced into the upper part 21 of the hydrogen separator 20. Raw material gas G1
The hydrogen gas inside is the palladium alloy membrane 1 of the hydrogen separation membrane 10.
2 and is taken out as a permeated gas H. On the other hand, a non-permeable gas G2 obtained by separating hydrogen gas from the raw material gas G1
Is taken out of the system from above the hydrogen separator 10.

【0029】なお、この水素分離の条件は、温度が常温
〜600℃、水素分離機20の上部21の圧力が常圧以
上であり、透過側と圧力差があればよい。
The conditions for this hydrogen separation are that the temperature is room temperature to 600 ° C., the pressure in the upper portion 21 of the hydrogen separator 20 is atmospheric pressure or higher, and there is a pressure difference from the permeate side.

【0030】[0030]

【作用】本発明の水素分離膜は、特定孔径の細孔を穿孔
された金属支持体にパラジウム合金を被着させてなるも
のであるため、シール性が良好で、かつ耐熱性、機械的
強度に優れ、高純度の水素の回収が可能であり、高温に
おいても分離性能に優れ、さらに加工性も良好であり、
製造コストが低い。また、本発明の水素分離膜の製造方
法においては、まず金属支持体の片面に電気メッキ法に
よりパラジウム−他の金属層を交互積層し、他方の面か
らエッチング法により細孔を穿孔し、さらに熱処理する
ことによってパラジウムおよびパラジウム以外の他の金
属を相互に拡散させてパラジウム合金層を形成させるも
のであり、比較的簡単な工程によって水素分離能に優れ
た分離膜を安価に製造することができる。
The hydrogen separation membrane of the present invention is formed by depositing a palladium alloy on a metal support in which pores having a specific pore size are perforated, and therefore has good sealing properties, heat resistance, and mechanical strength. Excellent in recovery of high-purity hydrogen, excellent separation performance even at high temperatures, and good processability.
Manufacturing cost is low. Further, in the method for producing a hydrogen separation membrane of the present invention, first, palladium-other metal layers are alternately laminated on one surface of the metal support by an electroplating method, and pores are punched from the other surface by an etching method. By heat treatment, palladium and other metals other than palladium are mutually diffused to form a palladium alloy layer, and a separation membrane excellent in hydrogen separation ability can be manufactured at a low cost by a relatively simple process. ..

【0031】[0031]

【実施例】以下、実施例を挙げて、本発明をさらに具体
的に説明する。 実施例1水素分離膜の製造 厚さ200μmのステンレス(SUS316)の片面
に、パラジウムと銀を交互に電気メッキした。メッキ浴
組成は、下記に示すものを用いた。なお、浴温は30
℃、電流密度はパラジウムメッキのときは1A/d
2 、銀メッキのときは0.5A/dm2 で行った。メ
ッキの総厚は30μmとし、重量比でパラジウム:銀=
80:20になるように多層メッキした。
EXAMPLES The present invention will be described in more detail with reference to examples. Example 1 Production of Hydrogen Separation Membrane One side of 200 μm thick stainless steel (SUS316) was electroplated with palladium and silver alternately. The plating bath composition used was as shown below. The bath temperature is 30
℃, current density is 1A / d for palladium plating
m 2 and 0.5 A / dm 2 for silver plating. The total thickness of the plating is 30 μm, and the weight ratio is palladium: silver =
Multi-layer plating was performed so that the ratio was 80:20.

【0032】パラジウムメッキ浴組成 Pd(NH3 4 Cl2 ・・・・・30g/kg NH4 Cl ・・・・・60g/kg H2 O ・・・・・Bal pH ・・・・・9〜9.5銀メッキ浴組成 AgCN ・・・・・36g/kg KCN ・・・・・60g/kg K2 CO3 ・・・・・15g/kg Palladium plating bath composition Pd (NH 3 ) 4 Cl 2・ ・ ・ 30 g / kg NH 4 Cl ・ ・ ・ 60 g / kg H 2 O ・ ・ ・ Bal pH ・ ・ ・ ・ ・ 9 ~ 9.5 Silver plating bath composition AgCN: 36 g / kg KCN: 60 g / kg K 2 CO 3: 15 g / kg

【0033】次に、エッチング処理は、メッキされた材
料を前処理洗浄し、以下の条件で実施した。レジスト塗布条件 レジスト種類;ネガタイプアクリルポリマー〔東京応化
工業(株)製、PMER−N40DP〕 塗布厚;7μm露光条件 紫外線波長;375nm 照射量;450mJエッチング条件 エッチング液;塩化第2鉄水溶液(45°Be、48
℃) なお、このエッチング処理では、細孔hの孔径dが10
0μm、メッキと金属支持体の最短接点距離wが500
μmになるように実施した。次いで、メッキの合金化熱
処理を600℃×15時間行い、これを水素分離膜とし
た。
Next, the etching treatment was carried out by subjecting the plated material to pre-treatment cleaning and the following conditions. Resist coating conditions Resist type: Negative type acrylic polymer [PMER-N40DP manufactured by Tokyo Ohka Kogyo Co., Ltd.] Coating thickness: 7 μm Exposure conditions Ultraviolet wavelength: 375 nm Irradiation amount: 450 mJ Etching conditions Etching solution: Ferric chloride aqueous solution (45 ° Be , 48
In this etching process, the pore diameter d of the pore h is 10
0 μm, shortest contact distance w between plating and metal support is 500
It carried out so that it might become (micrometer). Then, alloying heat treatment of plating was performed at 600 ° C. for 15 hours to obtain a hydrogen separation membrane.

【0034】水素分離実験 前記で得られた水素分離膜10を図2に示す水素分離機
20に装着し、この工程に原料ガスG1として混合ガス
(水素74容量%、CO1容量%、CH4 1容量%、C
2 24容量%)を流した。透過ガス(水素ガス)およ
び非透過ガスは、別々にガスメータM1、M2で流量を
測定するとともに、ガスクロマトグラフGCに導入して
ガス組成の分析を行った。
Hydrogen Separation Experiment The hydrogen separation membrane 10 obtained above was mounted in the hydrogen separator 20 shown in FIG. 2, and in this step, a mixed gas (74% by volume of hydrogen, 1% by volume of CO, CH 4 1) was used as a raw material gas G1. Capacity%, C
O 2 24% by volume). The permeated gas (hydrogen gas) and the non-permeated gas were separately measured in flow rate by the gas meters M1 and M2, and were introduced into the gas chromatograph GC to analyze the gas composition.

【0035】実験条件は、次のとおりである。 温度=400℃ 圧力(水素分離機20の上部21の圧力)=8.0kg
/cm2 ・G 混合ガス流量=1.0Nl/min 出側圧力(水素分離機20の下部21の圧力)=常圧 実験結果は、次のとおりであった。 透過ガス中の水素ガス濃度=100% 透過速度=80.0cm3 /cm2 /min
The experimental conditions are as follows. Temperature = 400 ° C. Pressure (pressure in the upper part 21 of the hydrogen separator 20) = 8.0 kg
/ Cm 2 · G mixed gas flow rate = 1.0 Nl / min Outlet pressure (pressure in lower part 21 of hydrogen separator 20) = normal pressure The experimental results were as follows. Hydrogen gas concentration in permeated gas = 100% Permeation rate = 80.0 cm 3 / cm 2 / min

【0036】[0036]

【発明の効果】本発明によれば、細孔が多数穿孔された
金属を支持体としているため、耐熱性、機械的強度に優
れ、高純度の水素の回収が可能であり、かつ高温におい
ても分離性能に優れ、さらに電気メッキによりパラジウ
ムなどの薄膜を形成するので、良好な水素分離膜を短時
間かつ少ない労力で容易に製造することができる。
EFFECTS OF THE INVENTION According to the present invention, since a metal having a large number of pores is used as a support, it has excellent heat resistance and mechanical strength, can collect high-purity hydrogen, and even at high temperature. Since a thin film of palladium or the like is formed with excellent separation performance by electroplating, a good hydrogen separation membrane can be easily manufactured in a short time with little labor.

【図面の簡単な説明】[Brief description of drawings]

【図1】水素分離膜製造工程の一部を示す概略図であ
り、図1(A)は金属支持体の片面にパラジウム−他の
金属薄膜層が被着・形成した状態を説明するための拡大
断面構成図、図1(B)は図1(A)の金属支持体の他
方の片面をエッチング処理して得られる本発明の水素分
離膜の拡大断面構成図である。
FIG. 1 is a schematic view showing a part of a hydrogen separation membrane manufacturing process, and FIG. 1 (A) is for explaining a state in which a palladium-other metal thin film layer is deposited / formed on one surface of a metal support. FIG. 1B is an enlarged cross-sectional configuration diagram of the hydrogen permeable membrane of the present invention obtained by etching the other surface of the metal support of FIG. 1A.

【図2】本発明の水素分離膜を用いた水素分離工程の概
略図である。
FIG. 2 is a schematic view of a hydrogen separation process using the hydrogen separation membrane of the present invention.

【符号の説明】[Explanation of symbols]

10 水素分離膜 11 金属支持体 12 パラジウム合金膜 10 Hydrogen Separation Membrane 11 Metal Support 12 Palladium Alloy Membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古賀 聡 神奈川県川崎市川崎区大川町2番1号 三 菱化工機株式会社内 (72)発明者 星 弘充 東京都新宿区本塩町8番地の2 日本ステ ンレス株式会社内 (72)発明者 池田 了康 新潟県上越市港町2丁目12番1号 日本ス テンレス株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Koga 2-1, Okawa-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Sanryo Kakoki Co., Ltd. (72) Hiromitsu Hoshi, 2-8, Honshio-cho, Shinjuku-ku, Tokyo Within Japan Stainless Co., Ltd. (72) Inventor Ryoyasu Ikeda 2-12-1 Minatomachi, Joetsu City, Niigata Prefecture Within Japan Stainless Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 孔径10〜500μmの細孔がエッチン
グにより多数穿孔された金属支持体の片面に、膜厚1〜
50μmのパラジウムと他の金属からなる合金膜が被着
形成されてなる水素分離膜。
1. A metal support having a large number of pores having a diameter of 10 to 500 μm perforated by etching has a film thickness of 1 to 1 on one side.
A hydrogen separation membrane in which an alloy membrane of 50 μm of palladium and another metal is adhered and formed.
【請求項2】 次の各工程からなる請求項1記載の水素
分離膜の製造方法。 (1)金属支持体の片面にパラジウムと他の金属の薄膜
をそれぞれ電気メッキ法により交互積層する第1工程。 (2)前記第1工程で得られる金属支持体の他方の片面
にエッチング法により細孔を穿孔する第2工程。 (3)前記第2工程で得られる金属支持体のパラジウム
−他の金属薄膜層を500〜900℃で熱処理し合金化
する第3工程。
2. The method for producing a hydrogen separation membrane according to claim 1, comprising the following steps. (1) A first step in which thin films of palladium and another metal are alternately laminated on one surface of a metal support by electroplating. (2) A second step of forming pores on the other surface of the metal support obtained in the first step by an etching method. (3) A third step of heat-treating the palladium-other metal thin film layer of the metal support obtained in the second step at 500 to 900 ° C. for alloying.
JP13142092A 1992-04-27 1992-04-27 Method for producing hydrogen separation membrane Expired - Lifetime JP3213053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13142092A JP3213053B2 (en) 1992-04-27 1992-04-27 Method for producing hydrogen separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13142092A JP3213053B2 (en) 1992-04-27 1992-04-27 Method for producing hydrogen separation membrane

Publications (2)

Publication Number Publication Date
JPH05317662A true JPH05317662A (en) 1993-12-03
JP3213053B2 JP3213053B2 (en) 2001-09-25

Family

ID=15057550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13142092A Expired - Lifetime JP3213053B2 (en) 1992-04-27 1992-04-27 Method for producing hydrogen separation membrane

Country Status (1)

Country Link
JP (1) JP3213053B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796647A1 (en) * 1996-03-18 1997-09-24 Mitsubishi Jukogyo Kabushiki Kaisha Hydrogen separation member
KR100247557B1 (en) * 1997-12-24 2000-03-15 김충섭 Preparation of composite membranes for separation of hydrogen
WO2001077011A1 (en) * 2000-04-06 2001-10-18 Walter Juda Associates Inc. Metal bearing membranes
EP1167283A1 (en) * 2000-06-27 2002-01-02 Nisshin Steel Co., Ltd. A gas reformer for recovery of hydrogen
JP2003093854A (en) * 2001-09-25 2003-04-02 Toyo Kohan Co Ltd Method for producing opened laminate and method for producing component using opened laminate
JP2003094542A (en) * 2001-09-25 2003-04-03 Toyo Kohan Co Ltd Laminated material with opening and component using laminated material with opening
JP2003118026A (en) * 2001-10-16 2003-04-23 Toyo Kohan Co Ltd Gas-permeable layer-laminated material and part using the material
JP2003305346A (en) * 2002-04-11 2003-10-28 Toyo Kohan Co Ltd Separation film laminate and production method for component using the same
JP2003311867A (en) * 2002-04-24 2003-11-06 Toyo Kohan Co Ltd Separation film-laminated material and part using the material
WO2004011130A1 (en) * 2002-07-25 2004-02-05 Dai Nippon Insatsu Kabushiki Kaisha Thin film supporting substrate used in filter for hydrogen production and method for manufacturing filter for hydrogen production
MD2449G2 (en) * 2003-03-14 2004-11-30 Ион ТИГИНЯНУ Process for obtaining ultrathin perforated membranes
JP2006520686A (en) * 2003-03-21 2006-09-14 ウスター ポリテクニック インスティチュート Composite gas separation module with intermediate metal layer
US7144444B2 (en) 2002-06-07 2006-12-05 Mitsubishi Heavy Industries, Ltd. Hydrogen separation membrane, hydrogen separation unit, and manufacturing method for hydrogen separation membrane
WO2007018444A1 (en) * 2005-08-09 2007-02-15 Dmitry Ippolitovich Slovetskiy Hydrogen purification membrane, filtering element and membrane device
KR100914653B1 (en) * 2007-09-03 2009-08-28 국방과학연구소 Hydrogen separator and fabricating method thereof
JP2011156487A (en) * 2010-02-02 2011-08-18 Noritake Co Ltd Ion conductive membrane material and method of manufacturing the same
JP2013126685A (en) * 2011-12-16 2013-06-27 Industrial Technology Research Inst Method of fabricating porous medium and inorganic selective membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5132438B2 (en) 2008-06-19 2013-01-30 キヤノン株式会社 Image processing apparatus and image processing method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796647A1 (en) * 1996-03-18 1997-09-24 Mitsubishi Jukogyo Kabushiki Kaisha Hydrogen separation member
KR100247557B1 (en) * 1997-12-24 2000-03-15 김충섭 Preparation of composite membranes for separation of hydrogen
WO2001077011A1 (en) * 2000-04-06 2001-10-18 Walter Juda Associates Inc. Metal bearing membranes
CN100453154C (en) * 2000-04-06 2009-01-21 沃尔特朱达有限公司 Metal bearing membranes
EP1167283A1 (en) * 2000-06-27 2002-01-02 Nisshin Steel Co., Ltd. A gas reformer for recovery of hydrogen
JP2003093854A (en) * 2001-09-25 2003-04-02 Toyo Kohan Co Ltd Method for producing opened laminate and method for producing component using opened laminate
JP2003094542A (en) * 2001-09-25 2003-04-03 Toyo Kohan Co Ltd Laminated material with opening and component using laminated material with opening
JP2003118026A (en) * 2001-10-16 2003-04-23 Toyo Kohan Co Ltd Gas-permeable layer-laminated material and part using the material
JP2003305346A (en) * 2002-04-11 2003-10-28 Toyo Kohan Co Ltd Separation film laminate and production method for component using the same
JP2003311867A (en) * 2002-04-24 2003-11-06 Toyo Kohan Co Ltd Separation film-laminated material and part using the material
US7144444B2 (en) 2002-06-07 2006-12-05 Mitsubishi Heavy Industries, Ltd. Hydrogen separation membrane, hydrogen separation unit, and manufacturing method for hydrogen separation membrane
US7744990B2 (en) 2002-07-25 2010-06-29 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US8043519B2 (en) 2002-07-25 2011-10-25 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US8562847B2 (en) 2002-07-25 2013-10-22 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US8163157B2 (en) 2002-07-25 2012-04-24 Dai Nippon Insatsu Kabushiki Kaisha Method of producing a hydrogen production filter
US7241396B2 (en) 2002-07-25 2007-07-10 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
US7399423B2 (en) 2002-07-25 2008-07-15 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
EP1946826A1 (en) * 2002-07-25 2008-07-23 Dai Nippon Insatsu Kabushiki Kaisha Production method of hydrogen production filter
EP1972373A1 (en) * 2002-07-25 2008-09-24 Dai Nippon Insatsu Kabushiki Kaisha Production method of hydrogen production filter
US7112287B2 (en) 2002-07-25 2006-09-26 Dai Nippon Insatsu Kabushiki Kaisha Thin film supporting substrate for used in filter for hydrogen production filter and method for manufacturing filter for hydrogen production
US7803263B2 (en) 2002-07-25 2010-09-28 Dai Nippon Insatsu Kabushiki Kaisha Thin film support substrate for use in hydrogen production filter and production method of hydrogen production filter
WO2004011130A1 (en) * 2002-07-25 2004-02-05 Dai Nippon Insatsu Kabushiki Kaisha Thin film supporting substrate used in filter for hydrogen production and method for manufacturing filter for hydrogen production
MD2449G2 (en) * 2003-03-14 2004-11-30 Ион ТИГИНЯНУ Process for obtaining ultrathin perforated membranes
JP2006520686A (en) * 2003-03-21 2006-09-14 ウスター ポリテクニック インスティチュート Composite gas separation module with intermediate metal layer
WO2007018444A1 (en) * 2005-08-09 2007-02-15 Dmitry Ippolitovich Slovetskiy Hydrogen purification membrane, filtering element and membrane device
KR100914653B1 (en) * 2007-09-03 2009-08-28 국방과학연구소 Hydrogen separator and fabricating method thereof
JP2011156487A (en) * 2010-02-02 2011-08-18 Noritake Co Ltd Ion conductive membrane material and method of manufacturing the same
JP2013126685A (en) * 2011-12-16 2013-06-27 Industrial Technology Research Inst Method of fabricating porous medium and inorganic selective membrane

Also Published As

Publication number Publication date
JP3213053B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP3213053B2 (en) Method for producing hydrogen separation membrane
US7875154B2 (en) Preparation method of palladium alloy composite membrane for hydrogen separation
US7727596B2 (en) Method for fabricating a composite gas separation module
JP3388840B2 (en) Hydrogen separation membrane and method for producing the same
JP4250525B2 (en) Separation diffusion metal membrane and manufacturing method thereof
US8366805B2 (en) Composite structures with porous anodic oxide layers and methods of fabrication
JP2006520686A5 (en)
JP2008507395A5 (en)
JPH11276866A (en) Hydrogen-permeable membrane and its manufacture
EP1603660B1 (en) Method for curing defects in the fabrication of a composite membrane gas separation module
CN107376661B (en) Preparation method of palladium-based composite membrane
KR100832302B1 (en) Fabrication method of pd alloy membrane using in-situ dry vacuum process for hydrogen gas separation
JP5526387B2 (en) Defect-free hydrogen separation membrane, method for producing defect-free hydrogen separation membrane, and hydrogen separation method
CN100427186C (en) Gas separating equipment and producing method thereof
JPH05137979A (en) Production of hydrogen separating membrane
JP3801838B2 (en) Hydrogen gas separation unit and manufacturing method thereof
JP4112856B2 (en) Method for producing gas separator
JP4411409B2 (en) Method for manufacturing hydrogen permeation device
JP3045329B2 (en) Method for producing hydrogen separation membrane
JP2002292259A (en) Hydrogen permeable structural body and method for manufacturing the same
Kusakabe et al. Preparation of thin palladium membranes by a novel method based on photolithography and electrolysis
JP2008062213A (en) Manufacturing method of hydrogen permeable membrane structure
JP2001276557A (en) Hydrogen gas separation unit
JP2002153739A (en) Method of manufacturing hydrogen separation membrane
KR20060037119A (en) Hydrogen-permeable nickel-based membranes and their preparation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010710

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11