JPH05137979A - Production of hydrogen separating membrane - Google Patents

Production of hydrogen separating membrane

Info

Publication number
JPH05137979A
JPH05137979A JP33454791A JP33454791A JPH05137979A JP H05137979 A JPH05137979 A JP H05137979A JP 33454791 A JP33454791 A JP 33454791A JP 33454791 A JP33454791 A JP 33454791A JP H05137979 A JPH05137979 A JP H05137979A
Authority
JP
Japan
Prior art keywords
palladium
film
porous body
hydrogen
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33454791A
Other languages
Japanese (ja)
Inventor
Masayuki Nishimura
真幸 西村
Masato Kaneko
正人 金子
Akira Kobuchi
彰 小渕
Koichi Hanada
浩一 花田
Hitoshi Ito
仁志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP33454791A priority Critical patent/JPH05137979A/en
Publication of JPH05137979A publication Critical patent/JPH05137979A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain the separating membrane which has excellent heat resistance and mechanical strength and can recover high-purity hydrogen by depositing a palladium film by electroless plating on the surface of a nonconductive porous body and further laminating and depositing a palladium film thereon by electroplating. CONSTITUTION:The tubular hydrogen separating membrane 1 is constituted by depositing and forming a thin film 3 consisting of the palladium film or palladium alloy film on the annular nonconductive porous body 2. The thin film 3 is formed by first depositing the palladium and/or metal exclusive of the palladium by an electroless plating method on the surface of the nonconductive porous body 2 consisting of alumina, etc. The electroless plating is executed by immersing the nonconductive porous body 2 in a plating liquid for a specified period of time. The palladium and/or the metal exclusive of the palladium is then laminated and deposited thereon by the electroplating method. This separating membrane is formed by using the porous body as a supporting body and, therefore, has the excellent heat resistance and mechanical strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素含有ガス中の水素
を拡散分離する水素分離膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen separation membrane for diffusing and separating hydrogen in a hydrogen-containing gas.

【0002】[0002]

【従来の技術】従来、水素ガスは、天然ガス、ナフサ、
またはメタノールなどの炭化水素を原料として水蒸気改
質法や部分酸化法などで製造され、また石炭のガス化や
水電解などでも製造されている。上記方法で製造された
水素含有ガスから水素を精製回収する方法としては、溶
液吸収法、吸着法、または深冷分離法などで不純物を分
離除去する方法や、有機または無機の水素分離膜によっ
て水素を拡散分離する方法などがあり、そのなかでも膜
分離法は、省エネルギー、分離効率、装置の簡易な構成
および運転の容易性などの観点から注目されている。
2. Description of the Related Art Conventionally, hydrogen gas is a natural gas, naphtha,
Alternatively, it is produced by a steam reforming method or a partial oxidation method using a hydrocarbon such as methanol as a raw material, and is also produced by gasification of coal or water electrolysis. As a method for purifying and recovering hydrogen from the hydrogen-containing gas produced by the above method, a method of separating and removing impurities by a solution absorption method, an adsorption method, a cryogenic separation method, or the like, or a hydrogen by an organic or inorganic hydrogen separation membrane There is a method of diffusing and separating, and among them, the membrane separation method is drawing attention from the viewpoints of energy saving, separation efficiency, simple configuration of the device, and easiness of operation.

【0003】膜分離法に用いられる水素分離膜として
は、ポリイミドやポリスルホンなどの有機高分子膜、多
孔質ガラスや多孔質セラミックスなどの無機多孔質膜、
およびパラジウムまたはパラジウム合金膜などがある。
このうち、有機高分子膜は耐熱性や高温時での分離効率
低下に問題があり、また無機多孔質膜においても分離効
率が低い欠点があり、さらにパラジウムまたはパラジウ
ム合金膜においては耐熱性もあり、また極めて高純度の
水素を得ることができるが、機械的強度や薄膜製造技術
の難しさなどの問題がある。
Hydrogen separation membranes used in the membrane separation method include organic polymer membranes such as polyimide and polysulfone, inorganic porous membranes such as porous glass and porous ceramics,
And palladium or palladium alloy film.
Among them, the organic polymer membrane has a problem in heat resistance and reduction in separation efficiency at high temperature, and also has a defect that the separation efficiency is low even in the inorganic porous membrane, and also in the palladium or palladium alloy membrane, there is heat resistance. Further, although hydrogen of extremely high purity can be obtained, there are problems such as mechanical strength and difficulty of thin film manufacturing technology.

【0004】上記パラジウムまたはパラジウム合金膜の
機械的強度を高めた水素分離膜として、特開昭62−1
21616号公報、特開昭62−273030号公報、
特開昭63−171617号公報には、多孔質ガラス、
多孔質セラミックス、あるいは多孔質酸化アルミニウム
などの無機多孔質支持体の表面に、パラジウムまたはパ
ラジウム合金膜を被着した膜が開示されており、またこ
れらの公報には、その水素分離膜の製造方法も記載され
ている。
As a hydrogen separation membrane in which the mechanical strength of the above palladium or palladium alloy membrane is increased, Japanese Patent Laid-Open No. 62-1
21616, JP-A-62-273030,
Japanese Patent Laid-Open No. 63-171617 discloses a porous glass,
Membranes in which a palladium or palladium alloy membrane is deposited on the surface of an inorganic porous support such as porous ceramics or porous aluminum oxide are disclosed, and in these publications, a method for producing the hydrogen separation membrane is disclosed. Is also described.

【0005】上記公報に記載された水素分離膜の製造方
法において、特開昭62−121616号公報に記載さ
れた方法では、厚さ1mm程度の無機多孔質支持体の表
面にパラジウムまたはパラジウム合金膜を気相化学反応
や真空蒸着法などで被着しているが、装置が複雑で高度
な製造技術を必要とし、さらに厚膜製造に時間がかかる
欠点がある。また、特開昭62−273030号公報の
方法では、無機多孔質体の表面を化学的に活性化処理し
たのち、化学メッキ法でパラジウム主体膜を被着してい
るが、化学メッキ法に時間および手間がかかる欠点があ
る。さらに、特開昭63−171617号公報の方法で
は、例えば金属アルミニウムを陽極酸化処理したのち、
エッチング法で金属アルミニウムを溶解除去して厚さ5
0μm程度の多孔質酸化アルミニウム膜を製造し、該膜
にスパッタ法でパラジウムまたはパラジウム合金を蒸着
したのち、さらにパラジウム塩水溶液でパラジウムを担
持しているが、非常に手間がかかり、また高度の成膜技
術を必要とする欠点がある。
In the method for producing a hydrogen separation membrane described in the above publication, the method disclosed in Japanese Patent Laid-Open No. 62-121616 discloses a palladium or palladium alloy membrane on the surface of an inorganic porous support having a thickness of about 1 mm. Is deposited by a vapor phase chemical reaction or a vacuum deposition method, but it has a drawback that the equipment is complicated and requires a high-level manufacturing technique, and that it takes time to manufacture a thick film. Further, in the method disclosed in Japanese Patent Laid-Open No. 62-273030, after the surface of the inorganic porous material is chemically activated, the palladium-based film is deposited by the chemical plating method. And there is a drawback that it takes time. Further, in the method disclosed in Japanese Patent Laid-Open No. 63-171617, for example, after anodizing the metallic aluminum,
Metallic aluminum is dissolved and removed by etching method to a thickness of 5
A porous aluminum oxide film having a thickness of about 0 μm is manufactured, and palladium or a palladium alloy is deposited on the film by a sputtering method, and then palladium is further supported by an aqueous solution of a palladium salt, which is very time-consuming and requires a high degree of performance. There are drawbacks that require membrane technology.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記従来技
術の課題を背景になされたもので、多孔質体により指示
されているため耐熱性、機械的強度に優れ、高純度の水
素の回収が可能であり、かつ高温においても分離性能に
優れ、さらに加工性も良好な水素分離膜を短時間かつ少
ない労力で容易に製造することができる水素分離膜の製
造方法を提供することを目的とする。
The present invention has been made against the background of the above-mentioned problems of the prior art. Since it is indicated by a porous body, it has excellent heat resistance and mechanical strength, and recovers high-purity hydrogen. It is possible to provide a method for producing a hydrogen separation membrane capable of easily producing a hydrogen separation membrane having excellent separation performance even at a high temperature and having good workability in a short time and with little labor. To do.

【0007】[0007]

【課題を解決するための手段】本発明は、微細孔を有す
る非導電性多孔質体の表面に、無電解メッキ法でパラジ
ウム膜を被着したのち、さらに電気メッキ法でパラジウ
ム膜を積層被着させることを特徴とする水素分離膜の製
造方法を提供するものである。
According to the present invention, a palladium film is deposited on the surface of a non-conductive porous body having fine pores by electroless plating, and then a palladium film is laminated by electroplating. The present invention provides a method for producing a hydrogen separation membrane, which comprises depositing the hydrogen separation membrane.

【0008】また、本発明は、微細孔を有する非導電性
多孔質体の表面に、無電解メッキ法でパラジウム、銀、
ニッケル、コバルトおよび銅の群から選ばれた1種の金
属の膜を被着したのち、電気メッキ法でパラジウム、
銀、ニッケル、コバルトおよび銅の群から選ばれた1種
の金属の膜を、総膜中のパラジウム以外の金属の含量を
1〜50重量%になるように積層被着させ、次いで加熱
処理して合金化することを特徴とする水素分離膜の製造
方法を提供するものである。
Further, according to the present invention, the surface of a non-conductive porous body having fine pores is coated with palladium, silver,
After depositing a film of one kind of metal selected from the group of nickel, cobalt and copper, palladium by electroplating,
A film of one kind of metal selected from the group of silver, nickel, cobalt and copper is laminated and deposited so that the content of metals other than palladium in the total film is 1 to 50% by weight, and then heat treated. The present invention provides a method for producing a hydrogen separation membrane, which is characterized by alloying with hydrogen.

【0009】以下、本発明の水素分離膜の一例を図面を
参照しつつ説明する。図1は、本発明の製造方法で製造
した水素分離膜の概略図である。図1において、管状の
水素分離膜1は、環状の非導電性多孔質体2にパラジウ
ム膜あるいはパラジウム合金膜からなる薄膜3を被着形
成している。なお、水素分離膜1は、前記のような管状
のほか、板状体でもよく、その目的とするところにより
任意の形状が採用できる。
An example of the hydrogen separation membrane of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of a hydrogen separation membrane manufactured by the manufacturing method of the present invention. In FIG. 1, a tubular hydrogen separation membrane 1 is formed by depositing a thin film 3 made of a palladium film or a palladium alloy film on an annular non-conductive porous body 2. The hydrogen separation membrane 1 may be a plate-shaped body other than the tubular shape as described above, and any shape can be adopted depending on the purpose.

【0010】非導電性多孔質体2は、アルミナ、シリ
カ、シリカ−アルミナ、ムライト、コージライト、ジル
コニア、カーボン、多孔質ガラスなどの無機質材料から
なるもので、一般のセラミックス多孔質体と同様の成形
条件で成形し、その後焼成または熱処理して得られる。
この非導電性多孔質体2は、多数の微細な連続した細孔
を有するもので、この微細孔の孔径は、0.003〜2
0μm、好ましくは0.01〜1μmである。微細孔の
孔径が0.003μm未満では流通抵抗が大きくなり、
一方20μmを超えると被着膜にピンホールが生じやす
くなる。なお、多孔質体2の厚さは、100μm以上、
好ましくは0.1〜5mmであり、管径および圧力によ
り異なる。多孔質体2の厚さが100μm未満では、支
持体としての機械的強度が弱く実用的でない。
The non-conductive porous body 2 is made of an inorganic material such as alumina, silica, silica-alumina, mullite, cordierite, zirconia, carbon or porous glass, and is the same as a general ceramic porous body. It is obtained by molding under molding conditions and then firing or heat treatment.
The non-conductive porous body 2 has a large number of fine continuous pores, and the pore size of the fine pores is 0.003 to 2
It is 0 μm, preferably 0.01 to 1 μm. If the pore size of the fine pores is less than 0.003 μm, the flow resistance increases,
On the other hand, if it exceeds 20 μm, pinholes are likely to occur in the adhered film. The thickness of the porous body 2 is 100 μm or more,
It is preferably 0.1 to 5 mm, and depends on the pipe diameter and pressure. When the thickness of the porous body 2 is less than 100 μm, the mechanical strength of the support is weak and it is not practical.

【0011】薄膜3は、パラジウムまたはパラジウムを
主体とする合金の薄膜であり、このうちパラジウムを主
体とする合金は、パラジウムと、銀、ニッケル、コバル
トおよび銅のうちの1種の金属との合金である。薄膜3
の総厚は、1〜100μm、好ましくは2〜50μmで
ある。薄膜3の総厚が1μm未満では、薄膜3にピンホ
ールが生じやすくなり正常な被着が困難となり、かつ分
離水素の純度も低下することになり、一方100μmを
超えると、水素の透過速度が遅くなり過ぎて実用的でな
い。
The thin film 3 is a thin film of palladium or an alloy mainly composed of palladium, and the alloy mainly composed of palladium is an alloy of palladium and one metal selected from silver, nickel, cobalt and copper. Is. Thin film 3
Has a total thickness of 1 to 100 μm, preferably 2 to 50 μm. If the total thickness of the thin film 3 is less than 1 μm, pinholes are likely to be generated in the thin film 3 and normal deposition becomes difficult, and the purity of separated hydrogen is also lowered. On the other hand, if it exceeds 100 μm, the permeation rate of hydrogen is low. It's too late to be practical.

【0012】また、薄膜3がパラジウム合金膜の場合に
は、パラジウム以外の金属の含量は、1〜50重量%、
好ましくは10〜30重量%である。パラジウムを合金
化する主目的は、パラジウムの水素脆化と高温時の分離
効率向上にあり、パラジウム以外の金属の含量が1重量
%未満では、パラジウムの水素脆化防止、高温時の分離
効率向上の効果が少なくなり、一方50重量%を超える
と、水素の透過速度が遅くなりすぎて実用的でない。
When the thin film 3 is a palladium alloy film, the content of metals other than palladium is 1 to 50% by weight,
It is preferably 10 to 30% by weight. The main purpose of alloying palladium is to hydrogen embrittlement of palladium and to improve the separation efficiency at high temperatures. When the content of metals other than palladium is less than 1% by weight, the prevention of hydrogen embrittlement of palladium and the improvement of separation efficiency at high temperatures are achieved. On the other hand, when it exceeds 50% by weight, the hydrogen permeation rate becomes too slow, which is not practical.

【0013】次に、本発明の水素分離膜の製造方法につ
いて説明すると、まず前記非導電性多孔質体の表面に、
無電解メッキ法で、パラジウムおよび/またはパラジウ
ム以外の前記金属を被着させる。この無電解メッキ法で
は、前記非導電性多孔質体を一定時間メッキ液中に浸漬
することによって行われる。この無電解メッキ法におけ
るメッキ液の組成としては、例えば次のようなものが挙
げられるが、この組成に限定されるものではなく、無電
解メッキ法によってパラジウム膜および/またはパラジ
ウム以外の前記金属が被着される組成であれば特に限定
されない。
Next, the method for producing the hydrogen separation membrane of the present invention will be described. First, on the surface of the non-conductive porous body,
Electroless plating is used to deposit palladium and / or the metals other than palladium. The electroless plating method is performed by immersing the non-conductive porous body in a plating solution for a certain period of time. The composition of the plating solution in this electroless plating method includes, for example, the following, but is not limited to this composition, and the palladium film and / or the metal other than palladium may be formed by the electroless plating method. There is no particular limitation as long as the composition is deposited.

【0014】Pd膜用; 〔Pd(NH3 4 〕Cl2 ・2H2 O;5g/l、E
DTA・2Na;70g/l、NH4 OH;350ml
/l、H2 NNH2 ;0.46ml/l Ag膜用; AgNO3 ;3.5g/l、EDTA・2Na;35g
/l、NH4 OH;350ml/l、H2 NNH2
0.46ml/l
For Pd film; [Pd (NH 3 ) 4 ] Cl 2 .2H 2 O; 5 g / l, E
DTA ・ 2Na; 70 g / l, NH 4 OH; 350 ml
/ L, H 2 NNH 2 ; 0.46 ml / l for Ag membrane; AgNO 3 ; 3.5 g / l, EDTA.2Na; 35 g
/ L, NH 4 OH; 350 ml / l, H 2 NNH 2 ;
0.46 ml / l

【0015】Ni膜用; NiSO4 ・6H2 O;26g/l、(NH4 2 SO
4 ;66g/l、C3 4 (OH)(COONa)3
2H2 O;59g/l コバルト膜用; CoCl2 ;30g/l、NH4 Cl;50g/l、N
aPH2 2 ・H2 O;20g/l、C3 4 (OH)
(COONa)3 ・2H2 O;35g/l
For Ni film; NiSO 4 .6H 2 O; 26 g / l, (NH 4 ) 2 SO
4 ; 66 g / l, C 3 H 4 (OH) (COONa) 3
2H 2 O; 59 g / l for cobalt film; CoCl 2 ; 30 g / l, NH 4 Cl; 50 g / l, N
aPH 2 O 2 · H 2 O; 20 g / l, C 3 H 4 (OH)
(COONa) 3 · 2H 2 O ; 35g / l

【0016】Cu膜用; CuSO4 ・5H2 O;10g/l、EDTA・4N
a;30g/l、HCHO;1.5g/l、(C5 4
N)2 ;0.02g/l、K4 〔Fe(CN)6 〕;
0.05g/l この無電解メッキ法におけるメッキ温度は40〜90
℃、メッキ時間は膜厚によって異なるが、通常、0.5
〜1時間程度である。
For Cu film; CuSO 4 .5H 2 O; 10 g / l, EDTA.4N
a; 30 g / l, HCHO; 1.5 g / l, (C 5 H 4
N) 2 ; 0.02 g / l, K 4 [Fe (CN) 6 ];
0.05 g / l The plating temperature in this electroless plating method is 40 to 90
℃, plating time depends on the film thickness, but usually 0.5
It is about 1 hour.

【0017】次に、このようにして無電解メッキが施さ
れた多孔質体に、さらに電気メッキ法でパラジウムおよ
び/またはパラジウム以外の前記金属を積層被着させ
る。この電気メッキ法では、慣用されている電気メッキ
装置が用いられる。パラジウムの薄膜の製造の場合は、
電気メッキ液としてパラジウム塩と電解質が溶解した水
溶液が用いられ、該電気メッキ液が充填された電解槽内
にマイナス側に接続された多孔質体と、プラス側に接続
された白金板とを浸漬して直流電源を通電することによ
り被着形成される。この電気メッキ液の一例としては、
例えば次のようなものが挙げられるが、この組成に限定
されるものではなく、電気メッキ法によってパラジウム
膜またはパラジウム以外の前記金属膜が積層被着される
組成であれば特に限定されない。
Next, the electroless plated porous body is further laminated with palladium and / or the metal other than palladium by electroplating. In this electroplating method, a commonly used electroplating apparatus is used. For the production of palladium thin films,
An aqueous solution in which a palladium salt and an electrolyte are dissolved is used as the electroplating solution, and a porous body connected to the minus side and a platinum plate connected to the plus side are immersed in an electrolytic bath filled with the electroplating solution. Then, a direct current power source is energized to form a deposit. As an example of this electroplating solution,
For example, the following may be mentioned, but the composition is not limited to this, and is not particularly limited as long as it is a composition in which a palladium film or the metal film other than palladium is laminated and deposited by an electroplating method.

【0018】Pd膜用; 〔Pd(NH3 4 〕Cl2 ・2H2 O;30g/l、
NH4 Cl;60g/l、 Ag膜用; AgCN;36g/l、KCN;60g/l、K2 CO
3 ;15g/l Ni膜用; NiSO4 ;240g/l、NiCl2 ;45g/l、
3 BO3 ;30g/l
For Pd film; [Pd (NH 3 ) 4 ] Cl 2 .2H 2 O; 30 g / l,
NH 4 Cl; 60 g / l, for Ag film; AgCN; 36 g / l, KCN; 60 g / l, K 2 CO
3 ; 15 g / l for Ni film; NiSO 4 ; 240 g / l, NiCl 2 ; 45 g / l,
H 3 BO 3 ; 30 g / l

【0019】Co膜用; CoSO4 ;300g/l、NH4 Cl;20g/l、
3 BO3 ;15g/l、 Cu膜用; CuSO4 ・5H2 O;250g/l、H2 SO4 ;7
5g/l
For Co film; CoSO 4 ; 300 g / l, NH 4 Cl; 20 g / l,
H 3 BO 3 ; 15 g / l, for Cu film; CuSO 4 .5H 2 O; 250 g / l, H 2 SO 4 ; 7
5 g / l

【0020】この電気メッキ法による電流密度は、電気
メッキ液の性状によっても異なるが、0.1〜3A/d
2 である。また、薄膜の厚さは、電気メッキ時間を可
変にすることにより所定の膜厚とすることができる。
The current density according to this electroplating method varies depending on the properties of the electroplating solution, but is 0.1-3 A / d.
m 2 . Further, the thickness of the thin film can be set to a predetermined value by making the electroplating time variable.

【0021】また、パラジウムを主体とする合金薄膜の
場合、まず無電解メッキ法によりパラジウム薄膜を形成
させ、この薄膜の上に合金化金属の薄膜を積層被着させ
てもよく、あるいは逆の工程で被着してもよく、さらに
は交互に積層したり、複数種類の金属を積層することも
適宜行われる。
In the case of an alloy thin film mainly containing palladium, a palladium thin film may be first formed by an electroless plating method, and a thin film of an alloying metal may be laminated and deposited on this thin film, or vice versa. Alternatively, the layers may be alternately laminated or a plurality of kinds of metals may be laminated.

【0022】パラジウムを主体とする合金薄膜の場合、
上記工程で被着された薄膜は、パラジウムと合金化金属
とが積層した膜であり、合金化した膜とするには、製造
された水素分離膜を電気炉などで加熱処理することによ
り、金属どうしを相互拡散させて形成することができ
る。加熱処理温度は、500〜1,000℃が好まし
く、500℃未満では金属どうしの相互拡散が起こら
ず、一方1,000℃を超えると、多孔質体からの拡散
混合が無視できないほど多くなり好ましくない。また、
この加熱処理時間は、1〜20時間が好ましい。
In the case of an alloy thin film mainly composed of palladium,
The thin film deposited in the above step is a film in which palladium and an alloying metal are laminated, and in order to form an alloyed film, the produced hydrogen separation membrane is subjected to heat treatment in an electric furnace or the like to form a metal. They can be formed by mutual diffusion. The heat treatment temperature is preferably 500 to 1,000 ° C., and if the temperature is less than 500 ° C., mutual diffusion of metals does not occur. On the other hand, if the temperature exceeds 1,000 ° C., diffusion mixing from the porous body becomes so large that it cannot be ignored. Absent. Also,
The heat treatment time is preferably 1 to 20 hours.

【0023】[0023]

【作用】本発明の水素分離膜の製造方法では、まず非導
電性多孔質体の表面に無電解メッキを施すため、該表面
を容易に導電性となすことができる。次いで、パラジウ
ム塩および/またはパラジウム以外の金属の塩、および
電解質を溶解した電気メッキ液中に、表面を導電性にな
した前記多孔質体を陰極、白金板を陽極として、一定電
流密度で通電すると、多孔質体の表面にパラジウムおよ
び/またはパラジウム以外の前記金属膜が積層被着され
て形成される。膜の厚さは、電気メッキ液の性状や電流
密度などによって異なるが、電気メッキ時間を可変にす
ることにより、任意の厚さに被着することができる。ま
た、パラジウム合金膜では、パラジウムを主体とする金
属複合膜が形成されるので、これを例えば500〜1,
000℃で加熱処理することにより、パラジウムおよび
パラジウム以外の金属が相互に拡散して合金化される。
In the method for producing a hydrogen separation membrane of the present invention, the surface of the non-conductive porous body is first subjected to electroless plating, so that the surface can be easily made conductive. Next, in a electroplating solution in which a palladium salt and / or a metal salt other than palladium and an electrolyte are dissolved, the porous body having a conductive surface is used as a cathode, and a platinum plate is used as an anode, and electricity is applied at a constant current density. Then, palladium and / or the metal film other than palladium is laminated and formed on the surface of the porous body. The thickness of the film varies depending on the properties of the electroplating solution, the current density, etc., but can be applied to any thickness by varying the electroplating time. Further, in the palladium alloy film, a metal composite film containing palladium as a main component is formed.
By heat treatment at 000 ° C., palladium and metals other than palladium are mutually diffused and alloyed.

【0024】[0024]

【実施例】以下、実施例を挙げて、本発明をさらに具体
的に説明する。 実施例1〜5 厚さ2mm、微細孔径0.1μmの多孔質セラミックス
管の外表面に、Pd膜を無電解メッキ法で被着したの
ち、電気メッキ法でAg、Ni、Co、Cu膜をそれぞ
れ被着積層して、図1に示すような水素分離膜を製造し
た。なお、無電解メッキ液および電気メッキ液として
は、前記例示した組成のメッキ液を用いた。また、電気
メッキの場合、電流密度は、1A/dm2 とした。
EXAMPLES The present invention will be described in more detail with reference to examples. Examples 1 to 5 A Pd film was deposited on the outer surface of a porous ceramic tube having a thickness of 2 mm and a micropore diameter of 0.1 μm by an electroless plating method, and then an Ag, Ni, Co, Cu film was deposited by an electroplating method. Each was deposited and laminated to produce a hydrogen separation membrane as shown in FIG. As the electroless plating solution and the electroplating solution, the plating solutions having the above-exemplified compositions were used. In the case of electroplating, the current density was 1 A / dm 2 .

【0025】さらに、合金化は、温度900℃で2時間
加熱処理した。次いで、得られた水素分離膜管を用い
て、水素含有ガスから水素を分離する際の性能を測定し
た。水素含有ガスのガス組成は、水素74容量%、一酸
化炭素1容量%、メタン1容量%、二酸化炭素24容量
%で、分離操作条件は、一次側圧力8kg/cm2 G、二次
側圧力0kg/cm2 G、温度400℃、供給ガス流量2N
l/分で行った。
Further, alloying was performed by heat treatment at a temperature of 900 ° C. for 2 hours. Next, the performance of separating hydrogen from the hydrogen-containing gas was measured using the obtained hydrogen separation membrane tube. The gas composition of the hydrogen-containing gas is 74% by volume of hydrogen, 1% by volume of carbon monoxide, 1% by volume of methane, and 24% by volume of carbon dioxide. Separation operation conditions include a primary side pressure of 8 kg / cm 2 G and a secondary side pressure. 0 kg / cm 2 G, temperature 400 ° C, supply gas flow rate 2N
It was performed at 1 / min.

【0026】比較例1〜5 実施例1と同じ多孔質セラミックス管の外表面に、Pd
膜とAg、Ni、Co、Cu膜をそれぞれ無電解メッキ
法のみで被着し、成膜時間を測定した。また、このよう
にして得られた水素分離膜管を用い、実施例1と同様に
して水素の分離性能を測定した。結果を併せて、表1に
示す。
Comparative Examples 1 to 5 Pd was formed on the outer surface of the same porous ceramic tube as in Example 1.
The film and the Ag, Ni, Co, and Cu films were respectively deposited only by the electroless plating method, and the film formation time was measured. In addition, the hydrogen separation membrane tube thus obtained was used to measure the hydrogen separation performance in the same manner as in Example 1. The results are also shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】注)透過水素の純度は、すべてほぼ100
%であった。表1から明らかなように、本発明の方法で
製造された水素分離膜管は、無電解メッキ法のみで製造
された水素分離膜管と比較して極めて短時間で成膜で
き、かつ水素の透過速度も速い。
Note) The purity of permeated hydrogen is almost 100%.
%Met. As is clear from Table 1, the hydrogen separation membrane tube manufactured by the method of the present invention can form a film in an extremely short time as compared with the hydrogen separation membrane tube manufactured only by the electroless plating method, and The transmission speed is also fast.

【0029】[0029]

【発明の効果】本発明によれば、多孔質体を支持体とし
ているため、耐熱性、機械的強度に優れ、高純度の水素
の回収が可能であり、かつ高温においても分離性能に優
れ、さらに加工性も良好な水素分離膜を短時間かつ少な
い労力で容易に製造することができる。
EFFECTS OF THE INVENTION According to the present invention, since a porous body is used as a support, it has excellent heat resistance and mechanical strength, is capable of recovering highly pure hydrogen, and has excellent separation performance even at high temperatures. Furthermore, a hydrogen separation membrane having good workability can be easily manufactured in a short time with a small amount of labor.

【図面の簡単な説明】[Brief description of drawings]

【図1】水素分離膜管の概略断面図である。FIG. 1 is a schematic cross-sectional view of a hydrogen separation membrane tube.

【符号の説明】[Explanation of symbols]

1 水素分離膜管 2 非導電性多孔質体 3 薄膜 1 Hydrogen separation membrane tube 2 Non-conductive porous body 3 Thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花田 浩一 神奈川県川崎市川崎区大川町2番1号 三 菱化工機株式会社内 (72)発明者 伊藤 仁志 神奈川県川崎市川崎区大川町2番1号 三 菱化工機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koichi Hanada 2-1, Okawa-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Sanryo Kakoki Co., Ltd. (72) Inoshi Hitoshi 2, Kawasaki-ku, Kawasaki-ku, Kanagawa No. 1 Sanritsu Kakoki Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 微細孔を有する非導電性多孔質体の表面
に、無電解メッキ法でパラジウム膜を被着したのち、さ
らに電気メッキ法でパラジウム膜を積層被着させること
を特徴とする水素分離膜の製造方法。
1. A hydrogen which comprises depositing a palladium film on the surface of a non-conductive porous body having fine pores by an electroless plating method, and then laminating and depositing a palladium film by an electroplating method. Method for manufacturing separation membrane.
【請求項2】 微細孔を有する非導電性多孔質体の表面
に、無電解メッキ法でパラジウム、銀、ニッケル、コバ
ルトおよび銅の群から選ばれた1種の金属の膜を被着し
たのち、電気メッキ法でパラジウム、銀、ニッケル、コ
バルトおよび銅の群から選ばれた1種の金属の膜を、総
膜中のパラジウム以外の金属の含量を1〜50重量%に
なるように積層被着させ、次いで加熱処理して合金化す
ることを特徴とする水素分離膜の製造方法。
2. A film of one kind of metal selected from the group consisting of palladium, silver, nickel, cobalt and copper is deposited on the surface of a non-conductive porous body having fine pores by electroless plating. , A film of one metal selected from the group of palladium, silver, nickel, cobalt and copper by electroplating is laminated so that the content of the metal other than palladium in the total film is 1 to 50% by weight. A method for producing a hydrogen separation membrane, which comprises depositing and then heat treating to alloy.
JP33454791A 1991-11-25 1991-11-25 Production of hydrogen separating membrane Pending JPH05137979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33454791A JPH05137979A (en) 1991-11-25 1991-11-25 Production of hydrogen separating membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33454791A JPH05137979A (en) 1991-11-25 1991-11-25 Production of hydrogen separating membrane

Publications (1)

Publication Number Publication Date
JPH05137979A true JPH05137979A (en) 1993-06-01

Family

ID=18278638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33454791A Pending JPH05137979A (en) 1991-11-25 1991-11-25 Production of hydrogen separating membrane

Country Status (1)

Country Link
JP (1) JPH05137979A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989319A (en) * 1996-07-08 1999-11-23 Ngk Insulators, Ltd. Gas separator
US6066592A (en) * 1996-07-08 2000-05-23 Ngk Insulators, Ltd. Gas separator
JP2003311867A (en) * 2002-04-24 2003-11-06 Toyo Kohan Co Ltd Separation film-laminated material and part using the material
JP2008513196A (en) * 2004-09-15 2008-05-01 韓国エネルギー技術研究院 Method for producing palladium alloy composite membrane for hydrogen gas separation
JP2008261045A (en) * 2007-04-13 2008-10-30 Green Hydrotec Inc Palladium-containing plating solution and its use
EP2058886A1 (en) 2007-10-30 2009-05-13 Samsung SDI Co., Ltd. Fuel tank and fuel cell system including the same
JP2010036080A (en) * 2008-08-03 2010-02-18 National Institute Of Advanced Industrial & Technology Hydrogen gas separation material with elevated temperature resistance which does not deteriorate under elevated temperature hyperbaric pressure-humid environment for a long term
WO2011122250A1 (en) 2010-03-29 2011-10-06 独立行政法人産業技術総合研究所 Defectless hydrogen separation membrane, production method for defectless hydrogen separation membrane and hydrogen separation method
CN102861517A (en) * 2012-09-19 2013-01-09 常州大学 Method for preparing cold-rolled ultra-thin palladium-silver alloy membrane
JP2014046228A (en) * 2012-08-29 2014-03-17 Ngk Spark Plug Co Ltd Method for manufacturing hydrogen separator
CN109440148A (en) * 2018-10-29 2019-03-08 钟祥博谦信息科技有限公司 A kind of preparation method and applications of palladium cobalt nanowire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294925A (en) * 1987-05-27 1988-12-01 Ise Kagaku Kogyo Kk Film for separating hydrogen and production thereof
JPS644216A (en) * 1987-06-26 1989-01-09 Agency Ind Science Techn Production of thin membrane for separating gas
JPH01164419A (en) * 1987-12-22 1989-06-28 Ise Kagaku Kogyo Kk Production of hydrogen separating membrane
JPH03146122A (en) * 1989-11-02 1991-06-21 Tokyo Gas Co Ltd Manufacture of hydrogen separation membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294925A (en) * 1987-05-27 1988-12-01 Ise Kagaku Kogyo Kk Film for separating hydrogen and production thereof
JPS644216A (en) * 1987-06-26 1989-01-09 Agency Ind Science Techn Production of thin membrane for separating gas
JPH01164419A (en) * 1987-12-22 1989-06-28 Ise Kagaku Kogyo Kk Production of hydrogen separating membrane
JPH03146122A (en) * 1989-11-02 1991-06-21 Tokyo Gas Co Ltd Manufacture of hydrogen separation membrane

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066592A (en) * 1996-07-08 2000-05-23 Ngk Insulators, Ltd. Gas separator
US5989319A (en) * 1996-07-08 1999-11-23 Ngk Insulators, Ltd. Gas separator
JP2003311867A (en) * 2002-04-24 2003-11-06 Toyo Kohan Co Ltd Separation film-laminated material and part using the material
JP2011062699A (en) * 2004-09-15 2011-03-31 Korea Inst Of Energy Research Method for manufacturing palladium alloy composite membrane for hydrogen gas separation
JP2008513196A (en) * 2004-09-15 2008-05-01 韓国エネルギー技術研究院 Method for producing palladium alloy composite membrane for hydrogen gas separation
JP2008261045A (en) * 2007-04-13 2008-10-30 Green Hydrotec Inc Palladium-containing plating solution and its use
EP2058886A1 (en) 2007-10-30 2009-05-13 Samsung SDI Co., Ltd. Fuel tank and fuel cell system including the same
US7867670B2 (en) 2007-10-30 2011-01-11 Samsung Sdi Co., Ltd. Fuel tank and fuel cell system including the same
JP2010036080A (en) * 2008-08-03 2010-02-18 National Institute Of Advanced Industrial & Technology Hydrogen gas separation material with elevated temperature resistance which does not deteriorate under elevated temperature hyperbaric pressure-humid environment for a long term
WO2011122250A1 (en) 2010-03-29 2011-10-06 独立行政法人産業技術総合研究所 Defectless hydrogen separation membrane, production method for defectless hydrogen separation membrane and hydrogen separation method
US9149762B2 (en) 2010-03-29 2015-10-06 National Institute Of Advanced Industrial Science And Technology Defectless hydrogen separation membrane, production method for defectless hydrogen separation membrane and hydrogen separation method
JP2014046228A (en) * 2012-08-29 2014-03-17 Ngk Spark Plug Co Ltd Method for manufacturing hydrogen separator
CN102861517A (en) * 2012-09-19 2013-01-09 常州大学 Method for preparing cold-rolled ultra-thin palladium-silver alloy membrane
CN109440148A (en) * 2018-10-29 2019-03-08 钟祥博谦信息科技有限公司 A kind of preparation method and applications of palladium cobalt nanowire

Similar Documents

Publication Publication Date Title
Uemiya State-of-the-art of supported metal membranes for gas separation
US8119205B2 (en) Process for preparing palladium alloy composite membranes for use in hydrogen separation, palladium alloy composite membranes and products incorporating or made from the membranes
Nam et al. A study on the palladium/nickel composite membrane by vacuum electrodeposition
Ma et al. Thin composite palladium and palladium/alloy membranes for hydrogen separation
KR100247557B1 (en) Preparation of composite membranes for separation of hydrogen
US8366805B2 (en) Composite structures with porous anodic oxide layers and methods of fabrication
JP4250525B2 (en) Separation diffusion metal membrane and manufacturing method thereof
JP3213053B2 (en) Method for producing hydrogen separation membrane
WO2006031080A1 (en) Preparation method of palladium alloy composite membrane for hydrogen separation
JPH05137979A (en) Production of hydrogen separating membrane
JP4559009B2 (en) Method for forming thermally mechanically stable metal / porous substrate composite film
CN107376661B (en) Preparation method of palladium-based composite membrane
US8778058B2 (en) Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same
JP3388840B2 (en) Hydrogen separation membrane and method for producing the same
EP2554247A1 (en) Defectless hydrogen separation membrane, production method for defectless hydrogen separation membrane and hydrogen separation method
JP4893992B2 (en) Hydrogen separation complex and method for producing the same
JP3045329B2 (en) Method for producing hydrogen separation membrane
CN102441330B (en) Palladium-based dual-functional membrane and preparation method thereof
JP2002355537A (en) Hydrogen permeable film and producing method thereof
JPH11286785A (en) Hydrogen-permeable membrane and its preparation
JP2004122006A (en) Hydrogen separation film, its production method and separation method for hydrogen
JP2016175016A (en) Hydrogen separation membrane, manufacturing method of the same, and hydrogen separation method
CN111111463B (en) Finger-type palladium-based composite membrane with gap structure and preparation and application thereof
CN217939770U (en) Composite hydrogen filtering film with amorphous nickel-tungsten alloy as intermediate diffusion layer
JP2002153739A (en) Method of manufacturing hydrogen separation membrane

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19940802