JPH0531300B2 - - Google Patents

Info

Publication number
JPH0531300B2
JPH0531300B2 JP58060899A JP6089983A JPH0531300B2 JP H0531300 B2 JPH0531300 B2 JP H0531300B2 JP 58060899 A JP58060899 A JP 58060899A JP 6089983 A JP6089983 A JP 6089983A JP H0531300 B2 JPH0531300 B2 JP H0531300B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
electrodes
electrode
surface treatment
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58060899A
Other languages
Japanese (ja)
Other versions
JPS59188135A (en
Inventor
Toshimasa Kisa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6089983A priority Critical patent/JPS59188135A/en
Publication of JPS59188135A publication Critical patent/JPS59188135A/en
Publication of JPH0531300B2 publication Critical patent/JPH0531300B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Description

【発明の詳細な説明】 (イ) 発明の技術分野 本発明は半導体基板の表面処理方法に関する。[Detailed description of the invention] (b) Technical field of the invention The present invention relates to a method for surface treatment of a semiconductor substrate.

(ロ) 従来技術と問題点 半導体装置の製造プロセスでは半導体基板を処
理装置内に固定する必要が生ずる。従来、真空蒸
着法が用いられているが、減圧下で処理する場合
に吸着力が弱くなり不適当である。そこで、そう
した不都合のない静電吸着も利用されるが、次の
様な問題がある。
(b) Prior Art and Problems In the manufacturing process of semiconductor devices, it is necessary to fix the semiconductor substrate within the processing equipment. Conventionally, a vacuum evaporation method has been used, but the adsorption force becomes weak when processing under reduced pressure, making it unsuitable. Therefore, electrostatic adsorption, which does not have such disadvantages, is used, but it has the following problems.

第1図は静電吸着法を説明する模式図である第
1図では、平面電極1上に形成された絶縁性薄膜
2の上に、半導体基板3を載置し、電極1と半導
体基板3の間に電圧を印加することによつて基板
3を吸着している。かかる静電吸着法において吸
着力を高めるためには、絶縁膜の厚さを薄くする
か印加電圧を上げる必要がある。しかし、この方
法は相反するところがある。すなわち、絶縁破壊
を防ぐために、絶縁膜をうすくすると印加電圧を
下げなければならず、逆に印加電圧を上げると絶
縁膜を厚く形成しなければならないからである。
更に、絶縁膜は樹脂で作成されるので、熱伝導性
が悪く、そのために半導体基板の冷却が困難であ
る。
FIG. 1 is a schematic diagram for explaining the electrostatic adsorption method. In FIG. 1, a semiconductor substrate 3 is placed on an insulating thin film 2 formed on a flat electrode 1, and the electrode 1 and the semiconductor substrate 3 are By applying a voltage between them, the substrate 3 is attracted. In order to increase the adsorption force in such an electrostatic adsorption method, it is necessary to reduce the thickness of the insulating film or increase the applied voltage. However, this method has some contradictions. That is, in order to prevent dielectric breakdown, making the insulating film thinner requires lowering the applied voltage, and conversely, increasing the applied voltage requires forming the insulating film thicker.
Furthermore, since the insulating film is made of resin, it has poor thermal conductivity, making it difficult to cool the semiconductor substrate.

(ハ) 発明の目的 本発明は、以上の如き従来技術の現状に鑑み、
半導体基板を容易かつ強力に吸着し、しかも冷却
効率の良い吸着方法を提供することを目的とす
る。
(c) Purpose of the invention In view of the current state of the prior art as described above, the present invention has been made to
It is an object of the present invention to provide a suction method that easily and strongly suctions a semiconductor substrate and has good cooling efficiency.

(ニ) 発明の構成 本発明は、上記目的を達成するために、半導体
基板の一表面側でこれを支持し、両者の間を電気
的に分離する間〓を有し、且つ互いに略対称とな
るように配置された略同形状を有する、金属より
も大きな抵抗を有する物質からなる第1及び第2
の電極と、 該第1及び第2の電極間に電位差を生じせしめ
る電圧供給手段とを有し、 半導体基板を第1及び第2の電極の両方の表面
上に直接に載置し、第1及び第2の電極と基板と
のそれぞれの間にジヨンセン・ラーベク効果を生
じせしめ、基板を第1及び第2の電極に吸着させ
た状態で表面処理を行うことを特徴とする半導体
基板の表面処理方法を提供する。
(d) Structure of the Invention In order to achieve the above object, the present invention supports a semiconductor substrate on one surface side, has a gap electrically separating the two, and is substantially symmetrical to each other. The first and second parts are made of a material having a higher resistance than metal, and have substantially the same shape and are arranged so that the
and voltage supply means for generating a potential difference between the first and second electrodes, the semiconductor substrate is placed directly on the surfaces of both the first and second electrodes, and the semiconductor substrate is placed directly on the surfaces of both the first and second electrodes, and surface treatment of a semiconductor substrate, characterized in that the surface treatment is performed with the substrate adsorbed to the first and second electrodes by creating a Jijonsen-Rahbek effect between each of the second electrode and the substrate. provide a method.

(ホ) 発明の実施例 本発明で利用するジヨンセン・ラーベク
(Johnsen−Rahbek)効果とは、半導体と金属ま
たは半導体と半導体を面で接触させ、200V程度
の電圧を印加するとそれらの間に吸着力が働く現
像をいう。半導体を金属または半導体に面で接触
させると、微視的には両者は僅小な点で接触し、
10-5〜10-7cm程度の小間隙をもつ平行平板コンデ
ンサの両電極と等価な状態になり、吸着力を生ず
るのである。この吸着力Fを式で表わすと F=1/2ε(V/d)2S ε=εrε0 式中、ε:小間隙の誘電率 V:印加電圧 d:小間隙の大きさ S:接触面積 εr:1〜10 ε0:8.9×10-12〔C2N-1m-2〕 である。単位面積当りの吸着力を試算するために
εr=1、ε0=8.9×10-12〔C2N-1cm-2〕、V=200
〔V〕、d=10-7〔m〕、S=10-4〔m2〕を代入する
と、F=1.78×103〔N〕=1.74×104Kg重である。
実際にはこの1%程度の吸着力が発生するが、そ
れでも吸着力は大きい(静電吸着の約100倍)。
(E) Embodiments of the Invention The Johnsen-Rahbek effect utilized in the present invention is that when a semiconductor and a metal or a semiconductor and a semiconductor are brought into surface contact and a voltage of about 200V is applied, an attractive force is created between them. This refers to development in which When a semiconductor is brought into surface contact with a metal or a semiconductor, microscopically they contact each other at a very small point.
The state is equivalent to that of the electrodes of a parallel plate capacitor with a small gap of about 10 -5 to 10 -7 cm, and an attractive force is generated. This adsorption force F is expressed by the formula: F=1/2ε(V/d) 2 S ε=ε r ε 0In the formula, ε: Dielectric constant of the small gap V: Applied voltage d: Size of the small gap S: Contact area ε r : 1 to 10 ε 0 : 8.9×10 −12 [C 2 N −1 m −2 ]. To estimate the adsorption force per unit area, ε r = 1, ε 0 = 8.9×10 -12 [C 2 N -1 cm -2 ], V = 200
Substituting [V], d=10 -7 [m], and S=10 -4 [m 2 ], F=1.78×10 3 [N]=1.74×10 4 Kg weight.
In reality, an adsorption force of about 1% of this is generated, but the adsorption force is still large (approximately 100 times that of electrostatic adsorption).

本願発明は、高抵抗電極とウエハを直接接触さ
せ、両者に生ずる電位差により吸着する。本願発
明では、電極として大きな電気抵抗を有する物質
を用いて、微視的な電極とウエハが接触しない部
分での両者の電位差を高めて、両者を強力に吸引
することを可能にしている。従つて、電極にウエ
ハを安定して吸着することができる。また、電極
の電気抵抗が大きいため、ウエハに流れる電流を
小さくすることができ、ウエハ上に形成したデバ
イスへのダメージを抑制することができる。
In the present invention, a high-resistance electrode and a wafer are brought into direct contact with each other, and the wafer is attracted to the wafer by the potential difference generated between the two. In the present invention, a material having a large electrical resistance is used as the electrode to increase the potential difference between the microscopic electrode and the wafer at a portion where they do not come into contact with each other, thereby making it possible to strongly attract the two. Therefore, the wafer can be stably attracted to the electrode. Furthermore, since the electrical resistance of the electrode is high, the current flowing through the wafer can be reduced, and damage to devices formed on the wafer can be suppressed.

これに対し、ウエハをクロム等の導電性金属か
らなる電極と直接接触させると、両者の微視的な
接触点から離れた小間〓を有する領域で接触点と
の間の電位差が、高抵抗の電極を用いた場合のよ
うに大きくならないために、吸引力が小さく、本
願発明の効果が得られない。
On the other hand, when a wafer is brought into direct contact with an electrode made of a conductive metal such as chromium, a potential difference between the contact point and the contact point is created by a high resistance Since the suction force is not as large as in the case of using electrodes, the suction force is small and the effect of the present invention cannot be obtained.

しかも、半導体基板を半導体などに直接接触さ
せて置くので半導体基板の冷却効率もよくなる。
Furthermore, since the semiconductor substrate is placed in direct contact with a semiconductor or the like, the cooling efficiency of the semiconductor substrate is improved.

半導体基板と平面電極の間に電圧を印加する方
法は、第2図に示す如く、相互に隔置された対の
平面電極7,8上に半導体基板3を載置し、その
対の平面電極7,8の間に電圧を印加する。
As shown in FIG. 2, the method of applying a voltage between a semiconductor substrate and a plane electrode is to place a semiconductor substrate 3 on a pair of plane electrodes 7 and 8 spaced apart from each other, and A voltage is applied between 7 and 8.

第3図は本発明の具体的な1実施例であるブラ
ズマエツチング装置を概略的に示す。気密にした
処理室10はガス導入口11およびガス排出口1
2を有し、ガス排出口12にはバルブ13を介し
て排気ポンプ14が接続され、処理室10内は減
圧にされる。シリコンウエーハ等の被処理基板1
5は、処理室10の吸着板(平面電極)16,1
7の上に載置されている。吸着板(平面電極)1
6,17は、同一平面をなす平坦な上面を有しか
つ相互間は厳格に隔置された対をなす例えばP形
シリコン半導体の個片である。相互に絶縁された
吸着板16,17に電源18から200〜400V程度
の電圧を印加すると、各吸着板16,17と半導
体基板15の間にも電圧がかかり、ジヨンセン・
ラーベク効果で、半導体基板15が吸着板16,
17に吸着される。
FIG. 3 schematically shows a plasma etching apparatus which is a specific embodiment of the present invention. The airtight processing chamber 10 has a gas inlet 11 and a gas outlet 1.
2, an exhaust pump 14 is connected to the gas exhaust port 12 via a valve 13, and the inside of the processing chamber 10 is reduced in pressure. Processed substrate 1 such as silicon wafer
5 is a suction plate (plane electrode) 16,1 of the processing chamber 10;
It is placed on top of 7. Adsorption plate (plane electrode) 1
Reference numerals 6 and 17 are individual pieces of, for example, P-type silicon semiconductor, which form a pair having flat upper surfaces that are on the same plane and are strictly spaced apart from each other. When a voltage of about 200 to 400 V is applied from the power supply 18 to the mutually insulated suction plates 16 and 17, a voltage is also applied between each suction plate 16 and 17 and the semiconductor substrate 15, causing
Due to the Rahbek effect, the semiconductor substrate 15 is attached to the suction plate 16,
17 is adsorbed.

吸着板(平面電極)16,17はAl2O3等の絶
縁板19を介して支持され、その支持体20には
水冷の設備が施されている。冷却水は冷却水入口
22から入り、支持体20の空洞21の中を循環
し、冷却水出口23から外へ出る。吸着板16,
17の上方には電極24があり、高周波電源25
から供給される電週波電力の一方の電極をなして
いる。この高周波電力がガス導入口から処理室内
に導入されたガスをプラズマ化し、そのプラズマ
ガスが半導体基板15をエツチングする。プラズ
マエツチング装置のその他の構成は慣用のものと
同様である。
The suction plates (plane electrodes) 16 and 17 are supported via an insulating plate 19 made of Al 2 O 3 or the like, and the support 20 is equipped with water cooling equipment. Cooling water enters through the cooling water inlet 22, circulates within the cavity 21 of the support 20, and exits through the cooling water outlet 23. Suction plate 16,
There is an electrode 24 above 17, and a high frequency power source 25
It serves as one electrode for the radio wave power supplied from the This high frequency power converts the gas introduced into the processing chamber from the gas inlet into plasma, and the plasma gas etches the semiconductor substrate 15. The rest of the configuration of the plasma etching apparatus is the same as a conventional one.

吸着板16,17は以上の実施例ではP型シリ
コン半導体で作成したが、導電性ゴム、例えば、
金属粉末入りの硬質シリコーンゴム(抵抗値R≦
30Ω・cm-3程度)で作成すれば、ゴム弾性がある
ので、ゴミが吸着板表面に付着しても半導体基板
と吸着板の密着性が阻げられることはない。従つ
て、安定した吸着力が得られ、吸着ミスが防止さ
れる。更に、第4図に示す如く、導電性ゴムの吸
着表面に直径1mm程度の多数の凸部をつくれば、
ゴミ付着のための吸着ミスがより確実に防止され
る。尚、第4図では、簡単のために吸着板即ち両
電極30,31を半円形で示したが、実際的には
二重螺旋形など効率の良い電極構造が用いられ、
又それが好ましい。
Although the adsorption plates 16 and 17 were made of P-type silicon semiconductor in the above embodiment, they could also be made of conductive rubber, for example,
Hard silicone rubber containing metal powder (resistance value R≦
If it is made with a resistance of about 30 Ω cm -3 ), it has rubber elasticity, so even if dust adheres to the surface of the suction plate, the adhesion between the semiconductor substrate and the suction plate will not be hindered. Therefore, stable suction force can be obtained and suction errors can be prevented. Furthermore, as shown in Fig. 4, if a large number of protrusions with a diameter of about 1 mm are made on the adsorption surface of the conductive rubber,
Suction errors due to adhesion of dust can be more reliably prevented. In FIG. 4, the suction plates, that is, both electrodes 30 and 31 are shown as semicircles for simplicity, but in reality, an efficient electrode structure such as a double helix shape is used.
Also, that is preferable.

(6) 発明の効果 以上の説明から明らかなように、本発明によ
り、半導体基板と電極の間に電圧を印加するだけ
でその間に絶縁膜を設けることなく半導体基板の
強力な吸着を実現することができる。従つて、絶
縁破壊の心配がなく、しかも、強力な熱伝導性の
良好な吸着が可能になる。本発明による装置は構
成が単純であり、製造容易である。また、ゴミ付
着による吸着ミスを防止することも可能である。
(6) Effects of the Invention As is clear from the above description, the present invention makes it possible to achieve strong adsorption of a semiconductor substrate simply by applying a voltage between the semiconductor substrate and the electrode without providing an insulating film therebetween. I can do it. Therefore, there is no fear of dielectric breakdown, and moreover, good adsorption with strong thermal conductivity is possible. The device according to the invention is simple in construction and easy to manufacture. It is also possible to prevent suction errors due to adhesion of dust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は静電吸着法を説明する断面図、第2図
はジヨンセン・ラーベク効果を利用した吸着法を
説明する断面図、第3図は本発明の1実施例のプ
ラズマエツチング装置の概略断面図、第4図は吸
着板の1態様を示す斜視図である。 1,4,5,6,7,8……平面電極、2……
絶縁膜、3……半導体基板、10……処理室、1
6,17……吸着板(平面電極)、18……電源、
19……絶縁体、24……電極、25……高周波
電源、30,31……吸着板。
FIG. 1 is a cross-sectional view explaining the electrostatic adsorption method, FIG. 2 is a cross-sectional view explaining the adsorption method using the Jijonsen-Rahbek effect, and FIG. 3 is a schematic cross-section of a plasma etching apparatus according to an embodiment of the present invention. FIG. 4 is a perspective view showing one embodiment of the suction plate. 1, 4, 5, 6, 7, 8...plane electrode, 2...
Insulating film, 3... Semiconductor substrate, 10... Processing chamber, 1
6, 17... Adsorption plate (plane electrode), 18... Power supply,
19... Insulator, 24... Electrode, 25... High frequency power supply, 30, 31... Adsorption plate.

Claims (1)

【特許請求の範囲】 1 半導体基板の一表面側でこれを支持し、両者
の間を電気的に分離する間〓を有し、且つ互いに
略対称となるように配置された略同形状を有す
る、金属よりも大きな抵抗を有する物質からなる
第1及び第2の電極と、 該第1及び第2の電極間に電位差を生じせしめ
る電圧供給手段とを有し、 該半導体基板を該第1及び第2の電極の両方の
表面上に直接に載置し、該第1及び第2の電極と
該基板とのそれぞれの間にジヨンセン・ラーベク
効果を生じせしめ、該基板を該第1及び第2の電
極に吸着させた状態で表面処理を行うことを特徴
とする半導体基板の表面処理方法。 2 前記第1及び第2の電極を介してウエハを冷
却しながら前記表面処理を行うことを特徴とする
特許請求の範囲第1項記載の半導体基板の表面処
理方法。 3 前記表面処理はプラズマ処理を伴うことを特
徴とする特許請求の範囲第1項または第2項記載
の半導体基板の表面処理方法。
[Scope of Claims] 1. Supporting the semiconductor substrate on one surface side, having a space that electrically isolates the semiconductor substrate, and having substantially the same shape arranged so as to be substantially symmetrical to each other. , first and second electrodes made of a substance having a higher resistance than metal, and voltage supply means for generating a potential difference between the first and second electrodes, and the semiconductor substrate is connected to the first and second electrodes. placed directly on both surfaces of a second electrode to create a Jijonsen-Rahbek effect between the first and second electrodes and the substrate, respectively; A method for surface treatment of a semiconductor substrate, characterized in that the surface treatment is performed while the substrate is adsorbed to an electrode. 2. The method for surface treatment of a semiconductor substrate according to claim 1, wherein the surface treatment is performed while cooling the wafer via the first and second electrodes. 3. The method for surface treatment of a semiconductor substrate according to claim 1 or 2, wherein the surface treatment involves plasma treatment.
JP6089983A 1983-04-08 1983-04-08 Attracting method of semiconductor substrate Granted JPS59188135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6089983A JPS59188135A (en) 1983-04-08 1983-04-08 Attracting method of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6089983A JPS59188135A (en) 1983-04-08 1983-04-08 Attracting method of semiconductor substrate

Publications (2)

Publication Number Publication Date
JPS59188135A JPS59188135A (en) 1984-10-25
JPH0531300B2 true JPH0531300B2 (en) 1993-05-12

Family

ID=13155661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6089983A Granted JPS59188135A (en) 1983-04-08 1983-04-08 Attracting method of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS59188135A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217303B2 (en) 2013-10-17 2017-10-25 株式会社シンコーモールド Method for producing electrode pattern made of conductive silicone rubber, all-silicone rubber electrostatic chuck and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122352U (en) * 1979-02-21 1980-08-30

Also Published As

Publication number Publication date
JPS59188135A (en) 1984-10-25

Similar Documents

Publication Publication Date Title
US5539179A (en) Electrostatic chuck having a multilayer structure for attracting an object
US5255153A (en) Electrostatic chuck and plasma apparatus equipped therewith
JP3064409B2 (en) Holding device and semiconductor manufacturing apparatus using the same
JPH0136707B2 (en)
TW200405443A (en) Electrostatic absorbing apparatus
KR20010042592A (en) Electrostatic wafer clamp having low particulate contamination of wafers
JP3297771B2 (en) Semiconductor manufacturing equipment
JPH0730468B2 (en) Dry etching equipment
IE52318B1 (en) Method and apparatus for dry etching and electrostatic chucking device used therein
KR19990063844A (en) Method and device for electrostatic holding of dielectric material in vacuum processor
JPH08236602A (en) Electrostatic chuck
JP2767282B2 (en) Substrate holding device
JPS63283037A (en) Statically attracting apparatus
JP3287996B2 (en) Electrostatic chuck device
JPH07130826A (en) Electrostatic chuck
JPH0531300B2 (en)
JPH0152899B2 (en)
JPH0722499A (en) Method and apparatus for manufacturing semiconductor
JPH07263527A (en) Electrostatic attraction device
JPS6247131A (en) Reactive ion etching device
JPH11251419A (en) Electrostatic chuck for holding substrate and substrate holding method therefor
KR100920132B1 (en) Electro Static Chuck having a separable ring and Fabricating method of the same
JP3101354B2 (en) Electrostatic chuck and plasma device provided with this electrostatic chuck
JPH09102536A (en) Electrostatic attraction apparatus
JP4026702B2 (en) Plasma etching apparatus and plasma ashing apparatus