JPH05312995A - Steam turbine controller - Google Patents

Steam turbine controller

Info

Publication number
JPH05312995A
JPH05312995A JP4116576A JP11657692A JPH05312995A JP H05312995 A JPH05312995 A JP H05312995A JP 4116576 A JP4116576 A JP 4116576A JP 11657692 A JP11657692 A JP 11657692A JP H05312995 A JPH05312995 A JP H05312995A
Authority
JP
Japan
Prior art keywords
load
turbine
signal
control valve
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4116576A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hoshi
弘幸 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4116576A priority Critical patent/JPH05312995A/en
Publication of JPH05312995A publication Critical patent/JPH05312995A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To enable continuing stable operation of a turbine without lowering below the rated revolution number by detecting the drop of load due to system accident, controlling it, and omitting a power load balance detection circuit after a certain time limit. CONSTITUTION:During the drop of load due to a system accident, turbine revolution number increases and a power to load umbalance detection circuit 22 detects the power to load umbalance because of large load change rate and large deviation of power to load, takes self-maintaining with a wipeout 39, and starts time counting with a timer 38. After quick shut of a control valve and quick opening motion of a bypass valve, it releases the self-maintaining. Then, a control valve flow-rate demand signal 33 and a bypass valve flow-rate demand signal 7 are requested from a total steam flow-rate signal 5 and a speed/load control signal 18 and by controlling the steam control valve and the bypass valve, the number of revolutions of the turbine is set near the rated number of revolutions. Thus, such an event only the bypass valve is closed without opening the steam control valve which causes lowering of turbine revolution number below the rated number, is avoided and so, stable operation becomes possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子力発電プ
ラントのタービン制御装置に係り、特に電力系統外乱発
生によりタービン速度変動が生じた場合、原子炉がスク
ラムすることなく運転継続させるのに最適な蒸気タービ
ン制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine control device for a boiling water nuclear power plant, and more particularly to a turbine control device for continuing the operation without scramming when the turbine speed fluctuates due to the disturbance of the power system. It relates to an optimum steam turbine control device.

【0002】[0002]

【従来の技術】原子力発電所におけるタービン蒸気系統
の一例を図2に示す。原子炉41で発生した蒸気は、主蒸
気止め弁(以下MSVと呼ぶ)42および蒸気加減弁(以
下CVと呼ぶ)43を通ってタービン44に流入し、復水器
45で復水される。また蒸気の一部はMSV42の手前から
タービンバイパス弁(以下BPVと呼ぶ)46を通ってタ
ービン44をバイパスし復水器45に流される。常時はMS
V42を全開とし、CV43とBPV46の弁開度を調節して
タービン速度およびタービン入口蒸気圧力の制御が行な
われる。従来のタービン制御系の一例を図3に示す。
2. Description of the Related Art An example of a turbine steam system in a nuclear power plant is shown in FIG. The steam generated in the reactor 41 flows into a turbine 44 through a main steam stop valve (hereinafter referred to as MSV) 42 and a steam control valve (hereinafter referred to as CV) 43, and is then condensed in a condenser.
Condensed at 45. Further, a part of the steam passes from the front of the MSV 42 through a turbine bypass valve (hereinafter referred to as BPV) 46 to bypass the turbine 44 and flow into the condenser 45. Always MS
V42 is fully opened and the valve opening of CV43 and BPV46 is adjusted to control the turbine speed and turbine inlet steam pressure. An example of a conventional turbine control system is shown in FIG.

【0003】図3において、原子炉又は主蒸気配管に設
置した圧力検出器で計測された圧力信号1とあらかじめ
設定された圧力設定値2との偏差信号は、フィルター回
路3を通り、圧力制御回路4に入力される。圧力制御回
路4は、その偏差信号により全主蒸気流量信号(以下I
PR信号)5を作成する。
In FIG. 3, a deviation signal between a pressure signal 1 measured by a pressure detector installed in a reactor or a main steam pipe and a preset pressure set value 2 passes through a filter circuit 3 and a pressure control circuit. Input to 4. The pressure control circuit 4 uses the deviation signal to output the total main steam flow rate signal (hereinafter I
PR signal) 5 is created.

【0004】一方、タービン速度検出器により計測され
たタービン速度信号8とタービン速度設定値9との偏差
信号は、速度制御回路10に入力され、そこでタービン速
度制御信号11となる。速度制御信号11は更に、負荷設定
器13の出力信号である負荷設定値12を付加され、速度/
負荷制御信号18となる。これら、IPR信号5と速度/
負荷制御信号18は、低値優先回路20に入力される。低値
優先選択の結果、両者のうち低い方の信号が、加減弁流
量信号33となり、加減弁開度を制御することになる。
On the other hand, the deviation signal between the turbine speed signal 8 measured by the turbine speed detector and the turbine speed set value 9 is input to the speed control circuit 10 and becomes the turbine speed control signal 11 there. The speed control signal 11 is further added with a load set value 12 which is an output signal of the load setter 13, and
It becomes the load control signal 18. These, IPR signal 5 and speed /
The load control signal 18 is input to the low value priority circuit 20. As a result of the low value priority selection, the lower signal of the two becomes the regulating valve flow rate signal 33, and the regulating valve opening degree is controlled.

【0005】尚、負荷設定器13にはパワーロードアンバ
ランス回路22からの信号も入力されており、パワーロー
ドアンバランス回路22は中間蒸気圧力信号23と発電機電
流信号とを取り込んでいる。
A signal from the power load unbalance circuit 22 is also input to the load setting device 13, and the power load unbalance circuit 22 takes in the intermediate steam pressure signal 23 and the generator current signal.

【0006】上記系統で制御される加減弁に対し、ター
ビンバイパス弁は、IPR信号5から加減弁流量要求信
号33と通常運転時のバイパス弁チャタリング防止用バイ
アス信号6とを減算したバイパス弁流量要求信号7で開
度制御される。
In contrast to the control valve controlled by the above system, the turbine bypass valve requests the bypass valve flow rate by subtracting the control valve flow rate request signal 33 from the IPR signal 5 and the bypass valve chattering prevention bias signal 6 during normal operation. The opening degree is controlled by the signal 7.

【0007】沸騰水型原子力発電所では、炉心内のボイ
ド量により原子炉出力を調整しているので、中性子束は
圧力変化に対し敏感に反映する。従って、通常運転時は
圧力信号1によるIPR信号5で加減弁が優先的に制御
され、タービン速度の比較的小さな変動に反応して加減
弁が動作しない様に、負荷設定値12をIPR信号5の10
%程度上に設定してある。速度要求信号11が−10%以内
(一般的に速度調定率は100 %制御信号/5%速度変化
であり、50Hzの場合0.25Hzに相当する。)となるタ
ービン速度上昇に対して、加減弁は応答せず圧力制御が
優先される。一方、10%以上に速度/負荷制御信号18が
減少する様なタービン速度上昇(すなわち、0.25Hz以
上の周波数上昇)に対しては、速度/負荷制御信号18が
IPR信号5以下となり、加減弁が絞られる。この蒸気
加減弁の絞り動作により余剰となった蒸気は、IPR信
号5から加減弁流量要求信号33とバイアス値6とを減算
した信号、すなわち、バイパス弁流量要求信号7でバイ
パス弁を開いて処理される。このように、加減弁とバイ
パス弁とを協調動作させると、原子炉圧力は、ほとんど
変化することなく、プラント運転が継続できることにな
る。送電系統において、パワーロードアンバランス回路
22が作動する故障が発生した場合の原子力発電所応答を
説明する。
In a boiling water nuclear power plant, the reactor output is adjusted by the amount of voids in the core, so the neutron flux sensitively reflects changes in pressure. Therefore, during normal operation, the IPR signal 5 based on the pressure signal 1 controls the control valve with priority, and the load setting value 12 is set to the IPR signal 5 so that the control valve does not operate in response to a relatively small fluctuation in turbine speed. Of 10
It is set about% higher. The speed control signal 11 is within -10% (generally, the speed adjustment rate is 100% control signal / 5% speed change, which corresponds to 0.25 Hz at 50 Hz). Does not respond and pressure control is prioritized. On the other hand, for a turbine speed increase (that is, a frequency increase of 0.25 Hz or more) such that the speed / load control signal 18 decreases to 10% or more, the speed / load control signal 18 becomes the IPR signal 5 or less and the control valve Is narrowed down. The excess steam resulting from the throttle operation of the steam control valve is processed by opening the bypass valve with a signal obtained by subtracting the control valve flow rate request signal 33 and the bias value 6 from the IPR signal 5, that is, the bypass valve flow rate request signal 7. To be done. In this way, when the regulator valve and the bypass valve are operated in a coordinated manner, the reactor pressure remains almost unchanged and the plant operation can be continued. Power load unbalance circuit in power transmission system
Explain the nuclear power plant response in the event of a malfunction that activates 22.

【0008】送電系統において落雷等の事故が発生する
と、送電系しゃ断器が動作し負荷が欠落するが、その欠
落する負荷が比較的大きい場合、パワーロードアンバラ
ンス検出回路22が動作する。パワーロードアンバランス
検出回路22が動作すると、加減弁急開回路37が動作し、
加減弁が急開するとともに負荷設定器13がセットバック
し負荷設定値12が0%になる。負荷設定値が0%になる
と速度/負荷制御信号18が0%以下になり低値優先選択
回路20にてIPR信号5と比較し、速度/負荷制御信号
18が選択され、加減弁流量要求信号33が0%となる。一
方、加減弁流量要求信号33が0%となると、IPR信号
5から閉バイアス6だけ減算されたものがバイパス弁流
量要求信号7となるのでバイパス弁制御回路34が飽和
し、その飽和を検出しバイパス弁急開回路35が動作しバ
イパス弁が急開する。この時バイパス弁容量が原子炉定
格流量に満たない原子力発電所では加減弁急閉により原
子炉が停止する。
When an accident such as a lightning strike occurs in the power transmission system, the power transmission system breaker operates and the load is lost. If the missing load is relatively large, the power load unbalance detection circuit 22 operates. When the power load imbalance detection circuit 22 operates, the regulator valve rapid opening circuit 37 operates,
The load setting device 13 is set back and the load setting value 12 becomes 0% as the control valve is suddenly opened. When the load setting value becomes 0%, the speed / load control signal 18 becomes 0% or less, and the low value priority selection circuit 20 compares it with the IPR signal 5,
18 is selected, and the regulator valve flow rate request signal 33 becomes 0%. On the other hand, when the increase / decrease valve flow rate request signal 33 becomes 0%, the value obtained by subtracting the closing bias 6 from the IPR signal 5 becomes the bypass valve flow rate request signal 7, so the bypass valve control circuit 34 saturates and the saturation is detected. The bypass valve rapid opening circuit 35 operates to rapidly open the bypass valve. At this time, at the nuclear power plant where the bypass valve capacity is less than the reactor rated flow rate, the reactor shuts down due to the sudden closing of the control valve.

【0009】しかし、バイパス弁容量が原子炉定格流量
の100 %以上ある原子力発電所(以下100 %バイパスプ
ラント)では、加減弁急閉・バイパス弁急開するととも
に原子炉出力が低下し、バイパス弁にて原子炉圧力が制
御され、最終的に所内単独運転に移行する。
However, in a nuclear power plant where the bypass valve capacity is 100% or more of the reactor rated flow rate (hereinafter 100% bypass plant), the reactor output decreases as the control valve suddenly closes and the bypass valve suddenly opens, and the bypass valve At this point, the reactor pressure is controlled, and finally the operation shifts to in-house isolated operation.

【0010】[0010]

【発明が解決しようとする課題】パワーロードアンバラ
ンス回路22の動作を図3により説明する。発電機電流を
負荷信号に変換し変化率大を検出する。一方、中間蒸気
圧力を出力信号に変換し、その出力信号と前記負荷信号
との偏差を演算して偏差大を検出する。負荷変化率大か
つ出力−負荷偏差大でパワーロードアンバランスが動作
する。一方、本条件は自己保持され、その自己保持は出
力−負荷偏差大が復帰したら解除される。しかし、出力
信号を検出している中間蒸気圧力が前記出力−負荷偏差
大設定以下になるまで時間を要す為、前記自己保持は必
要以上に動作し続ける。
The operation of the power load unbalance circuit 22 will be described with reference to FIG. Converts the generator current into a load signal and detects a large rate of change. On the other hand, the intermediate steam pressure is converted into an output signal, and the deviation between the output signal and the load signal is calculated to detect a large deviation. The power load unbalance operates with a large load change rate and a large output-load deviation. On the other hand, this condition is self-maintained, and the self-maintenance is released when the large output-load deviation is restored. However, since it takes time until the intermediate steam pressure detecting the output signal falls below the large output-load deviation setting, the self-holding continues to operate more than necessary.

【0011】ここで、前記100 %バイパスプラントにて
パワーロードアンバランス検出回路が動作する負荷しゃ
断が発生した場合、所内単独運転への移行過程でパワー
ロードアンバランス検出回路動作中にタービン回転数が
定格回転数を下回ると加減弁流量要求信号33が増加する
が、パワーロードアンバランス回路22動作により、加減
弁急閉回路37が動作しているので、実際には蒸気加減弁
が開せず、逆にバイパス弁流量要求信号34が減少しバイ
パス弁のみ閉するので原子力圧力が上昇し結果的に中性
子束が規定値を越えて原子炉が停止する可能性がある。
[0011] Here, when a load cutoff in which the power load unbalance detection circuit operates in the 100% bypass plant occurs, the turbine speed is increased during the operation of the power load unbalance detection circuit during the process of shifting to the independent operation in the plant. When the speed is lower than the rated speed, the control valve flow rate request signal 33 increases, but the power load unbalance circuit 22 operates to operate the control valve rapid closing circuit 37, so the steam control valve does not actually open, On the contrary, since the bypass valve flow rate request signal 34 decreases and only the bypass valve is closed, the nuclear pressure rises, and as a result, the neutron flux may exceed the specified value and the reactor may shut down.

【0012】本発明は系統事故によるパワーロードアン
バランス検出回路動作時にタービン回転数が定格回転数
以下とならない様、負荷しゃ断によりパワーロードアン
バランス検出回路が動作し蒸気加減弁が急閉した後早め
にパワーロードアンバランス検出回路を解除する機能を
具備したタービン制御装置を提供することを目的とす
る。
According to the present invention, the power load unbalance detection circuit operates due to load cutoff so that the turbine speed does not become lower than the rated speed when the power load unbalance detection circuit operates due to a system fault, and the steam control valve is closed soon afterwards. Another object of the present invention is to provide a turbine control device having a function of canceling a power load unbalance detection circuit.

【0013】[0013]

【課題を解決するための手段】本発明の蒸気タービン制
御装置は、系統事故による負荷脱落時にタービン過速を
防止する為に負荷脱落をパワーロードアンバランス検出
回路にて検出し、蒸気加減弁急閉、バイパス弁急開させ
る機能を有するタービン制御装置に対し、蒸気加減弁が
急閉した後時限をもってパワーロードアンバランス検出
回路を除外する機能を具備する。
A steam turbine control apparatus of the present invention detects a load drop by a power load imbalance detection circuit in order to prevent turbine overspeed at the time of load drop due to a system accident, and a steam control valve sudden The turbine control device having a function of closing and suddenly opening the bypass valve is provided with a function of excluding the power load unbalance detection circuit at a time limit after the steam control valve is rapidly closed.

【0014】[0014]

【作用】これによって、系統事故による負荷脱落時にパ
ワーロードアンバランス回路が動作し、蒸気加減弁急閉
・バイパス弁急開した後タービン降速過程でタービン定
格回転数以下になることなく安定したプラント運転を継
続できる。
[Operation] As a result, the power load unbalance circuit operates when the load is dropped due to a system accident, and after a rapid closing of the steam control valve and sudden opening of the bypass valve, a stable plant without falling below the turbine rated speed during the turbine deceleration process You can continue driving.

【0015】[0015]

【実施例】本発明の一実施例を図1に示す。図1におい
て、図3と同一要素については同一符号を付し、説明は
省略する。パワーロードアンバランス検出回路22にて負
荷変化率大且つ出力−負荷偏差大でパワーロードアンバ
ランスを検出し、ワイプアウト39で自己保持をとるとと
もにタイマー38がカウントアップを開始し、ある時間経
過後自己保持を除外する。
FIG. 1 shows an embodiment of the present invention. In FIG. 1, the same elements as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted. The power load imbalance detection circuit 22 detects a power load imbalance with a large load change rate and a large output-load deviation, and the wipeout 39 holds itself and the timer 38 starts counting up. Exclude self-holding.

【0016】系統事故による負荷脱落時に、タービン回
転数上昇とともにパワーロードアンバランス検出回路22
が動作し、加減弁急閉・バイパス弁急開が動作した後、
パワーロードアンバランスの自己保持が解除され、それ
以降はIPR信号5と速度/負荷制御信号18から求まる
加減弁流量要求信号33、バイパス弁流量要求信号7によ
り蒸気加減弁・バイパス弁が制御されることになりター
ビン回転数が定格回転数付近に整定することになる。
When the load is dropped due to a system accident, the power load imbalance detection circuit 22
Is activated, and after the regulator valve is closed and bypass valve is opened rapidly,
The self-holding of the power load unbalance is released, and thereafter, the steam control valve / bypass valve is controlled by the control valve flow rate request signal 33 and the bypass valve flow rate request signal 7 obtained from the IPR signal 5 and the speed / load control signal 18. As a result, the turbine speed will settle near the rated speed.

【0017】実施例によれば、負荷しゃ断時にパワーロ
ードアンバランス検出回路が動作し蒸気加減弁・バイパ
ス弁が急閉、急開した後の整定過程でタービン回転数が
定格回転数以下となり蒸気加減弁が開せずバイパス弁の
み閉する事象がなくなる。
According to the embodiment, when the load is cut off, the power load imbalance detection circuit operates and the turbine speed becomes equal to or lower than the rated speed during the settling process after the steam control valve / bypass valve is closed and opened rapidly. There is no event that the valve does not open and only the bypass valve closes.

【0018】本発明では、タイマーはパワーロードアン
バランス検出回路動作にて動作し始める様になっている
が、その他により確実に期する為にパワーロードアンバ
ランス検出回路が動作したことにより蒸気加減弁が急閉
したことを検出し時限をもってパワーロードアンバラン
ス検出回路を除外することもできる。
In the present invention, the timer starts to operate by the operation of the power load imbalance detection circuit. However, in order to ensure that the timer is operated more reliably, the steam load control valve is activated by the operation of the power load imbalance detection circuit. It is also possible to exclude the power load unbalance detection circuit with a time limit by detecting that the power load imbalance has been closed.

【0019】[0019]

【発明の効果】以上説明した様に本発明によれば、系統
事故による負荷脱落時にタービン昇速するとともにパワ
ーロードアンバランス回路が動作した場合、一旦加減弁
急開・バイパス弁急閉した後、タービン降速過程でター
ビン定格回転数以下になることなく安定したプラント運
転が継続されることになる。
As described above, according to the present invention, when the turbine speed is increased and the power load unbalance circuit operates when the load is dropped due to a system accident, after the control valve is suddenly opened and the bypass valve is rapidly closed, During the turbine deceleration process, stable plant operation will be continued without lowering the turbine rated speed or lower.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蒸気タービン制御装置の一実施例を示
すブロック図
FIG. 1 is a block diagram showing an embodiment of a steam turbine control device of the present invention.

【図2】蒸気タービン系統を示す系統図FIG. 2 is a system diagram showing a steam turbine system.

【図3】従来の蒸気タービン制御装置の一例を示すブロ
ック図
FIG. 3 is a block diagram showing an example of a conventional steam turbine control device.

【符号の説明】[Explanation of symbols]

1 圧力信号 2 圧力設定値 3 フィルタ回路 4 圧力制御信号 5 全主蒸気流量信号 6 全閉バイパス 7 バイパス弁流量要求信号 8 速度信号 9 速度設定値 10 速度制御回路 11 速度制御信号 12 負荷設定値 13 負荷設定器 18 速度/負荷制御信号 20 低値優先選択回路 22 パワーロードアンバランス検出回路 23 中間蒸気圧力信号 33 加減弁流量要求信号 34 バイパス弁制御回路 35 バイパス弁急閉回路 36 加減弁制御回路 37 加減弁急閉回路 38 動作遅延タイマ 39 ワイプアウト 41 原子炉 42 主蒸気止め弁 43 蒸気加減弁 44 タービン 45 復水器 46 タービンバイパス弁 47 圧力検出器 1 pressure signal 2 pressure set value 3 filter circuit 4 pressure control signal 5 all main steam flow rate signal 6 fully closed bypass 7 bypass valve flow rate request signal 8 speed signal 9 speed set value 10 speed control circuit 11 speed control signal 12 load set value 13 Load setter 18 Speed / load control signal 20 Low value priority selection circuit 22 Power load imbalance detection circuit 23 Intermediate steam pressure signal 33 Adjusting valve flow rate request signal 34 Bypass valve control circuit 35 Bypass valve quick closing circuit 36 Adjusting valve control circuit 37 Control valve rapid closing circuit 38 Operation delay timer 39 Wipe out 41 Reactor 42 Main steam stop valve 43 Steam control valve 44 Turbine 45 Condenser 46 Turbine bypass valve 47 Pressure detector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 沸騰水型原子力発電所の原子炉圧力とタ
ービン速度と発電機負荷を制御する機能と、負荷しゃ断
発生時のタービン回転数の異常な上昇を防止するため発
電機負荷の急減を検出するパワーロードアンバランス回
路の動作により蒸気加減弁を急閉させる機能とを有する
蒸気タービン制御装置において、前記パワーロードアン
バランス検出回路にパワーロードアンバランス動作後動
作し始める時刻を計測する手段と、蒸気加減弁急閉後時
限をもって前記パワーロードアンバランス検出回路を強
制的に除外する手段とを設けた事を特徴とする蒸気ター
ビン制御装置。
1. A function of controlling a reactor pressure, a turbine speed and a generator load of a boiling water nuclear power plant, and a sudden decrease of the generator load in order to prevent an abnormal increase of the turbine speed when a load cutoff occurs. In the steam turbine control device having a function of rapidly closing the steam control valve by the operation of the power load unbalance circuit for detecting, a means for measuring the time when the power load unbalance detection circuit starts operating after the power load unbalance operation. And a means for forcibly excluding the power load unbalance detection circuit after a lapse of time after the steam control valve is closed abruptly.
JP4116576A 1992-05-11 1992-05-11 Steam turbine controller Pending JPH05312995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116576A JPH05312995A (en) 1992-05-11 1992-05-11 Steam turbine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116576A JPH05312995A (en) 1992-05-11 1992-05-11 Steam turbine controller

Publications (1)

Publication Number Publication Date
JPH05312995A true JPH05312995A (en) 1993-11-26

Family

ID=14690540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116576A Pending JPH05312995A (en) 1992-05-11 1992-05-11 Steam turbine controller

Country Status (1)

Country Link
JP (1) JPH05312995A (en)

Similar Documents

Publication Publication Date Title
JPH05312995A (en) Steam turbine controller
JP3404480B2 (en) Turbine control device
JP2720032B2 (en) Turbine control device
JPH04179804A (en) Turbine controller
JPH0681890B2 (en) Turbine controller
JP2635356B2 (en) Speed control device of turbine generator
CN114688520B (en) Auxiliary control method and system for liquid level of steam generator of nuclear power station
JPS63314302A (en) Turbine controller for nuclear power station
JPS6158903A (en) Turbine controller for nuclear reactor
JPH0429921B2 (en)
JPS63117298A (en) Turbine controller
JPH0754084B2 (en) Turbine controller for steam generation plant
JPH081124B2 (en) Turbine advance emergency control method
JPH0577841B2 (en)
JPH03151503A (en) Turbine control device and turbine overspeed detector
JPH0639886B2 (en) Steam turbine speed controller
JPS623283B2 (en)
JPS60129694A (en) Controller for pressure of nuclear power plant
JPH0850195A (en) Reactor pressure rise preventing device at load interruption
JPH0637843B2 (en) Turbine controller
JPS5916679B2 (en) Reactor water supply control system
JPS6149106A (en) Turbine control device of nuclear reactor
JPS62212597A (en) Load controller for nuclear reactor
JPS62142809A (en) Speed control device for steam turbine
JPH04214907A (en) Turbine controlling device