JPH05312778A - Ion concentration sensor - Google Patents

Ion concentration sensor

Info

Publication number
JPH05312778A
JPH05312778A JP4120900A JP12090092A JPH05312778A JP H05312778 A JPH05312778 A JP H05312778A JP 4120900 A JP4120900 A JP 4120900A JP 12090092 A JP12090092 A JP 12090092A JP H05312778 A JPH05312778 A JP H05312778A
Authority
JP
Japan
Prior art keywords
ion concentration
transistors
ion
gate electrode
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4120900A
Other languages
Japanese (ja)
Inventor
Yasuaki Motoi
康朗 本井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4120900A priority Critical patent/JPH05312778A/en
Publication of JPH05312778A publication Critical patent/JPH05312778A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize an ion concentration sensor and to make detection sensitivity more stable, which uses an ion sensitive transistor having a sensitive film at its gate. CONSTITUTION:A p-channel transistor 21 having sensitive films 7 on each surface of n- and p-type substrates 2 and 3, respectively, an n-channel transistor 22 and a gate electrode 30 common to the both are formed on a semiconductor chips 10, and, the sensitive film 7 and the gate electrode 30 are made to contact to a detection - object 40, such as electrolyte. In addition, a gate voltage Vg whose polarity is switchable between positive and negative is applied to the gate electrode 30. Then, under that condition, the differential signal between an ion detecting signals S1 and S2 through transistors 21 and 22 is taken out as an ion concentration signal So.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素イオン濃度pH等のイ
オン濃度を検出するためのセンサであって、とくに小形
化に適するイオン濃度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for detecting ion concentration such as hydrogen ion concentration pH, and more particularly to an ion concentration sensor suitable for miniaturization.

【0002】[0002]

【従来の技術】従来からイオン濃度,とくに水素イオン
濃度は周知のようにガラス電極と比較ないし参照電極を
用いて測定することが多いが、測定が正確な利点をもつ
反面,小形化が困難で測定値にドリフトが生じないよう
参照電極内の電解液を管理するのが厄介な問題があり、
例えば生体用に使用できる程度に構造が簡単で小形化が
容易な新しいイオン濃度センサが要望されている。
2. Description of the Related Art Conventionally, as is well known, the ion concentration, particularly the hydrogen ion concentration, is often measured using a reference electrode or a glass electrode, but it has the advantage of being accurate, but it is difficult to miniaturize it. There is a problem in managing the electrolyte in the reference electrode so that the measured value does not drift,
For example, there is a demand for a new ion concentration sensor that is simple in structure and easy to miniaturize so that it can be used for living organisms.

【0003】かかる要望に沿い得るものとして、絶縁ゲ
ート電界効果トランジスタのゲート絶縁膜にイオン感応
性をもつ膜を用いることによりトランジスタにセンサ機
能をもたせたISFET(Ion Sensitive Field-Effect Trans
istor)と呼ばれるイオン濃度センサが知られており、こ
れと組み合わせる参照電極にも種々の工夫がなされてい
るが、この参照電極にも電界効果トランジスタを利用す
る従来例を図4を参照して以下に簡単に説明する。
In order to meet such a demand, an ISFET (Ion Sensitive Field-Effect Transistor) in which a transistor has a sensor function by using a film having ion sensitivity as a gate insulating film of an insulated gate field effect transistor
An ion concentration sensor called istor) is known, and various innovations have been made in the reference electrode to be combined therewith. A conventional example in which a field effect transistor is also used in this reference electrode is described below with reference to FIG. Briefly explained.

【0004】図4(a) に容器41内のイオン濃度を検出す
べき電解液等の検出対象40に上述のISFET 71と参照ゲー
トトランジスタ72を浸漬した状態とその関連回路とを示
す。ISFET 71は感応膜73を, 参照ゲートトランジスタ72
は参照電極74をゲートにそれぞれ備える。感応膜73は絶
縁膜なのでISFET 71にゲート電圧を与えるため例えば白
金の擬比較電極であるゲート電極75を検出対象40に浸漬
する。両トランジスタ71と72に電源80から直流電圧を掛
けて定電流回路81と82によりそれぞれに流れる電流を一
定に保ち、ゲート電極75には例えば電源80の電圧を与え
る。感応膜73をもつISFET 71のソース・ドレイン間抵抗
が検出対象40のイオン濃度に応じて変化するので、イオ
ン濃度が基準濃度,例えば水素イオン濃度pHが7の時に
両トランジスタ71と72とのソース・ドレイン間電圧を互
いに逆向きに均衡させて置けば、両者の電圧差を図のよ
うに検出対象40のイオン濃度を表す検出電圧Voとして取
り出して測定回路60に与えることができる。
FIG. 4A shows a state in which the ISFET 71 and the reference gate transistor 72 are immersed in a detection object 40 such as an electrolytic solution for detecting the ion concentration in the container 41 and its related circuit. ISFET 71 has a sensitive film 73 and a reference gate transistor 72.
Each has a reference electrode 74 at its gate. Since the sensitive film 73 is an insulating film, in order to apply a gate voltage to the ISFET 71, for example, the gate electrode 75, which is a platinum pseudo reference electrode, is immersed in the detection target 40. A direct current voltage is applied to both the transistors 71 and 72 from the power supply 80 to keep constant currents flowing through the constant current circuits 81 and 82, and the voltage of the power supply 80 is applied to the gate electrode 75. Since the source-drain resistance of the ISFET 71 having the sensitive film 73 changes according to the ion concentration of the detection target 40, when the ion concentration is a reference concentration, for example, the hydrogen ion concentration pH is 7, the sources of both transistors 71 and 72 are If the drain-to-drain voltages are balanced in opposite directions, the voltage difference between the two can be taken out as the detection voltage Vo representing the ion concentration of the detection target 40 and applied to the measurement circuit 60 as shown in the figure.

【0005】図4(b) に参照ゲートトランジスタ72の参
照電極74の構造例を断面図で示す。半導体チップ10の例
えばp形の基板11の表面にトランジスタ72のソース層72
aとドレイン層72bがn形で拡散され、絶縁膜12上に配
設された電極膜13がそれらと接続され、電極膜13は検出
対象40と接触しないように保護膜14で覆われている。参
照電極74はこのトランジスタ72のサブストレートである
基板11の表面上に配設した絶縁層74aに明けた小穴に塩
化カリウム等の緩衝電解液74bを保持する寒天ゲル等を
充填し、かつその上に電解液74bが検出対象40と液絡す
るよう多孔性の例えば金属の膜74cを被せてなる。
FIG. 4B is a sectional view showing a structural example of the reference electrode 74 of the reference gate transistor 72. The source layer 72 of the transistor 72 is formed on the surface of the p-type substrate 11 of the semiconductor chip 10, for example.
a and the drain layer 72b are diffused in the n-type, the electrode film 13 disposed on the insulating film 12 is connected to them, and the electrode film 13 is covered with the protective film 14 so as not to contact the detection target 40. .. The reference electrode 74 is obtained by filling a small hole in an insulating layer 74a provided on the surface of the substrate 11 which is the substrate of the transistor 72 with an agar gel or the like which holds a buffer electrolyte solution 74b such as potassium chloride and the like. Is covered with a porous film 74c of, for example, a metal so that the electrolytic solution 74b is in a liquid junction with the detection target 40.

【0006】[0006]

【発明が解決しようとする課題】図4のように、通常の
ガラス電極に当たるISFET 71と通常の参照電極に当たる
参照ゲートトランジスタ72を用い、上述の参照電極74を
備える参照ゲートトランジスタ72のソース・ドレイン間
の抵抗が一定であるのに対し、感応膜73を備えるISFET
71のソース・ドレイン間の抵抗がゲート電極75に所定ゲ
ート電圧を掛けた状態で検出対象40のイオン濃度に応じ
変化することを利用してこのイオン濃度を検出でき、か
つISFET 71と参照ゲートトランジスタ72を同じ半導体チ
ップに作り込むことによってイオン濃度センサを数mm角
程度にまでは小形化できるが、参照電極74の構造が図4
(b) のようにまだかなり複雑であるためそれ以上の小形
化は非常に困難なのが実情である。
As shown in FIG. 4, a source / drain of a reference gate transistor 72 including an ISFET 71, which corresponds to a normal glass electrode, and a reference gate transistor 72, which corresponds to a normal reference electrode, and which includes the above-described reference electrode 74. ISFET with sensitive film 73, while resistance between them is constant
This ion concentration can be detected by utilizing the fact that the resistance between the source and drain of 71 changes according to the ion concentration of the detection target 40 with the gate electrode 75 applied with a predetermined gate voltage, and the ISFET 71 and the reference gate transistor can be used. Although the ion concentration sensor can be downsized to about several mm square by incorporating 72 in the same semiconductor chip, the structure of the reference electrode 74 is shown in FIG.
In reality, it is very difficult to reduce the size even further because it is still quite complicated as in (b).

【0007】さらに、参照電極74の緩衝電解液74bが検
出対象40と液絡ないし流通しているので長期の使用後に
はそのイオン濃度が次第に変化してイオン濃度検出値に
誤差ないしはドリフトが生じる問題がある。もちろん、
通常のイオン濃度計と同様に参照電極内の電解液を交換
すれば検出精度は元どおりに回復するが、図4(b) のよ
うに参照電極74が1mm以下のサイズになると電解液の交
換が非常に厄介なのでイオン濃度センサは実際には使い
捨てになり、とくに小形センサを生体内に挿入ないしは
埋め込んで使用するような用途ではセンサ自体は安価な
ものであっても簡単には交換できない。かかる現状に鑑
み、本発明は小形化が容易で検出精度の安定性が高いイ
オン濃度センサを得ることを目的とする。
Furthermore, since the buffer electrolyte solution 74b of the reference electrode 74 is in a liquid junction with or flows through the object 40 to be detected, the ion concentration thereof gradually changes after long-term use, causing an error or drift in the ion concentration detection value. There is. of course,
Similar to a normal ion densitometer, if the electrolyte in the reference electrode is replaced, the detection accuracy will be restored to its original value. However, as shown in Fig. 4 (b), the electrolyte will be replaced when the reference electrode 74 is 1 mm or less in size. Since it is very troublesome, the ion concentration sensor is actually disposable, and especially in applications where a small sensor is inserted or embedded in a living body, even if the sensor itself is inexpensive, it cannot be easily replaced. In view of the current situation, an object of the present invention is to obtain an ion concentration sensor that can be easily miniaturized and has high stability of detection accuracy.

【0008】[0008]

【課題を解決するための手段】この目的は本発明のイオ
ン濃度センサによれば、イオン感応膜を表面に備えるサ
ブストレートに互いに逆の導電形を賦与した1対の電界
効果形トランジスタとそれらに共通なゲート電極とを設
け、検出対象に感応膜とゲート電極を接触させかつ正負
に順次交替するゲート電圧をゲート電極に掛けた状態で
両トランジスタによるイオン検出信号の差信号を検出対
象のイオン濃度を表すイオン濃度信号として取り出すこ
とによって達成される。
According to the ion concentration sensor of the present invention, a pair of field-effect transistors in which opposite conductivity types are given to a substrate having an ion-sensitive film on the surface thereof and a pair of field-effect transistors are provided. A common gate electrode is provided, and the difference signal between the ion detection signals from both transistors is detected by contacting the sensitive film and the gate electrode to the detection target and applying a gate voltage that sequentially changes positive and negative to the gate electrode. It is achieved by taking out as an ion concentration signal representing

【0009】なお、上記構成にいう感応膜には窒化シリ
コン, アルミナ, 酸化タンタル等をCVD法により成膜
した薄膜を用いるのがよく、かかる感応膜をゲートに備
える1対のトランジスタをゲート電極とともに単一の半
導体チップ内に作り込むのがセンサの小形化に有利であ
る。本発明のイオン濃度センサはもちろんその1対のト
ランジスタにそれぞれ電流を流した状態で使用するが、
両トランジスタに流す電流比を可調整にして置くのが検
出感度を高める上で望ましい。また、両トランジスタと
ゲート電極との間に与えるゲート電圧は、少なくとも数
Hz, 望ましくは数十Hz以上の周波数でその正負の極性を
交替させるのがよい。
It is preferable to use a thin film of silicon nitride, alumina, tantalum oxide or the like formed by the CVD method as the sensitive film having the above structure, and a pair of transistors having such sensitive film at the gate are provided together with the gate electrode. Fabrication in a single semiconductor chip is advantageous for miniaturization of the sensor. The ion concentration sensor of the present invention is used, of course, in a state where a current is applied to the pair of transistors.
It is desirable to adjust the ratio of the currents flowing through both transistors so as to enhance the detection sensitivity. Also, the gate voltage applied between both transistors and the gate electrode should be at least several
The positive and negative polarities should be alternated at a frequency of Hz, preferably several tens of Hz or higher.

【0010】また、本発明のイオン濃度センサはその1
対のトランジスタの感応膜とゲート電極を電解液等の検
出対象に必ず接触させた状態で使用されるが、この際に
検出対象の感応膜やゲート電極との界面にそれぞれ若干
の電圧降下が発生するので、ゲート電圧をこれら電圧降
下の和より大きく設定するのが検出動作を確実にする上
で非常に有利である。さらに、上述のようにサブストレ
ートが逆導電形であるトランジスタの対を2組設け、各
対のトランジスタを1対の電源点間に直列に,かつ異な
る組のサブストレートが逆導電形であるトランジスタが
互いに対応するよう接続し、各組のトランジスタ対の相
互接続点からイオン濃度信号を取り出すようにするのが
検出感度と検出特性の線形を高める上で有利である。
Further, the ion concentration sensor of the present invention is No. 1
It is used with the sensitive film and gate electrode of the paired transistor always in contact with the detection target such as electrolyte solution, but at this time, a slight voltage drop occurs at the interface between the sensitive film and the gate electrode of the detection target. Therefore, setting the gate voltage higher than the sum of these voltage drops is very advantageous in ensuring the detection operation. Further, as described above, two pairs of transistors whose substrates are of opposite conductivity type are provided, the transistors of each pair are connected in series between a pair of power points, and the transistors of different sets of substrates are of opposite conductivity type. Are connected so as to correspond to each other, and the ion concentration signal is taken out from the interconnection point of the transistor pairs of each set, which is advantageous in enhancing the linearity of the detection sensitivity and the detection characteristic.

【0011】[0011]

【作用】図4で説明した従来のイオン濃度センサはISFE
T と参照ゲートトランジスタを用いてそれぞれ固有の役
割を果たさせるいわば固定動作形であったが、本発明は
感応膜を備えるトランジスタないしはISFET を1対用い
て両者を互いに逆導電形とし、かつそれらに共通なゲー
ト電極に正負が順次交替するゲート電圧を与えて両トラ
ンジスタが従来のISFET と参照ゲートトランジスタの役
割を交互に果たすいわば交互動作形とすることにより、
従来の問題の主な原因であった参照ゲートトランジスタ
の参照電極を省いてセンサの小形化を容易にしかつイオ
ン濃度値のドリフトをなくすことに成功したものであ
る。
[Function] The conventional ion concentration sensor described in FIG.
Although it was a so-called fixed operation type in which T and the reference gate transistor play their respective unique roles, the present invention uses a pair of transistors or ISFETs having a sensitive film to make them both of opposite conductivity types, and By applying a gate voltage with positive and negative alternating to the common gate electrode in order to make both transistors alternately function as the conventional ISFET and the reference gate transistor, it is an alternating operation type.
The reference electrode of the reference gate transistor, which is the main cause of the conventional problems, is omitted to facilitate the miniaturization of the sensor and to eliminate the drift of the ion concentration value.

【0012】すなわち、本発明のイオン濃度センサで
は、ゲート電圧の正負の極性に応じてその1対の互いに
逆導電形のトランジスタ中の一方がイオン濃度に応じた
電流を流す本来のISFET として動作し、他方がほぼ非導
通ないしは小電流を流す状態のいわば従来の参照ゲート
トランジスタとして動作する。このように、本発明では
その1対のトランジスタがいわば差動的に動作するので
両トランジスタのイオン検出信号の差信号をイオン濃度
信号として取り出すことができる。
That is, in the ion concentration sensor of the present invention, one of the pair of transistors of mutually opposite conductivity type operates as an original ISFET which flows a current corresponding to the ion concentration according to the positive or negative polarity of the gate voltage. The other operates, as it were, as a conventional reference gate transistor in a state in which it is substantially non-conductive or a small current flows. Thus, in the present invention, since the pair of transistors operate in a so-called differential manner, the difference signal between the ion detection signals of both transistors can be extracted as the ion concentration signal.

【0013】[0013]

【実施例】以下、図を参照しながら本発明の実施例を具
体的に説明する。図1は本発明のイオン濃度センサを作
り込んだ半導体チップの断面図とその関連回路図、図2
は図1の実施例の動作例を示す主な信号の波形図、図3
は本発明の異なる実施例を示すイオン濃度センサとその
関連回路図である。これらの実施例ではイオン濃度セン
サの小形化のため1対のトランジスタとゲート電極が単
一の半導体チップに作り込まれ、ゲート電極に与えるゲ
ート電圧は数十Hz程度の周波数でその正負の極性が交替
されるものとする。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a sectional view of a semiconductor chip incorporating the ion concentration sensor of the present invention and its related circuit diagram, FIG.
3 is a waveform diagram of main signals showing an operation example of the embodiment of FIG.
FIG. 3 is an ion concentration sensor and its related circuit diagram showing another embodiment of the present invention. In these embodiments, a pair of transistors and a gate electrode are formed in a single semiconductor chip for downsizing the ion concentration sensor, and the gate voltage applied to the gate electrode has a positive and negative polarity at a frequency of about several tens Hz. Shall be replaced.

【0014】図1(a) において、半導体チップ10は通常
のCMOS集積回路装置用と同様に例えばp形の半導体
基板1の上にエピタキシャル層2をn形で成長させたも
のであり、本発明のイオン濃度センサに用いられる1対
のトランジスタ21と22の内のpチャネルトランジスタ21
はエピタキシャル層をn形のサブストレート2とし、n
チャネルトランジスタ22はエピタキシャル層に拡散され
たウエルをp形のサブストレート3としてそれぞれ作り
込まれる。トランジスタ21の方にはn形のサブストレー
ト2の表面からソース層21aとドレイン層21bがp形で
拡散され、かつ図の例ではサブストレート接続層21cが
n形で拡散される。同様にトランジスタ22の方にはp形
のサブストレート3の表面からソース層22aとドレイン
層22bがn形で拡散され、かつサブストレート接続層22
cがp形で拡散される。これらの拡散層は通常の電界効
果トランジスタと同様な要領で作り込むことでよく、サ
ブストレート接続層21cや22cは必ずしも必要ではな
い。
In FIG. 1 (a), a semiconductor chip 10 is obtained by growing an epitaxial layer 2 of n type on a p type semiconductor substrate 1 as in the case of an ordinary CMOS integrated circuit device. P-channel transistor 21 of a pair of transistors 21 and 22 used for the ion concentration sensor of
Is an n-type substrate 2 whose epitaxial layer is
The channel transistors 22 are each formed with the well diffused in the epitaxial layer as the p-type substrate 3. In the transistor 21, the source layer 21a and the drain layer 21b are diffused in p-type from the surface of the n-type substrate 2, and the substrate connection layer 21c is diffused in n-type in the illustrated example. Similarly, in the transistor 22, the source layer 22a and the drain layer 22b are diffused in the n-type from the surface of the p-type substrate 3 and the substrate connecting layer 22 is formed.
c is diffused in p-type. These diffusion layers may be formed in the same manner as a normal field effect transistor, and the substrate connection layers 21c and 22c are not always necessary.

【0015】両トランジスタ21と22用の配線も通常の集
積回路装置におけると同様な要領で施すことでよく、ま
ず半導体チップ10の表面を絶縁膜4で覆った上で要所に
窓を明け、その上側に窓の中で両トランジスタのソース
・ドレイン層にそれぞれ接続するアルミの配線膜5を図
示のように配設する。なお、絶縁膜4の窓明けの際に後
で感応膜7を設けるべき個所にも開口を設け、図の例で
は配線膜5を配設する際にトランジスタ21と22のサブス
トレート接続層21c,22c をソース層21a,22a とそれぞれ
短絡する。さらに、配線膜5が検出対象40である電解液
等に接触しないように配線膜5の上側に窒化シリコン等
の緻密な膜質の保護膜7を成膜し、かつこれに感応膜7
用の開口とゲート電極30用の窓を設ける。
Wirings for both transistors 21 and 22 may be provided in the same manner as in a normal integrated circuit device. First, the surface of the semiconductor chip 10 is covered with an insulating film 4, and then a window is opened at a required place. An aluminum wiring film 5 connected to the source / drain layers of both transistors is provided in the window on the upper side thereof as shown in the figure. It should be noted that an opening is also provided at a position where the sensitive film 7 should be provided later when the window of the insulating film 4 is opened. In the example shown in the figure, when the wiring film 5 is provided, the substrate connection layer 21c of the transistors 21 and 22 is formed. 22c is short-circuited with the source layers 21a and 22a, respectively. Further, a dense protective film 7 made of silicon nitride or the like is formed on the upper side of the wiring film 5 so that the wiring film 5 does not come into contact with the electrolytic solution or the like as the detection target 40, and the sensitive film 7 is formed on the protective film 7.
An opening for the gate and a window for the gate electrode 30 are provided.

【0016】感応膜7は窒化シリコン, アルミナ, 酸化
タンタル等の薄膜とするのがよく、この実施例では窒化
シリコン膜を上述の開口内のサブストレート2や3の表
面と接触するよう例えばプラズマCVD法により成膜し
かつフォトエッチングを施すことによって図のように周
縁が保護膜6と重なるパターンに形成する。この窒化シ
リコンの感応膜7は水素イオン濃度の検出にとくに適す
る。ゲート電極30用の金属には図4(a) の場合と同様に
白金を用いるのがよく、これを保護膜2の上にスパッタ
法や蒸着法で成膜してフォトエッチングを施すことによ
り、図のように両トランジスタ21と22の相互間の保護膜
6上に両者に共用のパターンに形成し、かつ保護膜6に
明けられた上述の窓を介して下側の配線膜6と接続す
る。
The sensitive film 7 is preferably a thin film of silicon nitride, alumina, tantalum oxide, or the like. In this embodiment, the silicon nitride film is contacted with the surface of the substrate 2 or 3 in the above-mentioned opening by, for example, plasma CVD. By the method, a photo-etching process is performed to form a pattern in which the peripheral edge overlaps with the protective film 6 as shown in the figure. This silicon nitride sensitive film 7 is particularly suitable for detecting the hydrogen ion concentration. As the metal for the gate electrode 30, platinum is preferably used as in the case of FIG. 4 (a). By depositing this on the protective film 2 by a sputtering method or a vapor deposition method and performing photoetching, As shown in the figure, a pattern common to both transistors 21 and 22 is formed on the protective film 6 between them, and is connected to the lower wiring film 6 through the above-mentioned window formed in the protective film 6. ..

【0017】図1(a) のイオン濃度センサは例えば図1
(b) に示す検出回路50に組み込んで感応膜7とゲート電
極30をもちろん検出対象40に接触させた状態で使用され
る。図1(b) ではゲート電極30が感応膜7と向き合った
姿勢で示されている。トランジスタ21と22はそれぞれ調
整抵抗51と52と直列に1対の電源電位点VとEの間に接
続され、パルス発生回路55により発生させた極性が正負
に順次交替するゲート電圧Vgがゲート電極30に賦与され
る。トランジスタ21, 22と抵抗51, 52との相互接続点か
らそれぞれイオン検出信号S1, S2が導出され、両信号の
差信号がイオン濃度信号Soとして測定回路60に与えられ
る。
The ion concentration sensor shown in FIG. 1 (a) is shown in FIG.
It is incorporated in the detection circuit 50 shown in (b) and used while the sensitive film 7 and the gate electrode 30 are in contact with the detection target 40. In FIG. 1B, the gate electrode 30 is shown in a position facing the sensitive film 7. The transistors 21 and 22 are connected between the pair of power supply potential points V and E in series with the adjusting resistors 51 and 52, respectively, and the gate voltage Vg at which the polarity generated by the pulse generating circuit 55 is sequentially changed between positive and negative is the gate electrode. Granted to 30. Ion detection signals S1 and S2 are derived from the interconnection points of the transistors 21 and 22 and the resistors 51 and 52, respectively, and the difference signal between these signals is given to the measurement circuit 60 as the ion concentration signal So.

【0018】図2にイオン濃度センサに同図(a) の波形
のゲート電圧Vgを与えた時の上述のイオン検出信号S1,
S2とイオン濃度信号Soの波形を示す。同図(b) 〜(d) は
検出対象40の陽イオン濃度が高い場合に, 同図(e) 〜
(g) は陽イオン濃度が低い場合ないしは陽イオン濃度よ
り陰イオン濃度が高い場合にそれぞれ相当する。まず、
陽イオン濃度が高い場合から説明する。pチャネル形の
トランジスタ21はゲート電圧Vgが正の時にトランジスタ
21が導通状態となってイオン濃度に応じた電流が流れる
が、ゲート電圧Vgが負の時にはほとんど電流が流れない
から、図2(b) のトランジスタ21によるイオン検出信号
S1は図のように電圧Vgが正の時間内に低い値をとる波形
になる。
FIG. 2 shows the above-mentioned ion detection signal S1, when the gate voltage Vg having the waveform shown in FIG.
The waveforms of S2 and the ion concentration signal So are shown. Figures (b) to (d) show the cases (e) to (d) when the cation concentration of the target 40 is high.
(g) corresponds to the case where the cation concentration is low or the anion concentration is higher than the cation concentration, respectively. First,
The case where the cation concentration is high will be described. The p-channel transistor 21 is a transistor when the gate voltage Vg is positive.
21 becomes conductive and a current according to the ion concentration flows, but when the gate voltage Vg is negative, almost no current flows. Therefore, the ion detection signal from the transistor 21 in FIG.
S1 has a waveform in which the voltage Vg takes a low value within a positive time as shown in the figure.

【0019】これに対しnチャネル形のトランジスタ22
の方は陽イオン濃度が高い場合にはほとんど導通せず、
前述のようにいわば参照ゲートトランジスタとして動作
するので、図2(c) のトランジスタ21によるイオン検出
信号S2は変化が少なくゲート電圧Vgが負の時間内に僅か
に下がる波形となる。これらイオン検出信号S1とS2の差
信号である図2(d) のイオン濃度信号Soは図のように正
のパルス状で電圧Vgが負の時間内でやや負値をとる波形
となる。かかるイオン濃度信号Soを受ける測定回路60は
例えばそのパルス波形の正負のピーク値をディジタル値
に変換してその平均値からイオン濃度値を計算するよう
構成するのがよい。
On the other hand, an n-channel transistor 22
In the case of high cation concentration, there is almost no conduction,
As described above, since it operates as a reference gate transistor, the ion detection signal S2 by the transistor 21 of FIG. 2 (c) has a small change and has a waveform in which the gate voltage Vg drops slightly within a negative time. The difference signal between these ion detection signals S1 and S2, the ion concentration signal So in FIG. 2 (d), has a positive pulse and a voltage Vg takes a slightly negative value within a negative time as shown in the figure. The measuring circuit 60 that receives the ion concentration signal So is preferably configured to convert the positive and negative peak values of the pulse waveform into a digital value and calculate the ion concentration value from the average value.

【0020】陰イオン濃度が高い場合は、図2(e) のイ
オン検出信号S1はほぼ平坦でゲート電圧Vgが負の時間内
に僅かに下がる波形となり、図2(f) のイオン検出信号
S2は電圧Vgが負の時間内に低い値をとる波形となり、両
者の差信号である図2(g) のイオン濃度信号Soは負のパ
ルス状で電圧Vgが正の時間内にやや正値をとる波形とな
る。この場合にはトランジスタ21の方がいわば参照ゲー
トトランジスタとして動作することになり、イオン濃度
信号Soが負のパルス状波形をとることから検出対象40内
の陰イオンが陽イオンより優勢なことがわかる。なお、
図1(b) の調整抵抗51と52は例えば水素イオン濃度pHが
7の時にイオン濃度信号Soから得られるイオン濃度値が
0になるよう調整して置くのがよい。
When the anion concentration is high, the ion detection signal S1 shown in FIG. 2 (e) is almost flat and the gate voltage Vg has a waveform that slightly drops within a negative time.
S2 has a waveform in which the voltage Vg takes a low value within a negative time, and the difference signal between them, the ion concentration signal So in Fig. 2 (g), is a negative pulse and has a slightly positive value during a positive voltage Vg. The waveform becomes In this case, the transistor 21 operates as a reference gate transistor, so that the ion concentration signal So has a negative pulse-like waveform, which indicates that the anions in the detection target 40 are more dominant than the cations. .. In addition,
The adjusting resistors 51 and 52 in FIG. 1 (b) are preferably adjusted and placed so that the ion concentration value obtained from the ion concentration signal So becomes 0 when the hydrogen ion concentration pH is 7, for example.

【0021】図3に本発明の異なる実施例を図1(b) に
対応する回路図で示す。この実施例ではそれぞれ感応膜
7をもつ互いに逆導電形のトランジスタないしISFET の
対を2組用い、第1の対のトランジスタ21, 22と調整抵
抗53の直列回路と第2の対のトランジスタ23, 24と調整
抵抗54の直列回路を電源電位点VとEの間に接続し、か
つ図示のようにpチャネルトランジスタ21と24がnチャ
ネルトランジスタ23と22にそれぞれ対応するよう配置す
る。さらに、図の例では各対ごとに設けられたゲート電
極31と32にパルス発生回路55による正負に順次交替する
ゲート電圧Vgを共通に与えた状態で、第1の対のトラン
ジスタ21, 22の相互接続点と第2の対のトランジスタ2
3, 24の相互接続点からそれぞれイオン検出信号S3, S4
を導出し、両者の差信号をイオン濃度信号Soとして測定
回路50に与える。
FIG. 3 is a circuit diagram corresponding to FIG. 1 (b) showing a different embodiment of the present invention. In this embodiment, two pairs of transistors or ISFETs of opposite conductivity type each having a sensitive film 7 are used, and a series circuit of the transistors 21 and 22 of the first pair and the adjusting resistor 53 and the transistor 23 of the second pair are used. A series circuit of 24 and adjusting resistor 54 is connected between power supply potential points V and E, and p-channel transistors 21 and 24 are arranged so as to correspond to n-channel transistors 23 and 22, respectively, as shown. Further, in the example of the drawing, the gate electrodes 31 and 32 provided for each pair are commonly provided with a gate voltage Vg that is sequentially switched between positive and negative by the pulse generation circuit 55, and the transistors 21 and 22 of the first pair are connected. Interconnection point and second pair of transistors 2
Ion detection signals S3 and S4 from 3 and 24 interconnection points, respectively
And the difference signal between the two is given to the measurement circuit 50 as the ion concentration signal So.

【0022】容易にわかるように、この実施例では4個
のトランジスタ21〜24が一種の変形ブリッジ回路を構成
しているので、調整抵抗53と54によって第1と第2のト
ランジスタ対を流れる電流のバランスをとることにより
イオン濃度の検出感度を前の実施例より高めることがで
き、かつ各トランジスタ対のイオン濃度の検出特性の非
線形を補償して線形性を向上することができる。なお、
図1の実施例でもこの図3の実施例でもゲート電圧Vgを
検出対象の感応膜とゲート電極との界面付近に生じ得る
電圧降下の和より高く設定するのが有利であるが、とく
に図3の実施例では図1の実施例の場合よりも若干高め
に設定するのが望ましい。
As can be easily understood, in this embodiment, the four transistors 21 to 24 form a kind of modified bridge circuit, so that the currents flowing through the first and second transistor pairs by the adjusting resistors 53 and 54. By balancing the above, the ion concentration detection sensitivity can be increased as compared with the previous embodiment, and the nonlinearity of the ion concentration detection characteristics of each transistor pair can be compensated for, and the linearity can be improved. In addition,
In both the embodiment of FIG. 1 and the embodiment of FIG. 3, it is advantageous to set the gate voltage Vg higher than the sum of the voltage drops that can occur near the interface between the sensitive film to be detected and the gate electrode. In this embodiment, it is desirable to set the value slightly higher than that in the embodiment of FIG.

【0023】[0023]

【発明の効果】以上のように本発明のイオン濃度センサ
では、イオンに対する感応膜を表面に備えるサブストレ
ートに互いに逆の導電形を賦与した1対の電界効果形の
トランジスタとそれらに共通なゲート電極を設け、感応
膜とゲート電極をイオン濃度を検出すべき電解液等の検
出対象に接触させかつ正負に順次交替するゲート電圧を
ゲート電極に掛けた状態で両トランジスタによるイオン
検出信号の差信号を検出対象のイオン濃度を表すイオン
濃度信号として取り出すことにより、次の効果を上げる
ことができる。
As described above, in the ion concentration sensor of the present invention, a pair of field effect transistors in which conductivity types opposite to each other are imparted to a substrate having a sensitive film for ions on its surface and a gate common to them. An electrode is provided, the sensitive film and the gate electrode are brought into contact with a detection target such as an electrolyte solution whose ion concentration is to be detected, and a gate voltage applied to the gate electrode that sequentially alternates between positive and negative is applied to the gate electrode. By taking out as the ion concentration signal representing the ion concentration of the detection target, the following effects can be achieved.

【0024】(a) 導電形が異なる1対のイオン感応性の
トランジスタがゲート電圧の正負に応じて参照ゲートト
ランジスタの役目を交互に果たすので従来のよう参照電
極を設ける必要がなくなり、トランジスタ対とゲート電
極を2〜3mm角以下の半導体チップ内に作り込んでイオ
ン濃度センサを小形化することができる。 (b) 従来は参照電極に保持させていた検出対象と液絡す
る電解液が不要になるのでイオン濃度検出値にドリフト
が生じる原因がなくなり、イオン濃度センサの検出感度
を長期に亘り安定に維持することができる。
(A) A pair of ion-sensitive transistors having different conductivity types alternately play the role of a reference gate transistor according to the positive / negative of the gate voltage, so that it is not necessary to provide a reference electrode as in the conventional case, and the transistor pair is not required. The ion concentration sensor can be miniaturized by forming the gate electrode in a semiconductor chip of 2 to 3 mm square or less. (b) Since the electrolyte that is liquid-junctioned to the detection target that was conventionally held on the reference electrode is no longer necessary, there is no cause for drift in the ion concentration detection value, and the detection sensitivity of the ion concentration sensor is maintained stable for a long period of time. can do.

【0025】(c) 1対のイオン感応性トランジスタを差
動的に動作させてイオン濃度信号を取り出すので、各ト
ランジスタがもつ検出特性の非線形が自動補償されてイ
オン濃度を良好な線形特性で正確に検出することがで
き、かつイオン濃度検出範囲も従来より広げることがで
きる。 (d) 感応膜を含むトランジスタ対とゲート電極をすべて
半導体プロセス技術を利用して半導体チップ内に作り込
めるので性能のよく揃ったイオン濃度センサを安価に提
供することができる。
(C) Since a pair of ion-sensitive transistors are operated differentially to extract the ion concentration signal, the non-linearity of the detection characteristic of each transistor is automatically compensated, and the ion concentration is accurately measured with a good linear characteristic. Can be detected, and the ion concentration detection range can be expanded as compared with the conventional case. (d) Since the transistor pair including the sensitive film and the gate electrode can all be formed in the semiconductor chip by utilizing the semiconductor process technology, it is possible to provide an ion concentration sensor with good performance at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のイオン濃度センサの一実施例を示し、
同図(a) はイオン濃度センサを作り込んだ半導体チップ
の断面図、同図(b) はその関連回路図である。
FIG. 1 shows an embodiment of an ion concentration sensor of the present invention,
Figure (a) is a cross-sectional view of a semiconductor chip with an ion concentration sensor built in, and Figure (b) is a related circuit diagram.

【図2】図1の実施例に関連する主な信号を示し、同図
(a) はゲート電圧、同図(b) は陽イオン濃度が高い場合
のpチャネル形のトランジスタによるイオン検出信号、
同図(c) は同じ場合のnチャネル形のトランジスタによ
るイオン検出信号、同図(d) は同じ場合のイオン濃度信
号、同図(e) は陰イオン濃度が高い場合のpチャネル形
のトランジスタによるイオン検出信号、同図(f) は同じ
場合のnチャネル形のトランジスタによるイオン濃度信
号、同図(g) は同じ場合のイオン濃度信号の波形図であ
る。
2 shows the main signals associated with the embodiment of FIG.
(a) is the gate voltage, (b) is the ion detection signal from a p-channel transistor when the cation concentration is high,
The figure (c) is the ion detection signal by the n-channel transistor in the same case, the figure (d) is the ion concentration signal in the same case, and the figure (e) is the p-channel transistor when the anion concentration is high. 2F is a waveform diagram of the ion concentration signal by the n-channel transistor in the same case, and FIG. 6G is a waveform diagram of the ion concentration signal in the same case.

【図3】本発明のイオン濃度センサの異なる実施例を示
すその関連回路図である。
FIG. 3 is a related circuit diagram showing another embodiment of the ion concentration sensor of the present invention.

【図4】従来のイオン濃度センサを示し、同図(a) はそ
の関連回路図、同図(b) は参照ゲートトランジスタの参
照電極の断面図である。
4A and 4B show a conventional ion concentration sensor, FIG. 4A is a related circuit diagram thereof, and FIG. 4B is a sectional view of a reference electrode of a reference gate transistor.

【符号の説明】[Explanation of symbols]

2 サブストレートとしてのエピタキシャル層 3 サブストレートとしてのウエル 7 感応膜 10 イオン濃度センサが作り込まれた半導体チップ 21 pチャネル形のトランジスタないしはISFET 22 nチャネル形のトランジスタないしはISFET 23 nチャネル形のトランジスタないしはISFET 22 pチャネル形のトランジスタないしはISFET 30 ゲート電極 31 ゲート電極 32 ゲート電極 40 検出対象ないしは電解液 S1 pチャネル形のトランジスタによるイオン検出
信号 S2 nチャネル形のトランジスタによるイオン検出
信号 S0 イオン濃度信号 Vg ゲート電圧
2 Epitaxial layer as substrate 3 Well as substrate 7 Sensitive film 10 Semiconductor chip with ion concentration sensor 21 p-channel type transistor or ISFET 22 n-channel type transistor or ISFET 23 n-channel type transistor or ISFET 22 p-channel transistor or ISFET 30 gate electrode 31 gate electrode 32 gate electrode 40 detection target or electrolyte S1 ion detection signal by p-channel transistor S2 ion detection signal by n-channel transistor S0 ion concentration signal Vg gate Voltage

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】イオンに対する感応膜を表面に備えるサブ
ストレートに互いに逆の導電形を賦与した1対の電界効
果形のトランジスタとそれらに共通なゲート電極を備
え、検出対象に感応膜とゲート電極を接触させかつ正負
に順次交替するゲート電圧をゲート電極に掛けた状態で
両トランジスタによるイオン検出信号の差信号を検出対
象のイオン濃度を表すイオン濃度信号として取り出すよ
うにしたことを特徴とするイオン濃度センサ。
1. A pair of field effect transistors having opposite conductivity types applied to a substrate having a sensitive film for ions on the surface thereof, and a gate electrode common to the transistors, and a sensitive film and a gate electrode to be detected. Ion characterized in that the difference signal of the ion detection signals by both transistors is taken out as an ion concentration signal representing the ion concentration of the detection target while the gate voltage is applied to the gate electrode which makes contact with Concentration sensor.
【請求項2】請求項1に記載のセンサにおいて、ゲート
電圧を検出対象中にその感応膜とゲート電極との界面付
近にそれぞれ生じる電圧降下の和より大きく設定するよ
うにしたことを特徴とするイオン濃度センサ。
2. The sensor according to claim 1, wherein the gate voltage is set to be larger than the sum of the voltage drops respectively generated near the interface between the sensitive film and the gate electrode in the object to be detected. Ion concentration sensor.
【請求項3】請求項1に記載のセンサにおいて、サブス
トレートが逆導電形のトランジスタの対を2組設け、各
対のトランジスタを1対の電源点間に直列にかつ異なる
組のサブストレートが逆導電形のトランジスタが互いに
対応するよう接続し、各組のトランジスタ対の相互接続
点からイオン濃度信号を取り出すようにしたことを特徴
とするイオン濃度センサ。
3. The sensor according to claim 1, wherein the substrate is provided with two pairs of transistors of opposite conductivity type, and each pair of transistors is connected in series between a pair of power supply points and substrates of different pairs are provided. An ion concentration sensor characterized in that transistors of opposite conductivity type are connected so as to correspond to each other, and an ion concentration signal is taken out from an interconnection point of each pair of transistors.
JP4120900A 1992-05-14 1992-05-14 Ion concentration sensor Pending JPH05312778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4120900A JPH05312778A (en) 1992-05-14 1992-05-14 Ion concentration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4120900A JPH05312778A (en) 1992-05-14 1992-05-14 Ion concentration sensor

Publications (1)

Publication Number Publication Date
JPH05312778A true JPH05312778A (en) 1993-11-22

Family

ID=14797781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4120900A Pending JPH05312778A (en) 1992-05-14 1992-05-14 Ion concentration sensor

Country Status (1)

Country Link
JP (1) JPH05312778A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513501A (en) * 2001-12-21 2005-05-12 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング FET sensor with gate electrode specially configured for sensitive detection of analyte
JP2010515076A (en) * 2007-01-04 2010-05-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method, detector and system for measuring sample concentration
CN102027358A (en) * 2008-05-13 2011-04-20 出光兴产株式会社 Lubricating oil deterioration degree evaluation device
JP2011099877A (en) * 2004-07-13 2011-05-19 Dna Electronics Ltd Signal processing circuit containing ion-sensitive field-effect transistor, and method for monitoring property of fluid
JP2013516613A (en) * 2010-01-04 2013-05-13 インターナショナル・ビジネス・マシーンズ・コーポレーション Ultra-low power CMOS-based biosensor circuit
CN103575775B (en) * 2012-07-31 2018-08-17 罗伯特·博世有限公司 The method and control device of gas parameter are measured by means of gas sensing fet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513501A (en) * 2001-12-21 2005-05-12 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング FET sensor with gate electrode specially configured for sensitive detection of analyte
JP4768226B2 (en) * 2001-12-21 2011-09-07 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング FET sensor with gate electrode specially configured for sensitive detection of analyte
JP2011099877A (en) * 2004-07-13 2011-05-19 Dna Electronics Ltd Signal processing circuit containing ion-sensitive field-effect transistor, and method for monitoring property of fluid
JP2010515076A (en) * 2007-01-04 2010-05-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method, detector and system for measuring sample concentration
CN102027358A (en) * 2008-05-13 2011-04-20 出光兴产株式会社 Lubricating oil deterioration degree evaluation device
JP2013516613A (en) * 2010-01-04 2013-05-13 インターナショナル・ビジネス・マシーンズ・コーポレーション Ultra-low power CMOS-based biosensor circuit
CN103575775B (en) * 2012-07-31 2018-08-17 罗伯特·博世有限公司 The method and control device of gas parameter are measured by means of gas sensing fet

Similar Documents

Publication Publication Date Title
JP5509118B2 (en) Signal processing circuit including ion sensitive field effect transistors and method for monitoring fluid properties
Yin et al. Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate
Lauks et al. The extended gate chemically sensitive field effect transistor as multi-species microprobe
Fakih et al. High resolution potassium sensing with large-area graphene field-effect transistors
US20200194592A1 (en) Negative capacitance semiconductor sensor
JPH05312778A (en) Ion concentration sensor
US4650561A (en) Gas sensor
CN113049658A (en) Ion sensing apparatus
KR101729685B1 (en) Method and appartus for detecting ion concentration
Kelly et al. Microelectronic ion sensors: A critical survey
JP3167022B2 (en) Gas sensor
JPS6260662B2 (en)
JPH0469338B2 (en)
JP3112599B2 (en) Ion sensor and ion measurement method
US8410530B2 (en) Sensitive field effect transistor apparatus
JPH04258756A (en) Ion sensor
Lysko et al. Semiconductor pressure sensor based on FET structure
JPH083476B2 (en) FET type sensor
Prathap et al. A differential p-ISFET based on-chip pH sensor with substrate based drift reset capability
US20220187238A1 (en) Ion sensing device
GB2162997A (en) A fluoride ion sensitive field effect transistor
JPS6044617B2 (en) Ion concentration measuring device
JPS62250353A (en) Semiconductor chemical sensor
JPH02249962A (en) Fet sensor
JPH03208375A (en) Semiconductor pressure sensor