JPS6260662B2 - - Google Patents

Info

Publication number
JPS6260662B2
JPS6260662B2 JP55056901A JP5690180A JPS6260662B2 JP S6260662 B2 JPS6260662 B2 JP S6260662B2 JP 55056901 A JP55056901 A JP 55056901A JP 5690180 A JP5690180 A JP 5690180A JP S6260662 B2 JPS6260662 B2 JP S6260662B2
Authority
JP
Japan
Prior art keywords
gate
sensor
source
reference electrode
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55056901A
Other languages
Japanese (ja)
Other versions
JPS56153247A (en
Inventor
Kyoo Shimada
Hayami Yoshimochi
Makoto Yano
Kyoichiro Shibatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP5690180A priority Critical patent/JPS56153247A/en
Priority to GB8112795A priority patent/GB2077439B/en
Priority to US06/257,605 priority patent/US4385274A/en
Priority to DE19813116884 priority patent/DE3116884A1/en
Publication of JPS56153247A publication Critical patent/JPS56153247A/en
Publication of JPS6260662B2 publication Critical patent/JPS6260662B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4148Integrated circuits therefor, e.g. fabricated by CMOS processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 この発明はゲート絶縁形電界効果トランジスタ
(以下、FETと略称する。)を用いたイオンセン
サ用測定回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measurement circuit for an ion sensor using an insulated gate field effect transistor (hereinafter abbreviated as FET).

従来、この種のイオンセンサとしてたとえば第
1図に示す構造のものが知られている。同図にお
いて、1はp形のシリコン基板であり、この基板
1上にn形の共通ドレイン2、比較電極ソース3
およびセンサソース4が形成され、さらに測定液
の電位を一定に保持するために必要な基準電極5
が金の蒸着によつて形成されている。6,7,
8,9,10は共通ドレイン層2、比較電極ソー
ス3、センサソース4、基準電極層5およびシリ
コン基板1の各電極部であり、11はセンサゲー
ト部、12は比較電極ゲート部で、第2図にその
横断面が示されている。
Conventionally, as this type of ion sensor, one having a structure shown in FIG. 1, for example, is known. In the figure, 1 is a p-type silicon substrate, on which an n-type common drain 2 and a comparison electrode source 3 are provided.
and a sensor source 4 are formed, and a reference electrode 5 necessary to keep the potential of the measurement liquid constant
is formed by vapor deposition of gold. 6,7,
8, 9, and 10 are the common drain layer 2, the comparison electrode source 3, the sensor source 4, the reference electrode layer 5, and each electrode part of the silicon substrate 1; 11 is the sensor gate part; 12 is the comparison electrode gate part; Figure 2 shows its cross section.

この第2図から明らかなように、各ゲート部1
1,12にはシリコン基板1上に形成された窒化
シリコン層13と酸化シリコン層14との2層構
造を有し、センサゲート部11にはたとえばイオ
ン感応層15が、また比較電極ゲート部12には
疎水性有機膜16が被覆されている。
As is clear from FIG. 2, each gate section 1
1 and 12 have a two-layer structure of a silicon nitride layer 13 and a silicon oxide layer 14 formed on a silicon substrate 1, the sensor gate part 11 has an ion sensitive layer 15, and the comparison electrode gate part 12 has a two-layer structure. is coated with a hydrophobic organic film 16.

上記構成のイオンセンサは第3図の等価回路で
示すように容器17内の被検液18内に浸漬さ
れ、共通ドレイン2は定圧電源19に接続され、
比較電極ソース3とセンサソース4は差動増巾器
20,21にそれぞれ接続されて、両者の出力の
差が減算回路22で求められ、この減算回路22
の出力が被検液18のイオン濃度に対応する。
The ion sensor with the above configuration is immersed in the test liquid 18 in the container 17, as shown in the equivalent circuit of FIG. 3, and the common drain 2 is connected to the constant pressure power source 19.
The comparison electrode source 3 and the sensor source 4 are connected to differential amplifiers 20 and 21, respectively, and the difference between their outputs is determined by a subtraction circuit 22.
The output corresponds to the ion concentration of the test liquid 18.

上記測定にあたり、定電流装置23,24によ
り各ソース3,4に流れるソース・ドレイン電流
を一定に保持している。すなわち、一定のドレイ
ン電圧Vdと、各ソース・ドレイン電流Id3,Id4
よつて作動させて、出力Vg3,Vg4を得る。この
出力Vg3,Vg4は各ゲート3,4の各ゲート電位
g3,Eg4と、基準電極5の界面電位Epで表わ
すと、 Vg3=Eg3−Ep ……(1) Vg4=Eg4−Ep ……(2) となる。
In the above measurement, the source/drain current flowing through each source 3, 4 is kept constant by constant current devices 23, 24. That is, by operating with a constant drain voltage Vd and respective source-drain currents Id 3 and Id 4 , outputs V g3 and V g4 are obtained. These outputs V g3 and V g4 are expressed by the gate potentials E g3 and E g4 of each gate 3 and 4 and the interface potential E p of the reference electrode 5, as follows: V g3 = E g3E p ……(1) V g4 = E g4 - E p ...(2).

この各電位Eg3,Eg4,Epはそれぞれ温度に
依存する成分を有するけれども、両出力Vg3,V
g4の差出力ΔVは、 ΔV=Vg3−Vg4=Eg3−Eg4 ……(3) となり、基準電極5の界面電位Epに関する項が
消去される。
Although each of these potentials E g3 , E g4 , and E p has a component that depends on temperature, both outputs V g3 , V
The difference output ΔV of g4 becomes ΔV=V g3 −V g4 =E g3 −E g4 (3), and the term related to the interface potential E p of the reference electrode 5 is eliminated.

しかし、各ゲート電位Eg3,Eg4が温度に依存
し、その温度依存特性が各FETごとに異なるた
め、被検液18の正確なイオン測定が不可能であ
る。
However, since each of the gate potentials E g3 and E g4 depends on temperature, and the temperature dependence characteristics differ for each FET, accurate ion measurement of the test liquid 18 is impossible.

この発明は上記欠点を改善するためになされた
もので、センサゲートと比較電極ゲートにおける
ゲート電位の温度依存特性を消去して被検液の正
確なイオン測定が可能なイオンセンサ用測定回路
を提供することを目的とする。
This invention was made to improve the above-mentioned drawbacks, and provides a measurement circuit for an ion sensor that is capable of accurately measuring ions in a sample liquid by eliminating the temperature-dependent characteristics of the gate potential at the sensor gate and the comparison electrode gate. The purpose is to

以下、この発明の実施例を図面にしたがつて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第4図はこの発明に係るイオンセンサ用測定回
路の一例を示す電気回路図で、同図中、第3図と
同一部分には同一番号が付されており、各ゲート
3,4に流れるソース・ドレイン電流Id3,Id4
を制御する電流制御器25,26が設けられ、そ
の電流値は電流計27,28に表示される。ま
た、第5図は各ゲート3,4におけるソース・ド
レイン電流Id(Id3,Id4)に対する各ゲート電
位Eg3,Eg4の温度依存特性∂Eg3/∂T,∂Eg
/∂Tを示す図である。
FIG. 4 is an electric circuit diagram showing an example of the measurement circuit for an ion sensor according to the present invention. In the figure, the same parts as in FIG.・Drain current I d3 , I d4
Current controllers 25 and 26 are provided to control the current, and the current values are displayed on ammeters 27 and 28. Moreover, FIG. 5 shows the temperature dependence characteristics of each gate potential E g3 , E g4 with respect to the source-drain current I d (I d3 , I d4 ) in each gate 3, 4 ∂E g3 /∂T, ∂E g
FIG. 4 is a diagram showing 4 /∂T.

いま、電流制御器25,26を操作して、セン
サゲート3のソース・ドレイン電流Id3を第5図
のa1点における電流値に設定し、また比較電極ゲ
ート4のソース・ドレイン電流Id4を第5図のb1
点における電流値に設定すると、各ゲート電位E
g3,Eg4の温度依存特性∂Eg3/∂Tおよび∂Eg
/∂Tが零となる。
Now, operate the current controllers 25 and 26 to set the source-drain current I d3 of the sensor gate 3 to the current value at point a in FIG. 5 , and set the source-drain current I d4 of the comparison electrode gate 4 b 1 in Figure 5
When set to the current value at the point, each gate potential E
Temperature dependent characteristics of g3 , E g4 ∂E g3 /∂T and ∂E g
4 /∂T becomes zero.

あるいは、上記電流Id3を第5図のa2点におけ
る電流値に設定し、また上記電流Id4を第5図の
b2点における電流値に設定した場合、各ゲート電
位Eg3,Eg4の温度依存特性∂Eg3/∂T,∂Eg
/∂Tはともに零とならないけれども、その各
温度依存特性の値Cが等しくなるため、(3)式で示
す差出力ΔVにはこの温度依存特性値Cが消去さ
れる。したがつて、被検液18の測定に際し、温
度に左右されず正確なイオン測定が可能である。
Alternatively, the above current I d3 is set to the current value at 2 points a in Fig. 5, and the above current I d4 is set to the current value at 2 points a in Fig.
b When the current value is set at two points, the temperature dependence characteristics of each gate potential E g3 , E g4 ∂E g3 /∂T, ∂E g
Although neither 4 /∂T becomes zero, the value C of each temperature-dependent characteristic becomes equal, so this temperature-dependent characteristic value C is eliminated from the difference output ΔV shown by equation (3). Therefore, when measuring the test liquid 18, accurate ion measurement is possible regardless of temperature.

ところで、上記各ソース・ドレイン電流Id3
d4は第5図におけるa1,b1点の値が低すぎると
ノイズが入りやすく、つまり信号対雑音比(SN
比)が悪くなり、高すぎると生体のイオン測定に
おいて危険性、発熱、電池寿命などに支障をきた
すから、5μA〜1mAであることが好ましい。
とくに、生体中で長時間安定に使用するには、20
μA〜600μAが最適である。また、第5図の
a2,b2点の値に設定して測定する場合には、C点
の値が極端に大きくならなければよく、通常
5mV/℃であればよい。
By the way, each of the above source/drain currents I d3 ,
If the value of I d4 at point a 1 and b 1 in Fig. 5 is too low, noise will easily enter, that is, the signal-to-noise ratio (SN
If it is too high, it will cause danger in biological ion measurement, heat generation, and shorten battery life, so it is preferably 5 μA to 1 mA.
In particular, for long-term stable use in vivo, 20
μA to 600 μA is optimal. Also, in Figure 5
When measuring by setting the values at two points a 2 and b, the value at point C does not need to be extremely large;
It is sufficient if it is 5mV/℃.

この発明は以上詳述したように、センサゲート
と比較電極ゲートにおけるゲート電位の温度依存
特性を消去して、被検液やガスの正確な測定が可
能なイオンセンサ用測定回路を提供することがで
きる。
As described in detail above, the present invention provides a measurement circuit for an ion sensor that can eliminate the temperature dependence characteristics of the gate potential at the sensor gate and the reference electrode gate, and can accurately measure the sample liquid or gas. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はイオンセンサの一例を示す平面図、第
2図は第1図のA―A線に沿う断面図、第3図は
従来のイオンセンサ用測定回路の一例を示す回路
図、第4図はこの発明に係るイオンセンサ用測定
回路の一例を示す電気回路図、第5図は第4図の
作動を説明するための特性図である。 2……共通ドレイン、3……比較電極ソース、
4……センサソース、5……基準電極、11……
センサゲート、12……比較電極ゲート、22…
…減算回路、25,26……電流制御器。
FIG. 1 is a plan view showing an example of an ion sensor, FIG. 2 is a sectional view taken along the line AA in FIG. 1, FIG. 3 is a circuit diagram showing an example of a conventional measurement circuit for an ion sensor, and FIG. The figure is an electric circuit diagram showing an example of the measurement circuit for an ion sensor according to the present invention, and FIG. 5 is a characteristic diagram for explaining the operation of FIG. 4. 2... Common drain, 3... Reference electrode source,
4...Sensor source, 5...Reference electrode, 11...
Sensor gate, 12... Comparison electrode gate, 22...
...Subtraction circuit, 25, 26...Current controller.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁ゲート形電界効果トランジスタ構造のセ
ンサゲート、比較電極ゲートおよび基準電極をも
つたイオンセンサと、上記各ゲートのゲート電位
と基準電極の界面電位の差出力を取り出す減算回
路とを備えたイオンセンサ用測定回路において、
上記センサの各ソースに流れるソース・ドレイン
電流を制御する電流制御器を設け、上記基準電極
に対するセンサの温度依存特性と、上記基準電極
に対する比較電極の温度依存特性とが等しくなる
ように上記電流制御器を操作してその温度依存特
性を消去し得るように構成したことを特徴とする
イオンセンサ用測定回路。
1. An ion sensor comprising an ion sensor having a sensor gate of an insulated gate field effect transistor structure, a comparison electrode gate, and a reference electrode, and a subtraction circuit for extracting the difference output between the gate potential of each gate and the interface potential of the reference electrode. In the measurement circuit for
A current controller is provided to control the source-drain current flowing through each source of the sensor, and the current is controlled so that the temperature dependence characteristic of the sensor with respect to the reference electrode is equal to the temperature dependence characteristic of the comparison electrode with respect to the reference electrode. 1. A measurement circuit for an ion sensor, characterized in that it is configured such that its temperature dependent characteristics can be erased by operating the device.
JP5690180A 1980-04-28 1980-04-28 Measuring circuit for ion sensor Granted JPS56153247A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5690180A JPS56153247A (en) 1980-04-28 1980-04-28 Measuring circuit for ion sensor
GB8112795A GB2077439B (en) 1980-04-28 1981-04-24 Compensating temperature-dependent characteristic changes in ion-sensitive fet transducers
US06/257,605 US4385274A (en) 1980-04-28 1981-04-27 Method and device for compensating temperature-dependent characteristic change in ion-sensitive FET transducer
DE19813116884 DE3116884A1 (en) 1980-04-28 1981-04-28 METHOD AND CIRCUIT FOR MEASURING ION ACTIVITY IN LIQUIDS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5690180A JPS56153247A (en) 1980-04-28 1980-04-28 Measuring circuit for ion sensor

Publications (2)

Publication Number Publication Date
JPS56153247A JPS56153247A (en) 1981-11-27
JPS6260662B2 true JPS6260662B2 (en) 1987-12-17

Family

ID=13040348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5690180A Granted JPS56153247A (en) 1980-04-28 1980-04-28 Measuring circuit for ion sensor

Country Status (1)

Country Link
JP (1) JPS56153247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587062U (en) * 1992-04-22 1993-11-22 松下電工株式会社 Embedded hand wash

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171852A (en) * 1983-03-22 1984-09-28 Nec Corp Semiconductor ion sensor
JPS6029657A (en) * 1983-07-28 1985-02-15 Mitsubishi Electric Corp Glucose sensor
DE3480430D1 (en) * 1983-08-24 1989-12-14 Cordis Europ Apparatus for selectively measuring ions in a liquid
JPS61153559A (en) * 1984-12-27 1986-07-12 Mitsubishi Electric Corp Semiconductor enzyme sensor
JPS636350U (en) * 1986-06-25 1988-01-16
JP6506592B2 (en) * 2015-04-01 2019-04-24 日立オートモティブシステムズ株式会社 Sensor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587062U (en) * 1992-04-22 1993-11-22 松下電工株式会社 Embedded hand wash

Also Published As

Publication number Publication date
JPS56153247A (en) 1981-11-27

Similar Documents

Publication Publication Date Title
US4385274A (en) Method and device for compensating temperature-dependent characteristic change in ion-sensitive FET transducer
JP4801064B2 (en) Signal processing circuit including ion sensitive field effect transistors and method for monitoring fluid properties
US20130056353A1 (en) Ion sensitive detector
US7981264B2 (en) Drift calibration method and device for the potentiometric sensor
US7368917B2 (en) Electronic circuit for ion sensor with body effect reduction
Poghossian Determination of the pHpzc of insulators surface from capacitance–voltage characteristics of MIS and EIS structures
CA2572485A1 (en) Capteur pour la detection et/ou la mesure d'une concentration de charges electriques contenues dans une ambiance, utilisations et procede de fabrication correspondants.
US10900929B2 (en) PH value measuring device comprising in situ calibration means
JPH0376860B2 (en)
US7009376B2 (en) SnO2 ISFET device, manufacturing method, and methods and apparatus for use thereof
Wilhelm et al. pH sensor based on differential measurements on one pH-FET chip
US4879517A (en) Temperature compensation for potentiometrically operated ISFETS
JPS62130349A (en) Device for measuring concentration of substance in solution
JPS6260662B2 (en)
US20030214005A1 (en) A-C:H ISFET device, manufacturing method, and testing methods and apparatus thereof
TW465055B (en) Method and apparatus for measurement of temperature parameter of ISFET using amorphous silicon hydride as sensor membrane
US5602467A (en) Circuit for measuring ion concentrations in solutions
Khanna et al. Design and development of a novel high-transconductance pH-ISFET (ion-sensitive field-effect transistor)-based glucose biosensor
JP2021105564A (en) Ion sensor device
Yusof et al. pH sensing characteristics of silicon nitride thin film and silicon nitride-based ISFET sensor
JP3112599B2 (en) Ion sensor and ion measurement method
JPH05312778A (en) Ion concentration sensor
Yusoff et al. Design and characterization of cmos readout circuit for isfet and ise based sensors
Aslanzadeh et al. A differential low-power voltage-clamped ISFET topology for biomedical applications
JP2526689B2 (en) Semiconductor sensor and driving method thereof