JPH05311287A - Ferromagnetic cu type shape memory material and its production - Google Patents

Ferromagnetic cu type shape memory material and its production

Info

Publication number
JPH05311287A
JPH05311287A JP14211992A JP14211992A JPH05311287A JP H05311287 A JPH05311287 A JP H05311287A JP 14211992 A JP14211992 A JP 14211992A JP 14211992 A JP14211992 A JP 14211992A JP H05311287 A JPH05311287 A JP H05311287A
Authority
JP
Japan
Prior art keywords
powder body
alloy powder
mixed
pure
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14211992A
Other languages
Japanese (ja)
Inventor
Masato Asai
真人 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14211992A priority Critical patent/JPH05311287A/en
Publication of JPH05311287A publication Critical patent/JPH05311287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a material having superior magnetic properties and shape memory characteristics by mechanically alloying a mixture of Cu powder and Al powder, mixing the resulting alloy powder body and a Cu-Al-Mn alloy powder body in prescribed ratio, and then sintering the resulting powder mixture. CONSTITUTION:Respective powders of Cu and Al are mixed together with solvent into a composition consisting of, by atomic%, 20-30% and 70-80% Cu, and the resulting mixture is formed into a Cu-Al alloy powder body in a mixed and solid-state-joined state by a mechanical alloying method. Similarly, A Cu-Al- Mn alloy powder body having a composition consisting of 20-30% Al, 20-30% Mn, and 40-60% Cu is prepared. Subsequently, this Cu-Al-Mn alloy powder body is mixed with the above Cu-Al alloy powder body, and the resulting powder mixture is compacted and sintered into a mixed and compacted state, followed by working.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い強度と、それ自体
が強磁性を示し、且つ形状記憶特性を有し、スイッチ、
リレー等の電気的スイッチング装置や温度感知センサー
及び制御機構と通電機構とを一体化させた装置や精密微
細加工や組立等を行うのに適した産業機械やロボット等
の制御に用いられる磁気記録材料等に利用される強磁性
Cu系形状記憶材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a switch which has high strength, exhibits ferromagnetism by itself, and has shape memory characteristics.
A magnetic recording material used for controlling industrial machinery, robots, etc. suitable for performing precision microfabrication, assembly, etc., an electrical switching device such as a relay, a temperature sensing sensor, a device in which a control mechanism and an energizing mechanism are integrated. The present invention relates to a ferromagnetic Cu-based shape memory material used for the above.

【0002】[0002]

【従来の技術】従来より、機械加工や組立はその精度向
上や低コスト化を目指してきているが、近年の微細化技
術の要求や高機能性化への要求に伴い、その精度や低コ
ストへの傾斜が著しく進んでいる。このような状況に於
いて、これらの要求を成し遂げる手段として、産業機械
やロボット等の位置精度機能の高度化が考えられてい
る。その為には、位置精度の高性能化が要求されるが、
従来この分野で用いられている位置制御機能付シリンダ
は、シリンダ外周の目盛と検知センサの組合せによりス
トローク制御されているが、構造が複雑で小型化や低コ
スト化に対処する事が難しい。これに対して、機械ノッ
チ式を用いてシリンダ内のピストンロッドに磁気記録目
盛を設置し、構造の簡素化をはかったものが出てきた
が、この方式ではピストンロッドとしての強度低下や磁
気目盛としての磁気特性の不足等がもたらされている。
2. Description of the Related Art Conventionally, machining and assembling have been aimed at improving accuracy and cost reduction. However, due to recent demands for miniaturization technology and high functionality, the accuracy and cost reduction are required. The slope to is significantly advanced. In such a situation, as a means to achieve these requirements, the sophistication of the position accuracy function of industrial machines and robots is considered. For that purpose, high performance of position accuracy is required,
Conventionally, a cylinder with a position control function used in this field is stroke-controlled by a combination of a scale on the outer circumference of the cylinder and a detection sensor, but it is difficult to cope with downsizing and cost reduction due to its complicated structure. On the other hand, a mechanical notch type was used to install a magnetic recording scale on the piston rod in the cylinder to simplify the structure, but with this method, the strength of the piston rod is reduced and the magnetic scale is reduced. As a result, there is a lack of magnetic properties.

【0003】又、電気電子制御機器の一種であるリレー
装置と電気電子機器の通電部分とは個別に電気電子機器
に組込まれて使用されてきているために、近年の小型
化、高性能化の要求に対して、これらの装置の高機能に
於ける集約が望まれていたが、電流キャパシティや発熱
等の種々の問題が山積みしており、その実現が難しく成
されていないのが現状である。
In addition, since the relay device, which is a type of electric / electronic control device, and the energizing portion of the electric / electronic device have been separately incorporated into the electric / electronic device for use, the size and performance have been improved in recent years. In order to meet the demand, it was desired to integrate these devices with high functionality, but various problems such as current capacity and heat generation are piled up, and it is currently difficult to realize them. is there.

【0004】[0004]

【発明が解決しようとする課題】本発明は、かかる状況
に鑑み位置精度の高性能化が求められ、且つ小型化を要
求される加工機械や各種ロボット等の進化に対して十分
なクオリティをもたらすのに不可欠な小型、高性能な位
置制御機能を付与すると共に、電気電子制御機器と電気
電子機器通電部とを一体化し、電子機器の小型、高性能
化を成し遂げることの出来る強磁性と形状記憶特性を併
せ持つ材料を開発しようとするものである。
In view of the above situation, the present invention provides sufficient quality for the evolution of processing machines, various robots, etc., which are required to have high position accuracy and high size. Ferromagnetism and shape memory that can achieve the miniaturization and high performance of electronic equipment by integrating the electric and electronic control equipment and the energization part of electric and electronic equipment while giving the small and high-performance position control function indispensable to The aim is to develop a material that also has properties.

【0005】[0005]

【課題を解決するための手段】本発明は、精密微細加工
や組立等を行うのに適した産業機械やロボット等に高精
度で小型化が可能な位置制御機能を付与する磁気記録材
料として、また電気電子機器の小型、高性能化に適した
強磁性体材料として、さらに電気的、磁気的及び温度的
に切替を行うスイッチやセンサー等の小型、高性能化に
適した材料として強磁性を有するCu系形状記憶材料と
その製造方法を開発したものである。
The present invention provides a magnetic recording material for imparting a position control function capable of miniaturization with high accuracy to an industrial machine, robot or the like suitable for performing precision microfabrication and assembly. In addition, as a ferromagnetic material suitable for miniaturization and high performance of electrical and electronic equipment, ferromagnetism is used as a material suitable for miniaturization and high performance of switches, sensors, etc. that switch electrically, magnetically, and temperature. The present invention is to develop a Cu-based shape memory material and a manufacturing method thereof.

【0006】即ち第1の発明は、Al20〜30at%、
Cu70〜80at%からなるCu−Al合金粉末体とA
l20〜30at%、Mn20〜30at%、Cu40〜6
0at%からなるCu−Al−Mn合金粉末体とが混合固
結状態となっていることを特徴とする強磁性Cu系形状
記憶材料であり、第2、第3の発明は上記第1の発明で
ある強磁性Cu系形状記憶材料の製造方法に関するもの
でその1つは、純Cu粉末体と純Al粉末体とをAl2
0〜30at%、Cu70〜80at%の組成になるように
溶剤と共に混合した後、機械合金化法により、混合固相
接合状態となしたCu−Al合金粉末体と、純Cu粉末
体と純Al粉末体と純Mn粉末体とをAl20〜30at
%、Mn20〜30at%、Cu40〜60at%の組成に
なるように溶剤と共に混合した後、機械合金化法により
混合固相接合状態となしたCu−Al−Mn合金粉末体
とを、所定の配合比で混合し、加圧して固化成形し、焼
結して混合固結状態とした後加工することを特徴とする
強磁性Cu系記憶材料の製造方法であり、他の一つは、
Al20〜30at%、Cu70〜80at%からなる合金
溶湯を急冷凝固させることにより形成したCu−Al合
金粉末体と、Al20〜30at%、Mn20〜30at
%、Cu40〜60at%からなる合金溶湯を急冷凝固さ
せることにより形成したCu−Al−Mn合金粉末体と
を所定の配合比で混合し、加圧して固化成形し、焼結し
て混合固結状態とした後加工することを特徴とする強磁
性Cu系記憶材料の製造方法である。
That is, the first invention is 20 to 30 at% Al,
Cu-Al alloy powder body consisting of 70-80 at% Cu and A
120 to 30 at%, Mn to 20 to 30 at%, Cu 40 to 6
A ferromagnetic Cu-based shape memory material characterized by being mixed and solidified with a Cu-Al-Mn alloy powder body consisting of 0 at%. The second and third inventions are the above-mentioned first invention. And a pure Cu powder body and a pure Al powder body as Al2.
After mixing with a solvent so as to have a composition of 0 to 30 at% and Cu of 70 to 80 at%, a Cu-Al alloy powder body, a pure Cu powder body, and a pure Al, which were brought into a mixed solid phase bonding state by a mechanical alloying method. 20 to 30 at Al of the powder body and the pure Mn powder body
%, Mn 20 to 30 at%, Cu 40 to 60 at% and a Cu-Al-Mn alloy powder body mixed into a solid phase joined state by a mechanical alloying method after being mixed with a solvent in a predetermined composition. A method of manufacturing a ferromagnetic Cu-based memory material, which comprises mixing in a ratio, pressurizing to solidify, and sintering to make a mixed and consolidated state, and then processing.
A Cu-Al alloy powder body formed by rapidly solidifying an alloy melt consisting of Al 20 to 30 at% and Cu 70 to 80 at%, Al 20 to 30 at%, and Mn 20 to 30 at
%, And Cu-Al-Mn alloy powder body formed by quenching and solidifying an alloy melt composed of 40 to 60 at% Cu, mixed at a predetermined mixing ratio, pressed and solidified, sintered and mixed to consolidate. This is a method for manufacturing a ferromagnetic Cu-based memory material, which is characterized in that it is processed after being brought into a state.

【0007】[0007]

【作用】まず、本発明強磁性Cu系形状記憶材料を上記
のような構成にした理由について述べる。本発明は強磁
性を有するCu−Al−Mn合金粉末体と、形状記憶特
性を有するCu−Al合金粉末体とを混合固結状態にす
ることにより、強磁性と形状記憶特性を併せ有する材料
としたものである。そして、Cu−Al−Mn合金粉末
体の組成を上記のように限定したのはCu−Al−Mn
合金はCu2 AlMnなる原子比の構造体近傍の組成で
顕著な強磁性を示すことから、at%で表示してAl20
〜30at%、Mn20〜30at%、Cu40〜60at%
と限定したものである。またCu−Al合金粉末体の組
成を上記のように限定したのはCu−Al合金はCu3
Alなる原子比の構造体近傍の組成で良好な形状記憶特
性を示すことからat%で表示してAl20〜30at%、
Cu70〜80at%と限定したものである。
First, the reason why the ferromagnetic Cu-based shape memory material of the present invention is constructed as described above will be described. The present invention provides a material having both ferromagnetism and shape memory characteristics by mixing and consolidating a Cu—Al—Mn alloy powder body having ferromagnetism and a Cu—Al alloy powder body having shape memory characteristics. It was done. And, the composition of the Cu-Al-Mn alloy powder body is limited as described above because it is Cu-Al-Mn.
Since the alloy exhibits remarkable ferromagnetism in the composition near the structure having an atomic ratio of Cu 2 AlMn, it is expressed as at% and Al 20
~ 30at%, Mn20-30at%, Cu40-60at%
Is limited. The composition of the Cu-Al alloy powder body is limited as described above because the Cu-Al alloy is Cu 3
Since the composition in the vicinity of the structure having an atomic ratio of Al exhibits good shape memory characteristics, it is expressed as at% and Al is 20 to 30 at%,
Cu is limited to 70 to 80 at%.

【0008】Cu−Al−Mn合金粉末体とCu−Al
合金粉末体との配合比率は強磁性を重要視する用途には
前者を多くし、形状記憶特性を重要視する用途には後者
を多くするのが好ましく、これらの配合比率は体積比率
で、Cu−Al合金/Cu−Mn−Al合金を30/7
0〜70/30の割合の範囲で変えることが可能であ
る。
Cu-Al-Mn alloy powder and Cu-Al
It is preferable that the compounding ratio with the alloy powder body is increased in the former for applications where importance is placed on ferromagnetism, and is increased in the latter for applications where importance is attached to shape memory properties. -Al alloy / Cu-Mn-Al alloy 30/7
It can be changed in the range of 0 to 70/30.

【0009】次に本発明の製造方法について説明する。
本発明材料を通常の溶解、鋳造により製造することは極
めて困難であり、発明者は次の2つの製造方法を開発し
た。その一つは純Cu粉末と、純Al粉末と純Mn粉末
とを所定の比率で配合し、これらを結合助成剤としての
溶剤(ステアリン酸、エーテル等)と共に混合し、その
混合物をアトライターなどの高エネルギーボールミルを
用い、Ar等の不活性雰囲気中で混練して機械的エネル
ギーを与えることにより機械合金化(mechanial alloyi
ng)してCu−Al−Mn合金粉末体とし、このCu−
Al−Mn合金粉末体と純Cu粉末と純Al粉末とから
同様な方法で機械合金化したCu−Al合金粉末体とを
所定の配合比で混合し、加圧して固化成形した後、焼結
して混合固結状態とした後、圧延等の加工方法により所
望の形状の強磁性Cu系形状記憶材料とするものであ
る。ここで用いる純金属粉は粒径100μm以下が望ま
しい。
Next, the manufacturing method of the present invention will be described.
It is extremely difficult to manufacture the material of the present invention by ordinary melting and casting, and the inventor has developed the following two manufacturing methods. One of them is to mix pure Cu powder, pure Al powder and pure Mn powder in a predetermined ratio, and mix them with a solvent (stearic acid, ether, etc.) as a binding promoter, and mix the mixture with an attritor or the like. Mechanical energy by kneading in an inert atmosphere such as Ar and applying mechanical energy using a high energy ball mill
ng) to form a Cu-Al-Mn alloy powder,
An Al-Mn alloy powder body, a pure Cu powder, and a Cu-Al alloy powder body mechanically alloyed from a pure Al powder by the same method are mixed at a predetermined mixing ratio, pressurized and solidified, and then sintered. After the mixed and consolidated state is obtained, a ferromagnetic Cu-based shape memory material having a desired shape is obtained by a processing method such as rolling. The pure metal powder used here preferably has a particle size of 100 μm or less.

【0010】他の1つは所定の配合比率のCu、Al、
MnまたはCu、Alを含有する合金溶湯をアトマイズ
法等により急冷凝固させて、Cu−Al−Mn合金粉末
体と、Cu−Al合金粉末体を得、両者を所定の配合比
で混合し、この混合体を加圧して固化成形した後、焼結
して混合固結状態とした後、圧延等の加工方法により所
望の形状の強磁性Cu系形状記憶材料とするものであ
る。
The other one is Cu, Al in a predetermined mixing ratio,
A molten alloy containing Mn, Cu, or Al is rapidly solidified by an atomizing method or the like to obtain a Cu-Al-Mn alloy powder body and a Cu-Al alloy powder body, and both are mixed at a predetermined mixing ratio. After the mixture is pressed and solidified, it is sintered to be in a mixed and solidified state, and then a ferromagnetic Cu-based shape memory material having a desired shape is formed by a processing method such as rolling.

【0011】[0011]

【実施例】次に本発明を実施例により更に詳細に説明す
る。 〔実施例1〕表1に示す組成となるように、純Cu粉
末、純Al粉末、純Mn粉末を配合して混合し、溶剤と
して、ステアリン酸と共に湿式アトライターの容器に装
入し、常温で攪拌して機械的エネルギーを与えて、Cu
2 MnAl近傍組成のCu−Al−Mn合金粉末体を得
た。また純Cu粉末、純Al粉末とから同様な方法で表
1に示す組成のCu3 Al近傍組成のCu−Al合金粉
末体を得た。この両者を表1に示す配合比で混合し攪拌
し、700℃、20MPa の条件で加圧焼結して板厚5mm
の板材を作製した後、この板材を350℃に加熱し、2
0%の圧延加工により、板厚4mmの板材を得て、これを
供試材として用いて磁気特性、形状記憶特性を測定し表
1に示した。磁気特性については、磁気センサーを用い
てその磁気特性を測定し、純銅の特性との出力差を示し
た。形状記憶特性については、供試材より幅5mmの板材
を切り出し、これを面角度10度で曲げ加工した状態の
拘束条件下で100℃の熱処理により、形状記憶処理を
行い、続いて−40℃の低温環境下で試料形状を元に戻
した試料を加熱して、その形状が面角度10℃の母相形
状に回復するかどうかを調べた。完全に回復するものを
「○」、不完全ながら回復現象を見せるものを「△」、
回復しないものを×として判定した。
EXAMPLES The present invention will now be described in more detail by way of examples. [Example 1] Pure Cu powder, pure Al powder, and pure Mn powder were blended and mixed so as to have the composition shown in Table 1, and charged into a container of a wet attritor together with stearic acid as a solvent at room temperature. And give mechanical energy by stirring at
2 A Cu—Al—Mn alloy powder having a composition near MnAl was obtained. In addition, a pure Cu powder and a pure Al powder were used in the same manner to obtain a Cu—Al alloy powder body having a composition near Cu 3 Al and having a composition shown in Table 1. Both of them were mixed in the mixing ratio shown in Table 1, stirred, and pressure-sintered under the conditions of 700 ° C. and 20 MPa to obtain a plate thickness of 5 mm
After producing the plate material of No. 2, heat the plate material to 350 ° C., and
A plate material having a plate thickness of 4 mm was obtained by 0% rolling, and the magnetic property and the shape memory property were measured by using this as a test material and shown in Table 1. Regarding the magnetic characteristics, the magnetic characteristics were measured using a magnetic sensor, and the output difference from the characteristics of pure copper was shown. Regarding the shape memory characteristics, a plate material having a width of 5 mm was cut out from the test material, heat-treated at 100 ° C. under a restrained condition in which it was bent at a surface angle of 10 °, and then shape memory treatment was performed, and then at −40 ° C. In a low temperature environment, the sample whose shape was restored was heated, and it was examined whether or not the shape was recovered to the matrix phase shape with the face angle of 10 ° C. Those that completely recover are marked with "○", those that show a recovery phenomenon despite being incomplete are marked with "△",
Those that did not recover were judged as x.

【0012】[0012]

【表1】 [Table 1]

【0013】表1から明らかなように、本発明材No.1
〜No.3は、何れも優れた磁気特性と形状記憶特性を有
しており、比較材とした溶解法では、極めて製造困難な
材料を比較的容易に得る事が出来る事が判る。尚、比較
材No.4では、大気溶解鋳造では健全な鋳塊が得られ
ず、不活性ガス雰囲気中で脱ガス処理を行う方法により
鋳塊を得たが、その後の熱間加工時に割れを生じてしま
い供試材を作製出来ず特性評価を行う事が出来なかっ
た。
As is clear from Table 1, the material of the present invention No. 1
~ No. No. 3 has excellent magnetic characteristics and shape memory characteristics, and it can be understood that a material which is extremely difficult to manufacture can be relatively easily obtained by the melting method as a comparative material. Comparative material No. In No. 4, a sound ingot was not obtained by atmospheric melting casting, and an ingot was obtained by a method of performing degassing treatment in an inert gas atmosphere, but cracks occurred during the subsequent hot working, and the test material Could not be manufactured and the characteristics could not be evaluated.

【0014】[0014]

【実施例2】表2に示す各組成の合金溶湯をArガスを
用いたガスアトマイズ法により急冷凝固させ、Cu−A
l合金粉末体と、Cu−Al−Mn合金粉末とを得た。
両者を実施例1と同様の条件で混合、加圧成形し、焼結
して板厚5mmの板材を作製し、この板材を350℃に加
熱し、20%の圧延加工により板厚4mmの板材を得て、
これを供試材として実施例1と同様な方法で磁気特性、
形状記憶特性を測定し、表2に併記した。
Example 2 A molten alloy having each composition shown in Table 2 was rapidly cooled and solidified by a gas atomizing method using Ar gas to obtain Cu-A.
l alloy powder body and Cu-Al-Mn alloy powder were obtained.
Both were mixed under the same conditions as in Example 1, pressure-molded, and sintered to produce a plate material having a plate thickness of 5 mm. The plate material was heated to 350 ° C. and rolled by 20% to obtain a plate material having a plate thickness of 4 mm. Got
Using this as a test material, magnetic properties were measured in the same manner as in Example 1,
The shape memory characteristics were measured and are also shown in Table 2.

【0015】[0015]

【表2】 [Table 2]

【0016】表2から明らかなように本発明材No.5、
6は何れも優れた磁気特性と形状記憶特性を有している
ことが判る。
As apparent from Table 2, the material No. 5,
It can be seen that all of 6 have excellent magnetic characteristics and shape memory characteristics.

【0017】[0017]

【発明の効果】このように本発明によれば、優れた磁気
特性と形状記憶特性を有する材料を、容易に得る事が可
能で、高性能且つ小型化が望まれている産業機械やロボ
ット等の位置制御機能をもつ磁気記録材を提供する事が
出来、更には、電気電子制御機器と電気電子機器通電部
とを一体化、電子機器の小型、高性能化を成し遂げる事
が可能な材料を提供するものであり、工業上顕著な効果
を奏するものである。
As described above, according to the present invention, it is possible to easily obtain a material having excellent magnetic characteristics and shape memory characteristics, and high performance and miniaturization of industrial machines, robots, etc. It is possible to provide a magnetic recording material having a position control function of the above. Furthermore, by integrating the electric / electronic control device and the electric / electronic device current-carrying part, a material that can achieve miniaturization and high performance of the electronic device can be obtained. It is provided, and has a remarkable industrial effect.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Al20〜30at%、Cu70〜80at
%からなるCu−Al合金粉末体とAl20〜30at
%、Mn20〜30at%、Cu40〜60at%からなる
Cu−Al−Mn合金粉末体とが混合固結状態となって
いることを特徴とする強磁性Cu系形状記憶材料。
1. Al 20 to 30 at%, Cu 70 to 80 at
% Cu-Al alloy powder and Al 20-30 at
%, Mn 20 to 30 at% and Cu 40 to 60 at% Cu-Al-Mn alloy powder body in a mixed and consolidated state, a ferromagnetic Cu-based shape memory material.
【請求項2】 純Cu粉末体と純Al粉末体とをAl2
0〜30at%、Cu70〜80at%の組成になるように
溶剤と共に混合した後、機械合金化法により、混合固相
接合状態となしたCu−Al合金粉末体と、純Cu粉末
体と純Al粉末体と純Mn粉末体とをAl20〜30at
%、Mn20〜30at%、Cu40〜60at%の組成に
なるように溶剤と共に混合した後、機械合金化法により
混合固相接合状態となしたCu−Al−Mn合金粉末体
とを、所定の配合比で混合し、加圧して固化成形し、焼
結して混合固結状態とした後加工することを特徴とする
強磁性Cu系記憶材料の製造方法。
2. A pure Cu powder body and a pure Al powder body are mixed with Al2.
After mixing with a solvent so as to have a composition of 0 to 30 at% and Cu of 70 to 80 at%, a Cu-Al alloy powder body, a pure Cu powder body, and a pure Al, which were brought into a mixed solid phase bonding state by a mechanical alloying method. 20 to 30 at Al of the powder body and the pure Mn powder body
%, Mn 20 to 30 at%, Cu 40 to 60 at% and a Cu-Al-Mn alloy powder body mixed into a solid phase joint state by a mechanical alloying method after mixing with a solvent in a predetermined composition. A method for manufacturing a ferromagnetic Cu-based memory material, which comprises mixing in a ratio, pressurizing to solidify, and sintering to obtain a mixed and consolidated state, and then processing.
【請求項3】 Al20〜30at%、Cu70〜80at
%からなる合金溶湯を急冷凝固させることにより形成し
たCu−Al合金粉末体と、Al20〜30at%、Mn
20〜30at%、Cu40〜60at%からなる合金溶湯
を急冷凝固させることにより形成したCu−Al−Mn
合金粉末体とを所定の配合比で混合し、加圧して固化成
形し、焼結して混合固結状態とした後加工することを特
徴とする強磁性Cu系記憶材料の製造方法。
3. Al 20 to 30 at%, Cu 70 to 80 at
%, A Cu-Al alloy powder body formed by quenching and solidifying a molten alloy containing 10% Al, 20 to 30 at% Al, and Mn.
Cu-Al-Mn formed by rapid solidification of molten alloy consisting of 20 to 30 at% and Cu to 60 at%
A method for producing a ferromagnetic Cu-based memory material, which comprises mixing an alloy powder body in a predetermined mixing ratio, pressurizing, solidifying and molding, sintering and mixing to obtain a mixed and consolidated state, and then processing.
JP14211992A 1992-05-06 1992-05-06 Ferromagnetic cu type shape memory material and its production Pending JPH05311287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14211992A JPH05311287A (en) 1992-05-06 1992-05-06 Ferromagnetic cu type shape memory material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14211992A JPH05311287A (en) 1992-05-06 1992-05-06 Ferromagnetic cu type shape memory material and its production

Publications (1)

Publication Number Publication Date
JPH05311287A true JPH05311287A (en) 1993-11-22

Family

ID=15307851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14211992A Pending JPH05311287A (en) 1992-05-06 1992-05-06 Ferromagnetic cu type shape memory material and its production

Country Status (1)

Country Link
JP (1) JPH05311287A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371295B2 (en) 2003-03-18 2008-05-13 Honda Motor Co., Ltd. Shape memory alloy and method for producing same
US8784728B2 (en) * 2006-12-05 2014-07-22 The Boeing Company Micro-grained, cryogenic-milled copper alloys and process
US8795585B2 (en) * 2006-12-05 2014-08-05 The Boeing Company Nanophase cryogenic-milled copper alloys and process
JP2020037715A (en) * 2018-09-03 2020-03-12 株式会社古河テクノマテリアル Copper alloy material and method for producing the same, and member or component composed of copper alloy material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371295B2 (en) 2003-03-18 2008-05-13 Honda Motor Co., Ltd. Shape memory alloy and method for producing same
US8784728B2 (en) * 2006-12-05 2014-07-22 The Boeing Company Micro-grained, cryogenic-milled copper alloys and process
US8795585B2 (en) * 2006-12-05 2014-08-05 The Boeing Company Nanophase cryogenic-milled copper alloys and process
JP2020037715A (en) * 2018-09-03 2020-03-12 株式会社古河テクノマテリアル Copper alloy material and method for producing the same, and member or component composed of copper alloy material
WO2020050175A1 (en) * 2018-09-03 2020-03-12 株式会社古河テクノマテリアル Copper-based alloy material, production method therefor, and member or part formed from copper-based alloy material
US11959161B2 (en) 2018-09-03 2024-04-16 Furukawa Techno Material Co., Ltd. Copper-based alloy material, production method therefor, and members or parts made of copper-based alloy material

Similar Documents

Publication Publication Date Title
CN101238530B (en) Rear earth alloy binderless magnet and method for manufacture thereof
US7604468B2 (en) Press machine and method for producing magnet
JP4618553B2 (en) Method for producing RTB-based sintered magnet
JP5273039B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6447380B2 (en) SmFeN-based metal bond magnet compact with high specific resistance
JP7020051B2 (en) Magnet joint
EP0342296A1 (en) Forming and sintering a powder mixture containing Al or Cu
JPH05311287A (en) Ferromagnetic cu type shape memory material and its production
JPS5920445A (en) Electrical contact material made of silver-tin oxide type composite sintered alloy containing dispersed tin oxide particle and solidified from liquid phase and its manufacture
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPH06316745A (en) Production of r-fe-b series sintered magnet by injection molding method
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
JPH01111303A (en) Manufacture of rare earth magnet
JPH07211566A (en) Manufacture of anisotropic magnet
JP2679267B2 (en) Manufacturing method of brazing material
JP2735132B2 (en) Manufacturing method of high density Elinvar type Fe-based sintered alloy
JPH06256912A (en) Production of ultra-magnetostrictive sintered compact having high magnetostrictive property
JP3338590B2 (en) Method for producing R-Fe-B based sintered magnet by injection molding method
JPS5938301A (en) Manufacture of sintered ag-w contact
JP2005068483A (en) Production method for sintered compact of mn-based high-damping alloy
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPS63118031A (en) Manufacture of permanent magnet alloy
JP2639812B2 (en) Magnetic alloy powder for sintering
JP2021014624A (en) Sinterable metal powder and metal member molding method using sinterable metal powder