JPH0530908B2 - - Google Patents

Info

Publication number
JPH0530908B2
JPH0530908B2 JP22903684A JP22903684A JPH0530908B2 JP H0530908 B2 JPH0530908 B2 JP H0530908B2 JP 22903684 A JP22903684 A JP 22903684A JP 22903684 A JP22903684 A JP 22903684A JP H0530908 B2 JPH0530908 B2 JP H0530908B2
Authority
JP
Japan
Prior art keywords
carrier gas
container
wall
gas
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22903684A
Other languages
Japanese (ja)
Other versions
JPS61110766A (en
Inventor
Harutoneru Heorugu
Herotsushe Herumuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JPS61110766A publication Critical patent/JPS61110766A/en
Publication of JPH0530908B2 publication Critical patent/JPH0530908B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material

Description

【発明の詳細な説明】 本発明は、小さな固体粒子形態で存する僅かに
揮発性である材料または混合材料の蒸気でキヤリ
ヤーガスまたは混合キヤリヤーガスを富化する装
置であつて、キヤリヤーガスの入口と富化された
キヤリヤーガスの出口とを備えた、上記材料また
は混合材料を受け入れるための加熱自在の内部空
間を有する容器と、上記装置の操作中にキヤリヤ
ーガスが上記材料または混合材料を介して流れる
ように上記内部空間内に開口するパイプとを備え
た装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an apparatus for enriching a carrier gas or mixed carrier gas with a vapor of a slightly volatile material or mixture of materials existing in the form of small solid particles. a receptacle having a heatable interior space for receiving said material or mixture of materials, with an outlet for said carrier gas, and said interior space for said carrier gas to flow through said material or mixture of materials during operation of said apparatus; The present invention relates to a device having a pipe that opens inward.

かかる装置は西独国特許出願公開第3136895号
公報に開示されている。既知の装置は、蓋を有す
る蒸発容器から成る。蒸発容器の内部には篩があ
り、装置の操作中には出発材料がこの篩上に粉末
形態で存在する。蒸発容器内の篩の下若しくはこ
の近傍には加熱装置が設けられている。キヤリヤ
ーガス貯蔵容器から流入路が蒸発容器に導かれ、
該流入路は篩の下で開口されている。蒸発容器の
内部空間から、篩の上方において蒸気流出路が反
応器に導かれ、ここで気相からの反応堆積
(reactive deposition)が起こり、これにより
CVD−法が達成される。
Such a device is disclosed in German Patent Application No. 31 36 895. The known device consists of an evaporation vessel with a lid. Inside the evaporation vessel there is a sieve, on which the starting material is present in powder form during operation of the device. A heating device is provided below or near the sieve in the evaporation vessel. An inlet is led from the carrier gas storage vessel to the evaporation vessel;
The inflow channel is opened below the sieve. From the interior space of the evaporation vessel, above the sieve, a vapor outlet is led into the reactor, where reactive deposition from the gas phase takes place, whereby
CVD-method is accomplished.

本発明をなすに至つた研究は、特に夫々希土類
金属(−B−金属)および希土類金属化合物
(−B−化合物)、また特にトリウムおよびトリ
ウム化合物を気相から反応堆積させる為のガスで
キヤリヤーガスを富化させることに関するもので
ある。CVD法に関する当該出発化合物は一般に
室温では粉末形態で金属有機化合物として存在す
るが、僅かな熱で既に少しばかり揮発性となるも
のも僅かにあるため、出発化合物は層が堆積され
るべき基板上にキヤリヤーガスによつて移行され
る。キヤリヤーガス、好ましくは希ガス、特にア
ルゴンは飽和器を径由して流される。尚、この飽
和器は粉末形態で出発化合物が満され、適温まで
加熱される。
The research which has led to the present invention is particularly relevant to the use of carrier gases with gases for the reactive deposition of rare earth metals (-B-metals) and rare earth metal compounds (-B-compounds), respectively, and in particular thorium and thorium compounds from the gas phase. It is about enrichment. The starting compounds in question for the CVD method are generally present as metal-organic compounds in powder form at room temperature, but some of them are already slightly volatile at slight heat, so that the starting compounds are present on the substrate on which the layer is to be deposited. is transferred by a carrier gas. A carrier gas, preferably a noble gas, especially argon, is passed through the saturator. The saturator is filled with the starting compound in powder form and heated to an appropriate temperature.

西独国特許出願公開第3136895号に開示されて
いる装置は、ガス形成性材料内を通過するガスの
流路が極めて短いという欠点を有し、従つて
CVD−法に関する反応ガスの収率およびガス流
中の濃度が夫々低くなる。
The device disclosed in DE 31 36 895 has the disadvantage that the gas flow path through the gas-forming material is very short and therefore
The yield and the concentration of the reaction gas in the gas stream for the CVD process are respectively lower.

本発明の目的は、一番最初に述べた装置で、特
に、長い流路を有する飽和器を提供することにあ
る。本発明においてこの目的は、容器が着脱自在
の緊密に嵌合する金属部材を有し、少なくとも1
つの溝が該金属部材の少なくとも一方の外壁に設
けられ、かつ該外壁が、溝により上記内部空間が
形成されるように容器内壁と接触することにより
達成される。
It is an object of the invention to provide a device as mentioned at the outset, in particular a saturator with a long flow path. In the present invention, this object is achieved by the container having a removable, tight-fitting metal member, and at least one
This is achieved by providing two grooves in the outer wall of at least one of the metal members, and the outer wall being in contact with the inner wall of the container such that the inner space is formed by the grooves.

出来るだけ長い流路を達成するためには、溝を
出来るだけ長くしなければならない。このために
は、溝が渦巻き状に巻回されているか若しくはジ
グサグまたは曲折状であるのが有利である。
In order to achieve the longest possible flow path, the grooves must be made as long as possible. For this purpose, it is advantageous for the grooves to be spirally wound or zig-sag or meander-shaped.

溝が設けられた金属部材の外壁は容器の底部と
接触するのが好ましい。このことから、好ましく
は溝は金属部材の下方側に設けられることにな
る。しかし、溝を金属部材の両側に設けることも
できる。
Preferably, the outer wall of the grooved metal member is in contact with the bottom of the container. For this reason, the groove is preferably provided on the lower side of the metal member. However, the grooves can also be provided on both sides of the metal part.

材料または混合材料の粒子がキヤリヤーガスに
同伴されるのを回避するために、ガス出口と内部
空間との間にガス透過性部材を設けるのが有利で
ある。
In order to avoid particles of the material or mixed materials being entrained in the carrier gas, it is advantageous to provide a gas permeable element between the gas outlet and the interior space.

本発明の装置は、該装置に微粒子蒸気形成性材
料または該材料の混合物で、例えば粉末を簡単に
充填することができるという利点を有する。例え
ば、本発明の飽和器にかかる材料を充填する場合
には、銅ブロツク下方側に形成された溝を、ちよ
うど十分量の粉末が充填されたV2Aステンレス
鋼のトレーまたはパンの底部に押しつける。操作
中のキヤリヤーガスは、このように充填された溝
を通過して流れる。渦巻き構造の溝は更に、渦巻
きの外方向への回転運動により、粉末による溝の
緻密充填が達成され、同時に底部接触面の接触が
実際に良好になるといつた利点を有する。
The device of the invention has the advantage that it can be easily filled with particulate vapor-forming materials or mixtures of materials, for example powders. For example, when filling the saturator of the present invention with such material, the groove formed on the lower side of the copper block is pressed against the bottom of a V2A stainless steel tray or pan that has just been filled with a sufficient amount of powder. . During operation, the carrier gas flows through the grooves thus filled. A spirally structured groove has the further advantage that, due to the outward rotational movement of the spiral, a close filling of the groove with powder is achieved and at the same time the contact of the bottom contact surface is actually good.

本発明の装置の更に他の利点は、金属部材を取
り除いた後にその部品を容易に洗浄することがで
きることである。
A further advantage of the apparatus of the invention is that the metal parts can be easily cleaned after removal.

次に本発明を図面を参照して実施例につき説明
する。
Next, the invention will be explained by way of example with reference to the drawings.

先ず、微細ガス形成性粉をステンレス鋼の容器
1に満たす。次いで、渦巻き溝3を有する緊密嵌
合式鋼ブロツク2を、かかる容器の底部側内にお
いて粉末上に緊固に押し付け、即ち流れのその後
の方向に対抗する回転運動によつてかかる押し付
けがなされ、また該ブロツク2をキヤリヤーガス
入口4に合わせピン(図示せず)によつて固定す
る。ガス出口5は鋼ブロツクの中央にあり、メツ
シユグリツドを備えかつこの前方にAl2O3羊毛状
物を設ける。この組合された篩により、粉末の放
散が防止される。
First, a stainless steel container 1 is filled with fine gas-forming powder. A close-fitting steel block 2 with a spiral groove 3 is then pressed tightly onto the powder within the bottom side of such a container, i.e. such pressing is done by a rotational movement counteracting the subsequent direction of flow, and The block 2 is fixed to the carrier gas inlet 4 with a dowel pin (not shown). The gas outlet 5 is located in the center of the steel block and is provided with a mesh grid and in front of this is provided with an Al 2 O 3 wool. This combined sieve prevents the scattering of powder.

他の銅インサート、例えば封止および出口装置
を有する中空シリンダ(図示せず)を銅ブロツク
2の上に設けることもでき、差込み手段(bayo
−net)による固定圧で飽和器のブロツク上に圧
締めすることもできる。この際、銅インサートと
飽和器ブロツクとの空間は他のCVD出発ガスに
対して混合室を形成する。しかる後この出口ノズ
ルを介して、被覆されるべき基板を反応器(図示
せず)内に設けることができる。
Other copper inserts, for example hollow cylinders (not shown) with sealing and exit devices, can also be provided on the copper block 2, with plug means (bayo
-net) can also be clamped onto the saturator block with a fixed pressure. In this case, the space between the copper insert and the saturator block forms a mixing chamber for the other CVD starting gases. Via this outlet nozzle, the substrate to be coated can then be placed into a reactor (not shown).

第2図は渦巻き状の溝3を有する金属部材2を
示し、また第3図は曲折状の溝3を有する金属部
材2を示す。尚、これらの図にはキヤリヤーガス
入口4と出口5が示されている。
FIG. 2 shows a metal part 2 with a spiral groove 3, and FIG. 3 shows a metal part 2 with a meandering groove 3. Note that the carrier gas inlet 4 and outlet 5 are shown in these figures.

飽和器および反応器の外壁はV2Aステンレス
鋼から成り、高空密となるように構成されてい
る。これらは、飽和器用と反応器および混合室用
の別々の加熱炉内に存在する。操作中は、後者を
飽和器よりも僅かに高い温度として、B出発化
合物の壁への堆積を回避する。一連のコーテイン
グの後、飽和器を清浄化することと、出発化合物
による充填物を新しいものと取りかえることは一
般に必要なことである。この理由は、使用された
粉末化金属有機出発化合物の多くは融点近くで解
離し始めているにもかかわらず、長時間の操作中
において実現できる最も高い蒸気圧を正確に有し
ていなければならないからである。更に、CVD
法の実施中に形成される攻撃的化合物(例えば
WF6およびHF)との接触によつて連続的分解が
起こる可能性があるからである。
The outer walls of the saturator and reactor are made of V2A stainless steel and are designed to be highly airtight. These are in separate furnaces for the saturator and the reactor and mixing chamber. During operation, the latter is at a slightly higher temperature than the saturator to avoid deposition of B starting compounds on the walls. After a series of coatings, it is generally necessary to clean the saturator and replace the charge of starting compound with a new one. The reason for this is that even though many of the powdered metal-organic starting compounds used begin to dissociate near their melting points, they must have exactly the highest vapor pressure that can be achieved during long-term operation. It is. Furthermore, CVD
Offensive compounds formed during the implementation of the law (e.g.
This is because continuous decomposition may occur upon contact with WF6 and HF).

清浄化するために、全集成装置を僅かな操作で
分解することができ、洗浄剤の希釈溶液を用いて
ブラシにより、次いで水とエタノールで洗浄する
ことにより清浄化することができる。
For cleaning, the entire assembly can be disassembled in a few steps and cleaned by brushing with a dilute solution of cleaning agent and then with water and ethanol.

飽和器の使用に際し、トリウムアセチルアセト
ネート(TR(AA)4)およびトリウムトリフルオ
ロアセチルアセトネート(Th(3FAA)4)を粉末
出発化合物として使用し、アルゴンをキヤリヤー
ガスとして使用した。Th(AA)4を充填する場合
の飽和器の温度は160±5℃とし、Th(3FAA)4
を充填する場合には100〜120℃とした。反応器の
温度は、飽和温度よりも20℃高くした。トリウム
含有層に関する堆積速度として約0.1〜0.4μm/
分が達成され、この値はTh(AA)4の場合には毎
回3コーテイングで大幅に低下し、またTh
(3FAA)4の場合には約6コーテイングまで実施
でき、この際コーテイング時間は高々4時間であ
つた。
When using the saturator, thorium acetylacetonate (TR(AA) 4 ) and thorium trifluoroacetylacetonate (Th(3FAA) 4 ) were used as powdered starting compounds and argon was used as the carrier gas. The temperature of the saturator when filling Th(AA) 4 is 160±5℃, and Th(3FAA) 4
When filling, the temperature was set at 100 to 120°C. The reactor temperature was 20°C above the saturation temperature. The deposition rate for the thorium-containing layer is approximately 0.1-0.4 μm/
minutes were achieved, and this value decreased significantly with each 3 coatings in the case of Th(AA) 4 , and also with Th(AA) 4.
(3FAA) In the case of 4 , up to about 6 coatings could be applied, and the coating time was 4 hours at most.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の1例飽和器の断面図、第2
図は、渦巻き状の溝を有する着脱自在の金属部材
(金属インサート)の1例構造を示す平面図、第
3図は、曲折状の溝を有する着脱自在の金属部材
(金属インサート)の別の1例構造を示す平面図
である。 1……容器、2……銅のブロツク、3……渦巻
き溝、4……キヤリヤーガス入口、5……ガス出
口。
FIG. 1 is a sectional view of an example saturator of the present invention, and FIG.
The figure is a plan view showing the structure of one example of a removable metal member (metal insert) having a spiral groove, and FIG. It is a top view showing one example structure. 1... Container, 2... Copper block, 3... Spiral groove, 4... Carrier gas inlet, 5... Gas outlet.

Claims (1)

【特許請求の範囲】 1 小さな固体粒子形態で存する僅かに揮発性で
ある材料または混合材料の蒸気でキヤリヤーガス
または混合キヤリヤーガスを富化する装置であつ
て、キヤリヤーガスの入口と富化されたキヤリヤ
ーガスの出口とを備えた、上記材料または混合材
料を受け入れるための加熱自在の内部空間を有す
る容器と、上記装置の操作中にキヤリヤーガスが
上記材料または混合材料を介して流れるように上
記内部空間内に開口するパイプとを備えた装置に
おいて、上記容器が着脱自在の緊密に嵌合する金
属部材を有し、少なくとも1つの溝が該金属部材
の少なくとも一方の外壁に設けられ、かつ該外壁
が、溝により上記内部空間が形成されるように容
器内壁と接触していることを特徴とするキヤリヤ
ーガス富化用装置。 2 溝が渦巻き状に巻回されているか若しくはジ
グザグ状または曲折状である特許請求の範囲第1
項記載の装置。 3 溝が設けられた金属部材の外壁が容器の底部
と接触している特許請求の範囲第1または2項記
載の装置。 4 ガス透過性部材がガス出口と内部空間との間
に設けられた特許請求の範囲第1、2または3項
記載の装置。
Claims: 1. A device for enriching a carrier gas or mixed carrier gas with a vapor of a slightly volatile material or mixture of materials in the form of small solid particles, comprising a carrier gas inlet and an enriched carrier gas outlet. a container having a heatable interior space for receiving said material or mixture of materials, and opening into said interior space for a carrier gas to flow through said material or mixture of materials during operation of said apparatus; a pipe, wherein the container has a removable, close-fitting metal member, at least one groove is provided in at least one outer wall of the metal member, and the outer wall is provided with a A device for enriching carrier gas, characterized in that it is in contact with the inner wall of the container such that an internal space is formed. 2. Claim 1 in which the groove is spirally wound, zigzag, or bent.
Apparatus described in section. 3. The device according to claim 1 or 2, wherein the outer wall of the grooved metal member is in contact with the bottom of the container. 4. The device according to claim 1, 2 or 3, wherein the gas permeable member is provided between the gas outlet and the internal space.
JP22903684A 1983-11-02 1984-11-01 Carrier gas enriching apparatus Granted JPS61110766A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833339625 DE3339625A1 (en) 1983-11-02 1983-11-02 DEVICE FOR ENRICHING A CARRIER GAS WITH THE VAPOR OF A LITTLE VOLATILE FABRIC
DE3339625.6 1983-11-02

Publications (2)

Publication Number Publication Date
JPS61110766A JPS61110766A (en) 1986-05-29
JPH0530908B2 true JPH0530908B2 (en) 1993-05-11

Family

ID=6213274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22903684A Granted JPS61110766A (en) 1983-11-02 1984-11-01 Carrier gas enriching apparatus

Country Status (4)

Country Link
JP (1) JPS61110766A (en)
DE (1) DE3339625A1 (en)
FR (1) FR2554131B1 (en)
GB (1) GB2151662B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3702923A1 (en) * 1987-01-31 1988-08-11 Philips Patentverwaltung DEVICE FOR ENRICHING A CARRIER GAS WITH THE VAPOR OF A LITTLE VOLATILE FABRIC
DE3801147A1 (en) * 1988-01-16 1989-07-27 Philips Patentverwaltung DEVICE FOR GENERATING A GAS FLOW ENRICHED WITH THE VAPOR OF A LITTLE VOLATILE FABRIC
JPH0269389A (en) * 1988-08-31 1990-03-08 Toyo Stauffer Chem Co Formation of saturated vapor of solid organometallic compound in vapor growth method
DE3931189A1 (en) * 1989-09-19 1991-03-28 Philips Patentverwaltung Gas flow contg. vapour of low volatility powder for CVD - obtd. using device where process can be continuous and containers having little residual powder can be refilled without disturbing gas flow
JPH0513166U (en) * 1991-08-06 1993-02-23 ダイワ精工株式会社 Fishing reel fishing line stopper
DE19638100C1 (en) * 1996-09-18 1998-03-05 Fraunhofer Ges Forschung Apparatus to produce vaporous reaction product from solid particles
US7601225B2 (en) 2002-06-17 2009-10-13 Asm International N.V. System for controlling the sublimation of reactants
US7186385B2 (en) 2002-07-17 2007-03-06 Applied Materials, Inc. Apparatus for providing gas to a processing chamber
KR101183109B1 (en) 2002-07-30 2012-09-24 에이에스엠 아메리카, 인코포레이티드 Sublimation system employing carrier gas
US7156380B2 (en) 2003-09-29 2007-01-02 Asm International, N.V. Safe liquid source containers
WO2008045972A2 (en) 2006-10-10 2008-04-17 Asm America, Inc. Precursor delivery system
US7775508B2 (en) 2006-10-31 2010-08-17 Applied Materials, Inc. Ampoule for liquid draw and vapor draw with a continuous level sensor
US7833353B2 (en) 2007-01-24 2010-11-16 Asm Japan K.K. Liquid material vaporization apparatus for semiconductor processing apparatus
US8343583B2 (en) 2008-07-10 2013-01-01 Asm International N.V. Method for vaporizing non-gaseous precursor in a fluidized bed
US8146896B2 (en) 2008-10-31 2012-04-03 Applied Materials, Inc. Chemical precursor ampoule for vapor deposition processes
US8012876B2 (en) 2008-12-02 2011-09-06 Asm International N.V. Delivery of vapor precursor from solid source
US9117773B2 (en) 2009-08-26 2015-08-25 Asm America, Inc. High concentration water pulses for atomic layer deposition
US10876205B2 (en) 2016-09-30 2020-12-29 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
US11926894B2 (en) 2016-09-30 2024-03-12 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
US11634812B2 (en) 2018-08-16 2023-04-25 Asm Ip Holding B.V. Solid source sublimator
US11624113B2 (en) 2019-09-13 2023-04-11 Asm Ip Holding B.V. Heating zone separation for reactant evaporation system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1204588A (en) * 1958-04-22 1960-01-27 E F Drew & Co Apparatus for carrying out continuous chemical reactions
FR1532742A (en) * 1967-07-19 1968-07-12 Bristol Aeroplane Plastics Ltd Method and device for mixing fluids
FR1581523A (en) * 1968-05-08 1969-09-19
US3801073A (en) * 1972-12-27 1974-04-02 Kates W Co Fluid mixer
US4129624A (en) * 1977-05-13 1978-12-12 The W. A. Kates Company Fluid mixer
JPS5635426A (en) * 1979-08-31 1981-04-08 Fujitsu Ltd Vapor-phase epitaxial growth device
DE3136895A1 (en) * 1981-09-17 1983-03-31 Philips Patentverwaltung Gmbh, 2000 Hamburg Apparatus for evaporating starting materials for the reactive separation from the gas phase

Also Published As

Publication number Publication date
FR2554131B1 (en) 1988-10-14
GB8427276D0 (en) 1984-12-05
DE3339625A1 (en) 1985-05-09
GB2151662B (en) 1986-07-23
FR2554131A1 (en) 1985-05-03
GB2151662A (en) 1985-07-24
JPS61110766A (en) 1986-05-29
DE3339625C2 (en) 1991-01-31

Similar Documents

Publication Publication Date Title
JPH0530908B2 (en)
JP3909792B2 (en) Raw material supply apparatus and raw material supply method in chemical vapor deposition
US5264245A (en) CVD method for forming uniform coatings
JP4809313B2 (en) Container containing inlet plenum and method of dispensing from container
KR101941526B1 (en) Vessel with filter
KR101247824B1 (en) Method and apparatus to help promote contact of gas with vaporized material
US6718126B2 (en) Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition
CN101960564B (en) Heated valve manifold for ampoule
TWI522488B (en) Solid precursor-based delivery of fluid utilizing controlled solids morphology
EP0480867B1 (en) Process for applying gas phase diffusion aluminide coatings
KR20200020608A (en) Solid source sublimator
CN106048558A (en) Vessel and method for delivery of precursor materials
US20090074964A1 (en) Method and apparatus for removing substances from gases
JP2020114941A (en) Low temperature sintering of solid precursor
JPH01266801A (en) Apparatus for generating gas stream enriched with vapor of low volatile substance
JP2005146418A (en) Method for depositing atomic layer and apparatus therefor
WO1992008821A1 (en) Device for coating hollow workpieces by gas diffusion
US20090025639A1 (en) Gas inlet element for a cvd reactor
EP0466396A1 (en) Supported high silica zeolites
JP4585182B2 (en) Trimethylindium filling method and filling container
FR2634756A1 (en) METHOD FOR JOINING CERAMIC COMPONENTS WITH METAL COMPONENTS AND MANUFACTURED PRODUCTS OBTAINED THEREBY
TW202242184A (en) Precursor capsule, precursor vessel, vapor deposition assembly, and method of loading solid precursor into precursor vessel
JPH0643248B2 (en) Method for producing transition metal boride fiber
CH680834A5 (en)
JPS6070176A (en) Evaporating cylinder for solid source