JPH05307971A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH05307971A
JPH05307971A JP4136138A JP13613892A JPH05307971A JP H05307971 A JPH05307971 A JP H05307971A JP 4136138 A JP4136138 A JP 4136138A JP 13613892 A JP13613892 A JP 13613892A JP H05307971 A JPH05307971 A JP H05307971A
Authority
JP
Japan
Prior art keywords
powder
battery
water
repelling
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4136138A
Other languages
Japanese (ja)
Inventor
Akira Kamata
彰 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4136138A priority Critical patent/JPH05307971A/en
Publication of JPH05307971A publication Critical patent/JPH05307971A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the discharging capacity and prevent the formation of layers and improve liquid pouring property by packing and putting a mixed powder of a water-repelling powder and a hydrophilic powder having high liquid retaining property as an electrolytic liquid retaining material in the gap between electrode plates and the periphery of a group of electrodes. CONSTITUTION:Besides powders of polyethylene resin, polypropylene resin, and fluororesin which have water-repelling property themselves, a powder coated with a powder of a resin which is sulfuric acid-resistant and is not harmful to a battery or a powder such as a silica powder which has water-repelling property polyethylene resin can be used as a water-repelling powder. A group of electrode plates prepared by assembling positive poles 2 and negative poles 3 while a separator 4 being set between a positive pole and a negative pole is inserted in an electrolytic bath 1 and the bath is filled with a mixed powder 5 consisting of 10% by volume of hydrophilic silica powder and the water-repelling powder while vibration is applied to the bath. Being pressed by a finely porous rubber plate 7, the resulting body is sealed with a cover 6 having projections. Diluted sulfuric acid which makes the electrolytic liquid specific weight 1.30 at 20 deg.C after chemical conversion is poured in the bath and chemical conversion is carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉形鉛蓄電池、特にそ
の電解液保持体の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead-acid battery, and more particularly to an improvement in an electrolytic solution holder thereof.

【0002】[0002]

【従来の技術とその課題】電池の充電中に発生する酸素
ガスを負極で吸収させるタイプの密閉形鉛蓄電池にはリ
テーナ式とゲル式の2種類がある。リテーナ式は正極板
と負極板との間に微細ガラス繊維を主体とするマット状
のセパレータ(ガラスセパレータ)を挿入し、これによ
って放電に必要な硫酸電解液の保持と両極の隔離をおこ
なっており、無保守、無漏液、ポジションフリー等の特
徴を生かして、近年、ポータブル機器やコンピューター
のバックアップ電源として広く用いられている。
2. Description of the Related Art There are two types of sealed lead-acid batteries, a retainer type and a gel type, in which a negative electrode absorbs oxygen gas generated during battery charging. The retainer type inserts a mat-shaped separator (glass separator) mainly composed of fine glass fibers between the positive electrode plate and the negative electrode plate, which holds the sulfuric acid electrolyte necessary for discharge and separates both electrodes. In recent years, it has been widely used as a backup power source for portable devices and computers by taking advantage of its features such as no maintenance, no leakage, and position-free.

【0003】しかし、ガラスセパレータは特殊な方法で
製造される直径1ミクロン前後の微細ガラス繊維を抄造
してマット状としたもので、一般的に用いられる鉛蓄電
池用のセパレータに比べかなり高価なことや、安定した
電池性能を得るためには極板群を強く圧迫して組み込ま
なければならないので電池の組立が困難となり、必然的
に電池の製造コストが高くなるという欠点があった。
However, the glass separator is made of a fine glass fiber having a diameter of about 1 micron manufactured by a special method into a mat, and is considerably expensive as compared with a commonly used lead-acid battery separator. Moreover, in order to obtain stable battery performance, the electrode plate group must be strongly pressed and assembled, which makes it difficult to assemble the battery, which inevitably increases the manufacturing cost of the battery.

【0004】また、硫酸電解液を保持させることができ
るのは正、負極板間に挿入したガラスセパレータだけで
あって、開放形の液式鉛蓄電池のように極板群の周囲に
電解液を配置できないので、電池反応が電解液量で制限
され、液式電池よりも電池性能が劣るという欠点があっ
た。
Further, the sulfuric acid electrolytic solution can be held only by the glass separator inserted between the positive and negative electrode plates, and the electrolytic solution is placed around the electrode plate group like an open type lead acid battery. Since the batteries cannot be arranged, the battery reaction is limited by the amount of the electrolytic solution, and the battery performance is inferior to that of the liquid battery.

【0005】一方、ゲル式はリテーナ式よりも安価であ
るが、電池性能がリテーナ式より劣り、使用中に硫酸ゲ
ルから電解液が離しょうするために寿命性能が良くない
という欠点があった。
On the other hand, although the gel type is less expensive than the retainer type, it has a drawback that the battery performance is inferior to the retainer type and the life performance is not good because the electrolytic solution separates from the sulfuric acid gel during use.

【0006】そこでこれらの欠点を解消するために、微
細ガラス繊維を用いるリテーナ式でもなく、ゲル状の電
解液を用いるゲル式でもない密閉形鉛蓄電池が提案され
ている。すなわち、電解液保持材として高い多孔度と大
きい比表面積を有する粉体、たとえばシリカ粉体を使用
するもので、正極板と負極板との間隙および極板群の周
囲に上記粉体を充填した構成の密閉形鉛蓄電池である。
シリカ粉体はホワイト・カーボンと呼ばれ、大量に生
産、販売されている安価な材料であり、耐酸性や電解液
の保持力も優れているので、このタイプの密閉形鉛蓄電
池の電解液保持材に用いる粉体として優れた素材である
といえる。
In order to solve these drawbacks, therefore, there has been proposed a sealed lead-acid battery which is neither a retainer type using fine glass fibers nor a gel type using a gel electrolyte. That is, a powder having a high porosity and a large specific surface area, for example, silica powder, is used as the electrolyte holding material, and the powder is filled in the gap between the positive electrode plate and the negative electrode plate and around the electrode plate group. It is a sealed lead-acid battery with a configuration.
Silica powder, which is called white carbon, is an inexpensive material that is produced and sold in large quantities and has excellent acid resistance and electrolyte retention, so it is the electrolyte retention material for this type of sealed lead-acid battery. It can be said that it is an excellent material as a powder used for.

【0007】このようなシリカ粉体を電解液保持体とし
て使用する密閉形鉛蓄電池においても従来の密閉形鉛電
池と同様の問題がある。すなわち開放形液式電池に比べ
てかなり電解液の拡散移動速度が遅く、電解液の利用率
が低いことである。これは電解液を非流動化させるため
に起こる現象である。また、このような密閉形鉛蓄電池
は開放形液式に比べて電解液の絶対量が少なく、電解液
の利用率の向上は命題となっている。
The sealed lead-acid battery using such silica powder as an electrolyte holder also has the same problem as the conventional sealed lead-acid battery. That is, the diffusion rate of the electrolytic solution is much slower than that of the open type liquid battery, and the utilization rate of the electrolytic solution is low. This is a phenomenon that occurs because the electrolyte is made non-fluidized. Further, such a sealed lead-acid battery has a smaller absolute amount of electrolytic solution than the open type, and improvement of the utilization rate of electrolytic solution is a proposition.

【0008】そこで、電解液の利用率を上げるために、
例えばリテーナ式におけるガラス繊維の目を粗くする等
の方法や、ゲル式におけるゲル濃度を下げる等の方法、
また粉体を電解液の保持に使用する電池では粉体を直径
を大きくし粉体間の隙間を広くする等の方法で電解液の
拡散移動速度を上げる方法があるが、このような従来の
方法では、それにともない電池の上下方向で比重差が生
じ、いわゆる成層化現象が問題となる。
Therefore, in order to increase the utilization rate of the electrolytic solution,
For example, a method such as coarsening the glass fiber in the retainer system, a method such as lowering the gel concentration in the gel system,
In a battery that uses powder for holding electrolyte, there is a method of increasing the diffusion moving speed of electrolyte by increasing the diameter of powder and widening the gap between powders. According to the method, a difference in specific gravity occurs in the vertical direction of the battery accordingly, and a so-called stratification phenomenon becomes a problem.

【0009】開放形液式電池であれば、正・負極板の充
電時におけるガッシングにより液が攪拌されこの成層化
現象は防げるのであるが、負極板で電池の充電中に発生
する酸素ガスを吸収させる密閉式鉛蓄電池では、重力に
より硫酸比重は電池下部において高くなってしまう。硫
酸濃度が高くなると負極板は充電され難く、充放電を繰
り返すことにより負極板下部に負極活物質の放電生成物
である硫酸鉛が溜まり、負極板は劣化し、それにより電
池放電容量が早期に低下してしまう。
In the case of an open type liquid battery, the stratification phenomenon can be prevented by stirring the liquid by gassing during charging of the positive and negative electrode plates, but the negative electrode plate absorbs oxygen gas generated during charging of the battery. In the sealed lead-acid battery, the specific gravity of sulfuric acid becomes high in the lower part of the battery due to gravity. When the concentration of sulfuric acid becomes high, the negative electrode plate is difficult to be charged, and by repeating charge and discharge, lead sulfate, which is a discharge product of the negative electrode active material, accumulates in the lower part of the negative electrode plate, and the negative electrode plate deteriorates, so that the battery discharge capacity becomes early. Will fall.

【0010】さらにシリカ粉体を電解液保持体に用いる
電池に電解液の吸液性の大きい粉体を適用した場合、注
液時に次の現象が起こる。電池上部から電池内に必要量
の電解液を注ぐと、先ず粉体上面部で電解液を吸収し、
そこで電解液を含んだ粉体の層ができてしまう。この層
が電池内部からの空気の排気を阻害し、電解液は電池下
部まで浸透し難くなり、電解液の注入に長時間を要して
しまう。
Furthermore, when a powder having a high electrolyte absorbing property is applied to a battery in which silica powder is used as an electrolyte holder, the following phenomenon occurs at the time of liquid injection. When the required amount of electrolyte is poured from the top of the battery into the battery, first the electrolyte is absorbed by the upper surface of the powder,
Thus, a powder layer containing the electrolytic solution is formed. This layer hinders the exhaust of air from the inside of the battery, making it difficult for the electrolytic solution to permeate to the lower part of the battery, and it takes a long time to inject the electrolytic solution.

【0011】そこで、電池内を減圧した後に電解液を注
入する方法が考えられるが、電池内を減圧にしておいて
も、電解液である希硫酸を注入すると、極板と接触し、
活物質中に含まれる塩基性炭酸鉛と反応して炭酸ガスが
発生する。発生した炭酸ガスの排気は、粉体上部に形成
された電解液を含む層により阻害され、大幅な注入時間
の短縮は達成されなかった。
Therefore, a method of injecting the electrolytic solution after depressurizing the inside of the battery can be considered. Even if the inside of the battery is depressurized, if diluted sulfuric acid as the electrolytic solution is injected, the electrolytic solution comes into contact with
Carbon dioxide gas is generated by reacting with basic lead carbonate contained in the active material. The exhaust of the generated carbon dioxide gas was hindered by the layer containing the electrolytic solution formed on the upper part of the powder, and the injection time was not significantly shortened.

【0012】[0012]

【課題を解決するための手段】本発明は上記の問題を解
決するもので、その要旨とするところは密閉形鉛蓄電池
において、極板間および極板群の周囲に撥水処理を施し
た粉体もしくは粉体自体が撥水性である粉体とシリカ等
の親水性粉体との混合粉体を充填、配置し、放電に必要
かつ充分な量の硫酸電解液を上記混合粉体、隔離体およ
び正・負極板に含浸、保持させることにある。
SUMMARY OF THE INVENTION The present invention is intended to solve the above problems, and the gist thereof is a sealed lead-acid battery in which powder between the electrodes and around the electrodes is subjected to a water-repellent treatment. A mixed powder of a powder whose body or powder itself is water-repellent and a hydrophilic powder such as silica is filled and arranged, and a sufficient amount of sulfuric acid electrolytic solution necessary for discharging is added to the above mixed powder and a separator. And to impregnate and hold the positive and negative electrode plates.

【0013】[0013]

【実施例】以下に本発明を実施例に基づいて説明する。
撥水性を有する粉体として、表1に示す4種類の粉体を
用いた。撥水性を持つ樹脂粉体は、ポリエチレン樹脂、
ポリプロピレン樹脂およびフッ素樹脂の微細な粉末であ
り、撥水性処理を施した粉体として、シリカ粉体をフッ
素樹脂で覆った粉体を用いた。これらの粉体の粒径は、
50〜500ミクロンである。これらの粉体以外に耐硫
酸性を持ちかつ電池に対し有害でない樹脂の粉体および
シリカ粉体等の表面を撥水性を持つ物質で被覆した粉体
であればかまわない。
EXAMPLES The present invention will be described below based on examples.
As the powder having water repellency, four types of powder shown in Table 1 were used. Resin powder with water repellency is polyethylene resin,
As the fine powder of polypropylene resin and fluororesin, which was subjected to the water-repellent treatment, silica powder covered with fluororesin was used. The particle size of these powders is
50-500 microns. In addition to these powders, a powder of a resin having sulfuric acid resistance and not harmful to the battery, a powder of silica, or the like whose surface is coated with a substance having water repellency may be used.

【0014】フッ素樹脂でのシリカ粉体の撥水処理方法
を以下に示す。まず、シリカ粉体をアセトンにて洗浄
し、乾燥した。この粉体をフッ素樹脂を溶かした有機溶
媒中に浸漬し、その後乾燥し、シリカ粉体の表面をフッ
素樹脂の膜で覆った粉体を得た。これらの粉体を親水性
シリカ粉体に容積比で10容積%混合し、表1に示す混
合粉体を得た。
A method for treating silica powder with water repellent using a fluororesin will be described below. First, the silica powder was washed with acetone and dried. This powder was immersed in an organic solvent in which a fluororesin was dissolved and then dried to obtain a powder in which the surface of silica powder was covered with a fluororesin film. These powders were mixed with hydrophilic silica powder in a volume ratio of 10% by volume to obtain mixed powders shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】これらの粉体を用いて電池による試験を行
った。図1は本発明密閉形鉛蓄電池の断面図であり、ア
ンチモンフリーの鉛合金もしくはアンチモンを少量含む
鉛合金からなる正極格子体およびアンチモンンフリーの
鉛合金からなる負極格子体に通常の正極および負極ペー
ストを充填し熟成した後、正極板2を2枚と負極3を3
枚とを用い、隔離体4を介して組み立てて構成した極板
群を作製し、電槽1内に挿入した。
A battery test was conducted using these powders. FIG. 1 is a cross-sectional view of a sealed lead-acid battery of the present invention, in which a positive electrode grid body made of an antimony-free lead alloy or a lead alloy containing a small amount of antimony and a negative electrode grid body made of an antimony-free lead alloy are used in a normal positive electrode and a negative electrode. After filling and aging the paste, two positive electrode plates 2 and three negative electrodes 3 were formed.
An electrode plate group constructed by assembling via the separator 4 was produced using the sheet and the sheet, and was inserted into the battery case 1.

【0017】そして、混合粉体A〜Dおよびシリカ粉体
のみを前記の極板群を挿入した電槽内に振動を加えなが
ら密に充填し、充填した粉体上部に粉体の飛散および吹
上を防ぐため、連続気泡を持つ微孔ゴム板7を載置し
た。図において5は粉体、6は電槽の蓋、8は微孔ゴム
板7を押さえるために蓋6の内面に設けられた突起、9
は正極端子、10は負極端子である。ここで、混合粉体A
〜Dを使用した電池を電池A〜Dとし、比較のためシリ
カ粉体のみを使用した電池を電池Eとし、粒径の大きな
粉体を充填したものを電池Fとした。
Then, only the mixed powders A to D and the silica powder are densely filled in the battery case in which the electrode plate group is inserted while vibrating, and the powder is scattered and blown up on the filled powder upper part. In order to prevent this, a microporous rubber plate 7 having open cells was placed. In the figure, 5 is powder, 6 is a lid of the battery case, 8 is a protrusion provided on the inner surface of the lid 6 for holding the microporous rubber plate 7, and 9
Is a positive electrode terminal, and 10 is a negative electrode terminal. Here, the mixed powder A
B to D were used as batteries A to D, a battery using only silica powder was used as a battery E for comparison, and a battery filled with powder having a large particle size was used as a battery F.

【0018】このようにして組み立てた電池に、化成後
の電解液比重が20℃で1.30になるように調整した
希硫酸を注入し、化成を行った。この試作した電池容量
は電解液にて制限されており、公称容量は5Ahであ
る。比較のために同じロットの極板を用いて微細ガラス
繊維からなるガラスセパレータを用いたリテーナ式密閉
形鉛電池Gも製作した。
To the battery thus assembled, diluted sulfuric acid adjusted so that the specific gravity of the electrolytic solution after formation was 1.30 at 20 ° C. was injected to perform formation. The capacity of this prototype battery is limited by the electrolytic solution, and the nominal capacity is 5 Ah. For comparison, a retainer-type sealed lead-acid battery G using a glass separator made of fine glass fibers was also manufactured using the same lot of electrode plates.

【0019】これらの7種の電池の初期の容量を5時間
率の電流にて放電し、端子電圧がセルあたり1.75V
になるまでの時間を測定した。このときの放電容量を表
2に示し、これらの電池に電解液の注入するときに要し
た時間も合わせて示した。その後、次に示す内容の充・
放電サイクル寿命試験を行った。
The initial capacities of these seven types of batteries were discharged at a current of 5 hours, and the terminal voltage was 1.75 V per cell.
The time to reach was measured. The discharge capacities at this time are shown in Table 2, and the time required for injecting the electrolytic solution into these batteries is also shown. After that, fill in the following contents
A discharge cycle life test was conducted.

【0020】 放電:5時間率での電流で1.70Vまで放電 充電:放電電気量の120%を10時間率で充電 寿命の判定は公称容量の50%以下となった時点とし
た。その後、その電池を解体し、寿命となった原因を調
べた。結果を表2に示した。
Discharge: discharge to 1.70 V with current at a rate of 5 hours Charge: charge 120% of the discharged electricity amount at a rate of 10 hours The life was judged to be 50% or less of the nominal capacity. After that, the battery was disassembled and the cause of the end of life was investigated. The results are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】注液時間をみると、ガラスセパレータを使
用したものだけが注液に1分を要しなかった。本発明に
よる電池A〜Dおよび従来技術である粒径の粗い粉体を
用いた電池Fの注液時間は、約2分とガラスセパレータ
に較べて長かったものの、シリカ粉体のみの約35分と
較べ非常に短縮された。これは、溌水性粉体を混合した
粉体を用いたことにより、容器下部に貯まるガスが溌水
粉体の表面にできた空気の層を通り上部空間に放出でき
たためと考えられ、電池Fは粒径の大きな粉体を用いた
ために粉体間の間隙が広く、その間隙を通じてガスが上
部にすばやく放出できたためと考えられる。ガラスセパ
レータはガラス繊維間の空間が大きく、ガスの抜け道が
大きいためであると考える。
Regarding the injection time, only the glass separator using the glass separator did not require 1 minute for injection. The injection time of the batteries A to D according to the present invention and the battery F using the coarse powder of the prior art was about 2 minutes, which was longer than that of the glass separator, but about 35 minutes using only the silica powder. Very short compared to. This is considered to be because the gas stored in the lower portion of the container could be discharged to the upper space through the air layer formed on the surface of the water repellent powder by using the powder mixed with the water repellent powder. It is considered that the reason is that because the powder having a large particle size was used, the gap between the powders was wide, and the gas could be quickly discharged to the upper part through the gap. It is considered that this is because the glass separator has a large space between glass fibers and a large gas escape path.

【0023】本発明による電池A〜Dおよび従来技術で
ある粒径の粗い粉体を用いた電池Fは初期の容量が他の
電池に比べ10%ほど高く、これは電解液の利用率が向
上したためだと考えられる。寿命性能においては、粒径
の粗い粉体を使用した電池Fが121サイクル目にて容
量が50%以下となり、リテーナ式電池Gも152サイ
クル目で寿命となった。電池A〜Dおよび電池Eは、2
40サイクル以上ですぐれた寿命性能を示した。
The batteries A to D according to the present invention and the battery F using the coarse powder of the prior art have an initial capacity of about 10% higher than other batteries, which improves the utilization rate of the electrolytic solution. It is thought that it is because I did it. Regarding the life performance, the battery F using the coarse powder has a capacity of 50% or less at the 121th cycle, and the retainer battery G also has a life at the 152th cycle. The batteries A to D and the battery E are 2
Excellent life performance was exhibited at 40 cycles or more.

【0024】寿命試験後、電池を解体してみると、粒径
の粗い粉体を使用した電池Fの負極板の下半分に硫酸鉛
が多量に蓄積しており、リテーナ式電池Gにおいても下
約1/3に硫酸鉛が多量に蓄積していた。このことは、
上記二つの電池は電解液の成層化が寿命原因となったも
のと推測される。
After the life test, when the battery was disassembled, a large amount of lead sulfate was accumulated in the lower half of the negative electrode plate of the battery F using the powder having a coarse particle size, and also in the retainer battery G, A large amount of lead sulfate was accumulated in about 1/3. This is
It is speculated that stratification of the electrolytic solution caused the life of the two batteries.

【0025】電解液保持材の上下方向の電解液の分布の
差を調査すると上部でその電解液の濃度が低く、下部で
高くなっていた。本発明による電池A〜Dでは、このよ
うな現象は見られず、正極板の劣化が直接的な寿命の原
因となっていた。
When the difference in the distribution of the electrolytic solution in the vertical direction of the electrolytic solution holding material was investigated, the concentration of the electrolytic solution was low in the upper part and high in the lower part. In the batteries A to D according to the present invention, such a phenomenon was not observed, and the deterioration of the positive electrode plate directly caused the life.

【0026】これは、混合粉体A〜Dにおいては、混合
した撥水性粉体の弱く保持している非常に拡散性に優れ
た電解液が初期の容量およびサイクル中の容量の向上に
つながり、シリカ粉体の強く保持する電解液が成層化を
防止したものと考えられる。シリカ粉体のみの場合、保
持力が強すぎるため電解液の利用率低下につながり、初
期の容量が低くなったものと考える。
This is because in the mixed powders A to D, the weakly held electrolytic solution of the mixed water-repellent powders having an excellent diffusivity leads to an improvement in the initial capacity and the capacity during the cycle, It is considered that the electrolytic solution that strongly holds the silica powder prevented stratification. In the case of using only silica powder, it is considered that the holding capacity is too strong, which leads to a decrease in the utilization rate of the electrolytic solution, and the initial capacity is lowered.

【0027】リテーナ式および粒径の粗い粉体を使用し
たものでは、粒子間もしくは繊維間の隙間が大きいため
に、電解液の保持力が弱く、電解液が成層化してしまっ
たものと考えられる。
In the case of using the retainer type and the powder having a coarse particle size, it is considered that the holding force of the electrolytic solution is weak and the electrolytic solution is stratified because the gap between the particles or the fibers is large. ..

【0028】[0028]

【発明の効果】以上記述したように、撥水性粉体もしく
は粉体に撥水処理を施した撥水性粉体と保液性の大きな
親水性粉体との混合粉体を電解液保持材に用いることに
よって電池の放電容量を増加し、成層化を防止し、かつ
注液性に優れた電池を製作でき、その工業的価値は非常
に大きい。
As described above, a water-repellent powder or a mixed powder of a water-repellent powder obtained by subjecting a powder to water-repellent treatment and a hydrophilic powder having a large liquid-holding property is used as an electrolyte solution holding material. By using it, the discharge capacity of the battery can be increased, stratification can be prevented, and a battery excellent in liquid injection can be manufactured, and its industrial value is very large.

【0029】[0029]

【図面の簡単な説明】[Brief description of drawings]

【0030】[0030]

【図1】本発明密閉形鉛蓄電池の断面図FIG. 1 is a sectional view of the sealed lead-acid battery of the present invention.

【0031】[0031]

【符号の説明】[Explanation of symbols]

1 電槽 2 正極板 3 負極板 4 隔離体 5 粉体 6 蓋 7 微孔ゴム板 8 突起 9 正極端子 10 負極端子 DESCRIPTION OF SYMBOLS 1 Battery case 2 Positive electrode plate 3 Negative electrode plate 4 Isolator 5 Powder 6 Lid 7 Microporous rubber plate 8 Protrusion 9 Positive electrode terminal 10 Negative electrode terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電池の充電中に発生する酸素ガスを負極
で吸収させる密閉形鉛蓄電池であって、極板間および極
板群の周囲に撥水性粉体と吸液性の大きな親水性粉体と
の混合粉体を充填、配置し、放電に必要かつ充分な量の
硫酸電解液を上記混合粉体、隔離体および正・負極板に
含浸、保持させることを特徴とする密閉形鉛蓄電池。
1. A sealed lead acid battery in which an oxygen gas generated during charging of the battery is absorbed by a negative electrode, wherein a water-repellent powder and a hydrophilic powder having a large liquid absorbing property are provided between electrode plates and around an electrode group. A sealed lead-acid battery characterized by filling and arranging a mixed powder with the body, and impregnating and holding a sufficient amount of sulfuric acid electrolyte necessary for discharging into the mixed powder, the separator and the positive and negative electrode plates. ..
JP4136138A 1992-04-28 1992-04-28 Sealed lead-acid battery Pending JPH05307971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4136138A JPH05307971A (en) 1992-04-28 1992-04-28 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4136138A JPH05307971A (en) 1992-04-28 1992-04-28 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH05307971A true JPH05307971A (en) 1993-11-19

Family

ID=15168201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4136138A Pending JPH05307971A (en) 1992-04-28 1992-04-28 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH05307971A (en)

Similar Documents

Publication Publication Date Title
US6492059B1 (en) Separator for sealed lead-acid battery
US5474863A (en) Sealed lead acid batteries with porous polymer particles
JP2003077445A (en) Lead acid storage battery
JP2004055323A (en) Control valve type lead-acid battery
JPH05307971A (en) Sealed lead-acid battery
JP3555177B2 (en) Sealed lead-acid battery
JPH0756811B2 (en) Sealed lead acid battery
JPS6174266A (en) Enclosed lead storage battery
JP3261417B2 (en) Sealed lead-acid battery
JPH0628169B2 (en) Sealed lead acid battery
JPH01124958A (en) Sealed lead-acid battery
JP3114419B2 (en) Sealed storage battery
JPH09237636A (en) Sealed type lead-acid battery
JP3118718B2 (en) Sealed lead-acid battery
JPH01122564A (en) Sealed type lead-acid battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JPH0624140B2 (en) Sealed lead acid battery
JPH05326011A (en) Sealed lead-acid battery
JPH07296845A (en) Sealed lead-acid battery
JPH046757A (en) Manufacture of sealed lead-acid battery
JPH04149968A (en) Sealed-type lead secondary battery
JPH02174072A (en) Lead-acid battery
JPH0542784B2 (en)
JPH0624144B2 (en) Sealed lead acid battery
JPH04141961A (en) Gastight lead storage battery