JPH05306715A - Control method for magnetic bearing - Google Patents

Control method for magnetic bearing

Info

Publication number
JPH05306715A
JPH05306715A JP41794190A JP41794190A JPH05306715A JP H05306715 A JPH05306715 A JP H05306715A JP 41794190 A JP41794190 A JP 41794190A JP 41794190 A JP41794190 A JP 41794190A JP H05306715 A JPH05306715 A JP H05306715A
Authority
JP
Japan
Prior art keywords
rotor
electromagnet
dynamic
controller
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41794190A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishida
精 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP41794190A priority Critical patent/JPH05306715A/en
Publication of JPH05306715A publication Critical patent/JPH05306715A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Abstract

PURPOSE:To prevent the stable state from being deteriorated by the displacement of a rotor by installing a dynamic compensator for compensating the time constant of a magnet which varies according to the floated position of the rotor, on the basis of the signal of a displacement sensor for detecting the floating-up position of the rotor, between a controller and an electric power compensator. CONSTITUTION:A control system for a magnetic bearing is constituted of a displacement sensor which is constituted of a sensor head 6 fixed in the vicinity of an electromagnet 3 and a diaplacement converter 10, comparator 11, controller 9, compensation instruction devices 12 and 13 each of which generates a time constant compensation instruction according to the displacement signal of a rotor, dynamic compensators 14 and 15, and electric current amplifiers 7 and 8. Even if each floating-up position of the electromagnet 3 and the rotor 1 changes and the time constsnt of the electromagnet 3 varies, the compensation instruction devices 12 and 13 operate according to the floating-up position of the rotor 1, and the dynamic compensators 14 and 15 are given with each instruction, and the time constant is varied, and the transmission characteristic of the whole of the dynamic compensators 14 and 15, electric current amplifiers 14 and 15, and electromagnets 2 and 3 is kept constant. Accordingly, even if the local characteristic of the electromagnet 3 part changes drastically, the whole characteristic can be kept constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非接触支承する吸引制御
形の磁気輔受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a suction control type magnetic bearing for non-contact bearing.

【0002】[0002]

【従来の技術】従来の吸引制御形の磁気軸受を、図4を
用いて説明する。図において、1は磁気吸引力により非
接触支承して、回転可能にさせるロータであり、これと
一定ギャップを介して対向し、図示しない固定部に2つ
の電磁石2,3が固定されている。それぞれコイル4,
5が巻回され、各々、電流増幅器7,8により電流が供
給されている。一方、電磁石の近傍に固定されたセンサ
ヘッド6と変位変換器10とにより変位センサを構成し
て電磁石2,3に対するロータ1の変位を検出してい
る。そしてロータ1の変位を指定する指令値Xと変位
センサの信号Xが比較器11により比較され、これを
受けて制御器9が働き前記電流増幅器7,8に指令を与
えている。このような構成において、ロータ1が指令値
で指定される位置より下に位置する時は、センサヘ
ッド6と変位変換器10より成る変位センサが検出した
ロータ1の変位信号をうけて、比較器11と制御器9が
働き、電流増幅器7に大きな指令を与えてコイル4の電
流を大きくして、電磁石2とロータ1の間の磁気吸引力
を大きくし、電流増幅器8に小さな指令を与えてコイル
5の電流を小さくし、電磁石3とロータ1の間の磁気吸
引力を小さくし、ロータ1を引上げようと作用する。一
方、ロータ1が指令値Xで指定される位置より上側に
位置する時は、変位センサが検出したロータ1の変位信
号をうけて、比較器11と制御器9が働き、電流増幅器
8に大きな指令を与えてコイル5の電流を大きくし、電
磁石3とロータ1の間の磁気吸引力を大きくし、電流増
幅器7に小さな指令を与えてコイル4の電流を小さくし
て、電磁石2とロータ1間の磁気吸引力を小さくし、ロ
ータ1を引下げようと作用する。以上と同じ構成が図中
水平方向にも設けられて1つのラジアル軸受を成し、ロ
ータ1を非接触支承するのである。
2. Description of the Related Art A conventional suction control type magnetic bearing will be described with reference to FIG. In the figure, reference numeral 1 is a rotor which is supported by a magnetic attraction force in a non-contact manner to be rotatable, and is opposed to the rotor via a constant gap, and two electromagnets 2 and 3 are fixed to a fixing portion (not shown). Coils 4,
5 is wound, and currents are supplied by current amplifiers 7 and 8, respectively. On the other hand, the sensor head 6 fixed near the electromagnet and the displacement converter 10 constitute a displacement sensor to detect the displacement of the rotor 1 with respect to the electromagnets 2 and 3. The comparator 11 compares the command value X 3 designating the displacement of the rotor 1 with the signal X f of the displacement sensor, and the controller 9 receives this and gives a command to the current amplifiers 7, 8. In such a configuration, when the rotor 1 is positioned below the position designated by the command value X s , the displacement signal of the rotor 1 detected by the displacement sensor including the sensor head 6 and the displacement converter 10 is received, The comparator 11 and the controller 9 work to give a large command to the current amplifier 7 to increase the current of the coil 4 to increase the magnetic attraction between the electromagnet 2 and the rotor 1 and to give a small command to the current amplifier 8. It is applied to reduce the current of the coil 5 to reduce the magnetic attraction force between the electromagnet 3 and the rotor 1 to pull up the rotor 1. On the other hand, when the rotor 1 is located above the position designated by the command value X s , the comparator 11 and the controller 9 operate in response to the displacement signal of the rotor 1 detected by the displacement sensor, and the current amplifier 8 operates. A large command is given to increase the current of the coil 5, the magnetic attraction between the electromagnet 3 and the rotor 1 is increased, and a small command is given to the current amplifier 7 to reduce the current of the coil 4 to reduce the current of the electromagnet 2 and the rotor 1. It acts to reduce the magnetic attraction force between the rotors 1 and lower the rotor 1. The same structure as described above is also provided in the horizontal direction in the drawing to form one radial bearing, and supports the rotor 1 in a non-contact manner.

【0003】[0003]

【発明が解決しようとする課題】ところが、このような
従来の方法では電磁石の吸引力Fが指令に対して著しい
非線形特性を有しているため、制御系を安定化する上で
問題であった。非線形特性のうち、吸引力Fとギャップ
X、電流Iとの間に生するF∝(I/X)という静的
非線形性に対しては、特公平1−12970号公報など
に示す方法により線形化補償が行なわれており、問題解
決されている。しかし、一方では非線形特性のうち、電
磁石部のインダクタンスLがギャップに応じて変化する
ため、ロータが中央部にある時と偏位した時とでは電流
増幅器の指令に対する電流の応答が異なってくる。そこ
で、ロータ1が中央にある状態で制御特性が最も良くな
るよう制御パラメータが調整されていても、ロータが偏
位することにより、一方の電磁石は時定数が小さくなっ
て電流の立上りが良くなり、他方の電磁石は時定数が大
きくなって電流の立上りが悪くなるため、制御系全体と
しての特性が変わることになり、当初の安定性が損なわ
れてしまうという問題があった。
However, such a conventional method has a problem in stabilizing the control system because the attraction force F of the electromagnet has a remarkable nonlinear characteristic with respect to the command. .. Among the non-linear characteristics, the static non-linearity of F∝ (I / X) 2 generated between the attractive force F, the gap X, and the current I is determined by the method disclosed in Japanese Patent Publication No. 12970/1989. Linearization compensation is done and the problem is solved. However, on the other hand, among the non-linear characteristics, the inductance L of the electromagnet portion changes according to the gap, so that the response of the current to the command of the current amplifier is different when the rotor is in the central portion and when it is displaced. Therefore, even if the control parameters are adjusted so that the control characteristics are best when the rotor 1 is in the center, the deviation of the rotor causes one of the electromagnets to have a smaller time constant and a better current rise. However, the other electromagnet has a large time constant and the rise of the current is deteriorated, so that the characteristics of the entire control system are changed and the initial stability is impaired.

【0004】[0004]

【課題を解決するための手段】上記の問題を解決するた
め、本発明は電流増幅器7,8の前段にロータの浮上位
置に応じて時定数が変わる近似微分器から成る動的補償
器を設けたのである。
In order to solve the above problems, the present invention provides a dynamic compensator consisting of an approximate differentiator whose time constant changes according to the floating position of the rotor in front of the current amplifiers 7 and 8. It was.

【0005】[0005]

【作用】このように構成することにより、電磁石とロー
タの浮上位置が変化して、電磁石の時定数が変っても、
ロータの浮上位置に応じて補償指令器が働き動的補償器
に指令を与えてその時定数を変えるので、動的補償器と
電流増幅器及び電磁石の全体の伝達特性が一定となるの
である。従って、電磁石部分の局部的な特性が著しく変
化しても、全体特性を一定に保つことができるので、ロ
ータの偏位による不安定化を防ぐことができ、初期の安
定性を保持することができるのである。
With this configuration, even if the flying positions of the electromagnet and the rotor change and the time constant of the electromagnet changes,
The compensation commander operates according to the floating position of the rotor to give a command to the dynamic compensator to change its time constant, so that the transfer characteristics of the dynamic compensator, the current amplifier and the electromagnet are constant. Therefore, even if the local characteristics of the electromagnet portion change significantly, the overall characteristics can be kept constant, so that instability due to rotor deviation can be prevented and the initial stability can be maintained. You can do it.

【0006】[0006]

【実施例】以下、本発明の具体的実施例を図1〜図3を
用いて説明する。図1は本発明の具体的実施例の構成図
であり、図2は実施例に用いる要素の説明図、図3は動
作を説明する図である。なお、こゝでは磁石の静的非線
形性の補償は制御器9に含まれているとして扱かう。図
1において、図4と異なる点のみを説明すると、制御器
9と電流増幅器7,8の間に動的補償器14,15を設
け、それぞれ補償指令器12,13から時定数補償指令
が与えるようにした点が異なっている。補償指令器はロ
ータの偏位信号に応じて時定数補償指令を発生させるも
のである。図2は補償指令器12(又は13)と動的補
償器14(又は15)の一実施例を示すもので、補償指
令器12(又は13)は、3つの加減算器と1つの割算
器から構成されている。ここでロータの偏位信号X
受けると定数Xと加算(又は減算)されて磁石とロー
タ間のエアギャップxが求められ、次にx00と加算さ
れ、次にkと除算され、さらにkを減算して時定数
補償指令kが得られる。動的補償器14(又は15)
は、3個の抵抗と1個のコンデンサーと、1個の演算増
幅器と1個の乗算器から成り、比例+近似微分器を構成
している。乗算器により入力信号Is1と時定数補償指
令kが乗算された信号がコンデンサに与えられるため
動的補償器14(又は15)の伝達特性は次のようにな
る。
EXAMPLES Specific examples of the present invention will be described below with reference to FIGS. FIG. 1 is a configuration diagram of a specific embodiment of the present invention, FIG. 2 is an explanatory diagram of elements used in the embodiment, and FIG. 3 is a diagram explaining an operation. In this case, the compensation of the static non-linearity of the magnet is treated as included in the controller 9. In FIG. 1, only the points different from FIG. 4 will be described. Dynamic compensators 14 and 15 are provided between the controller 9 and the current amplifiers 7 and 8, and time constant compensation commands are given from the compensation command devices 12 and 13, respectively. The difference is. The compensation command device generates a time constant compensation command in accordance with the rotor deviation signal. FIG. 2 shows an embodiment of the compensation commander 12 (or 13) and the dynamic compensator 14 (or 15). The compensation commander 12 (or 13) includes three adders / subtractors and one divider. It consists of Here undergo deflection signal X f of the rotor when the constant X 0 and an addition (or subtraction) is sought air gap x between the magnets and the rotor are then added to the x 00, it is divided then k 1 and , And k 2 is further subtracted to obtain the time constant compensation command k 3 . Dynamic compensator 14 (or 15)
Consists of three resistors, one capacitor, one operational amplifier and one multiplier, and constitutes a proportional plus approximate differentiator. Since the signal obtained by multiplying the input signal I s1 and the time constant compensation command k 3 by the multiplier is given to the capacitor, the transfer characteristic of the dynamic compensator 14 (or 15) is as follows.

【数1】 ここでG14(又はG15)は符号が反転し負の符号が
つくが、説明を容易にするため、反転器を制御器9に付
加したものとして省略している。また補償指令器12
(又は13)の伝達特性は次のようになる。
[Equation 1] Here, the sign of G 14 (or G 15 ) is inverted and a negative sign is added, but for ease of explanation, it is omitted because an inverter is added to the controller 9. In addition, the compensation command device 12
The transfer characteristic of (or 13) is as follows.

【数2】 [Equation 2]

【数3】 である。さて、次に電磁石と電流増幅器全体の伝達特性
は次のように表わされる。まず、電磁石のインダクタン
スLは
[Equation 3] Is. Now, the transfer characteristics of the electromagnet and the current amplifier as a whole are expressed as follows. First, the inductance L of the electromagnet is

【数4】 と表わされる。次に、電流IをI=Isin2πft
の正弦波となるようにし、その最大勾配│dI/dt│
=2πfIをE/Lに等しくおく。E/Lは、抵抗を
無視したコイルに電圧Eを印加した際の電流増加率であ
る。すなわち、正弦波状の電流が歪まない周波数をfと
し、これに対する時定数をT=1/2πfと定義すると
次式が得られる。
[Equation 4] Is expressed as Next, the current I is I = I 0 sin2πft
And its maximum slope | dI / dt |
= 2πfI 0 is set equal to E / L. E / L is the rate of increase in current when the voltage E is applied to the coil ignoring resistance. That is, if the frequency at which the sinusoidal current is not distorted is f and the time constant for this is defined as T = 1 / 2πf, the following equation is obtained.

【数5】 従って、電流増幅器7,8の周波数特性が磁石に比べて
無視できるとき、電磁石と電流増幅器の伝達特性は次の
ようになる。
[Equation 5] Therefore, when the frequency characteristics of the current amplifiers 7 and 8 are negligible as compared with the magnet, the transfer characteristics of the electromagnet and the current amplifier are as follows.

【数6】 ここに、Kは電流増幅器の増幅比、Isは電流指令で
ある。(4),(5)式から分るように電流増幅器と電
磁石全体の動特性はロータの浮上位置によって変わるの
である。図1のように動的補償器14(又は15)と補
償指令器12(又は13)を用い、その入出力をIs,
Isとおくと、これらを含めた全体の伝達特性I/Is
は(1)〜(5)式より
[Equation 6] Here, K i is the amplification ratio of the current amplifier, and Is is the current command. As can be seen from the equations (4) and (5), the dynamic characteristics of the current amplifier and the electromagnet as a whole change depending on the floating position of the rotor. A dynamic compensator 14 (or 15) and a compensation commander 12 (or 13) are used as shown in FIG.
If Is, then the overall transfer characteristic I / Is including these
Is from equations (1) to (5)

【数7】 となり、ロータの偏位に拘わらず一定となるのである。
以上のことを電磁石2に関して周波数対利得の線図で再
度示すと次のようになる。ロータ1が上側に偏位し電磁
石2に接触する伏態ではX=−Xであるので、(4)
式より磁石の時定数は
[Equation 7] Therefore, it becomes constant regardless of the deviation of the rotor.
The above is again shown in the frequency vs. gain diagram for the electromagnet 2 as follows. Since X = −X 0 in the state where the rotor 1 is displaced to the upper side and contacts the electromagnet 2, (4)
From the formula, the time constant of the magnet is

【数8】 となり、動特性は図3(A)の破線のようになる。この
時動的補償器特性G14は(1),(2)式より
[Equation 8] And the dynamic characteristics are as shown by the broken line in FIG. At this time, the dynamic compensator characteristic G 14 is calculated from the equations (1) and (2).

【数9】 となり、図3(B)の破線のようになる。従って動的補
償器14と電流増幅器7と電磁石2の全体の動特性は図
3(C)のようになる。次にロータ1が下側に偏位し、
電磁石3に接触する状態ではX=+Xであるので
(4)式より磁石の時定数は
[Equation 9] And becomes like the broken line in FIG. Therefore, the dynamic characteristics of the dynamic compensator 14, the current amplifier 7, and the electromagnet 2 are as shown in FIG. Next, the rotor 1 is displaced downward,
Since X = + X o when in contact with the electromagnet 3, the time constant of the magnet is calculated from the equation (4).

【数10】 となり、動特性は、図3(A)の実線のようになる。こ
の時、動的補償器特性G14は(1),(2)式より
[Equation 10] And the dynamic characteristics are as shown by the solid line in FIG. At this time, the dynamic compensator characteristic G 14 is calculated from the equations (1) and (2).

【数11】 となり、図3(B)の実線のようになる。従って動的補
償器14と電流増幅器7と電磁石2の全体の動特性は図
3(C)のようになる。以上、磁石2について全体の動
特性が一定となることを示したが磁石3についても同様
に一定となることが導かれることは言うまでもない。図
3ではT<T<tの場合で示したが、t<T2<T
1の場合でも結果的に見かけ上の全体の動特性を一定に
することができるのである。以上、アナログ演算素子を
用いた補償指令器および動的補償器を例として示してき
たが、同じ機能を得るためデジタル回路を用い、また、
コンピュータを用いて、実現できることも言うまでもな
い。
[Equation 11] And becomes like the solid line in FIG. Therefore, the dynamic characteristics of the dynamic compensator 14, the current amplifier 7, and the electromagnet 2 are as shown in FIG. Although it has been shown above that the dynamic characteristics of the entire magnet 2 are constant, it goes without saying that the same holds true for the magnet 3 as well. Although FIG. 3 shows the case where T 2 <T 1 <t, t <T2 <T
Even in the case of 1, as a result, the overall dynamic characteristics can be made constant. Although the compensation commander and the dynamic compensator using the analog arithmetic element have been shown as examples above, a digital circuit is used to obtain the same function, and
It goes without saying that it can be realized by using a computer.

【0007】[0007]

【発明の効果】以上述べたように、本発明によるとロー
タが偏位して電流増幅器と電磁石全体の動特性が変化し
ても、補償指令器と動的補償器により見かけ上、全体の
動特性を一定とすることができるのである。このため当
初、制御系全体の安定化を図っていたものがロータの偏
位によって損なわれることなく、安定な状態を保持する
ことができ、磁気軸受の品質、性能を向上する効果があ
る。
As described above, according to the present invention, even if the rotor is deviated to change the dynamic characteristics of the current amplifier and the electromagnet as a whole, the compensation commander and the dynamic compensator apparently cause the overall movement of the rotor. The characteristics can be kept constant. For this reason, what was originally intended to stabilize the entire control system can be maintained in a stable state without being damaged by the deviation of the rotor, and there is an effect of improving the quality and performance of the magnetic bearing.

【0008】[0008]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】補償指令器と動的補償器の一実施例のブロック
図である。
FIG. 2 is a block diagram of an embodiment of a compensation commander and a dynamic compensator.

【図3】実施例の動特性線図である。FIG. 3 is a dynamic characteristic diagram of the example.

【図4】従来の磁気軸受制御装置ブロック図である。FIG. 4 is a block diagram of a conventional magnetic bearing control device.

【符号の説明】[Explanation of symbols]

1 ロータ 2,3 電磁石 4,5 コイル 6 センサヘッド 7,8 電流増幅器 9 制御器 10 変位変換器 11 比較器 12,13 補償指令器 14,15 動的補償器 1 Rotor 2,3 Electromagnet 4,5 Coil 6 Sensor head 7,8 Current amplifier 9 Controller 10 Displacement converter 11 Comparator 12,13 Compensation commander 14,15 Dynamic compensator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ロータと、ロータの外周に間隙をおいて
配置され且つコイルを巻回された電磁石と、該電磁石に
電流を供給する電流増幅器と、該電流増幅器に指令を与
える制御器と、前記ロータの浮上位置を検出し該制御器
に検出信号を与える変位センサから成る磁気軸受におい
て、該変位センサの信号に基づき、ロータの浮上位置に
対応して変化する磁石の時定数を補償する動的補償器を
前記制御器と前記電力増幅器の間に設けたことを持徴と
する磁気軸受の制御方法。
1. A rotor, an electromagnet having a coil wound around an outer periphery of the rotor and wound with a coil, a current amplifier for supplying a current to the electromagnet, and a controller for giving a command to the current amplifier. In a magnetic bearing comprising a displacement sensor for detecting the floating position of the rotor and giving a detection signal to the controller, a dynamic bearing for compensating for a time constant of a magnet which changes corresponding to the floating position of the rotor based on the signal of the displacement sensor. A method of controlling a magnetic bearing, characterized in that a dynamic compensator is provided between the controller and the power amplifier.
【請求項2】 動的補償器と、電流増幅器と、電磁石の
全体の伝達特性が、ロータの浮上位置に拘わらずおおむ
ね一定となるよう補償される請求項1記載の磁気軸受の
制御方法。
2. The method of controlling a magnetic bearing according to claim 1, wherein the dynamic transfer compensator, the current amplifier, and the electromagnet are compensated so that the transfer characteristics thereof are substantially constant regardless of the floating position of the rotor.
【請求項3】 動的補償器の補償指令は、ロータの変位
信号に基づいて、補償指令器によって得られる請求項1
記載の磁気軸受の制御方法。
3. The compensating command of the dynamic compensator is obtained by the compensating command device based on the displacement signal of the rotor.
A method for controlling a magnetic bearing as described.
JP41794190A 1990-12-20 1990-12-20 Control method for magnetic bearing Pending JPH05306715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41794190A JPH05306715A (en) 1990-12-20 1990-12-20 Control method for magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41794190A JPH05306715A (en) 1990-12-20 1990-12-20 Control method for magnetic bearing

Publications (1)

Publication Number Publication Date
JPH05306715A true JPH05306715A (en) 1993-11-19

Family

ID=18525936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41794190A Pending JPH05306715A (en) 1990-12-20 1990-12-20 Control method for magnetic bearing

Country Status (1)

Country Link
JP (1) JPH05306715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112610604A (en) * 2020-12-30 2021-04-06 四川龙天精工科技有限公司 Gas-magnetic hybrid bearing error compensation method based on electromagnetic force adjustment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112610604A (en) * 2020-12-30 2021-04-06 四川龙天精工科技有限公司 Gas-magnetic hybrid bearing error compensation method based on electromagnetic force adjustment

Similar Documents

Publication Publication Date Title
US5449985A (en) Zero-power control type vibration eliminating apparatus
JPH04245408A (en) Electromagnetic support depending upon no current
JPH05306715A (en) Control method for magnetic bearing
JP3306893B2 (en) Magnetic bearing device
US5140209A (en) Method of controlling electromagnets in electromagentic bearings
JP3218118B2 (en) Magnetic bearing device
US20020011754A1 (en) Magnetic bearing apparatus
JP2005036839A (en) Magnetic supporting device
JP3448734B2 (en) Control device used for magnetic levitation system
US20070080594A1 (en) Power amplification device and magnetic bearing
JPH06213233A (en) Magnetic bearing device
JP3972529B2 (en) Steel plate damping device
JPH08296643A (en) Control device of magnetic bearing
JP3187982B2 (en) Magnetic levitation device
JP3497562B2 (en) Servo control circuit for active magnetic bearing
JPH06197415A (en) Magnetic levitation slider
JP2001107961A (en) Electromagnetic driving device
JP2606256Y2 (en) Magnetic bearing device
JPH05306716A (en) Controller for magnetic bearing
JP2546997B2 (en) Non-contact support method
JPS63200605A (en) Power amplifier for generating magnetic attraction force
JP3478876B2 (en) Excitation controller for magnetic bearing
JP3311394B2 (en) Electromagnet control device
JP2556036B2 (en) Magnetic bearing control device
JP2006090539A (en) Magnetic bearing