JPH06197415A - Magnetic levitation slider - Google Patents

Magnetic levitation slider

Info

Publication number
JPH06197415A
JPH06197415A JP34647192A JP34647192A JPH06197415A JP H06197415 A JPH06197415 A JP H06197415A JP 34647192 A JP34647192 A JP 34647192A JP 34647192 A JP34647192 A JP 34647192A JP H06197415 A JPH06197415 A JP H06197415A
Authority
JP
Japan
Prior art keywords
slider
gain
levitation
circuit
loading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34647192A
Other languages
Japanese (ja)
Inventor
Yoichi Kinoshita
洋一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP34647192A priority Critical patent/JPH06197415A/en
Publication of JPH06197415A publication Critical patent/JPH06197415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Mechanical Conveyors (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To provide a magnetic levitation slider in which a slider can be levitated stably irrespective of the time of no-loading and loading. CONSTITUTION:A feedback voltages from levitation gap sensors 2a, 2b are compared with a reference voltage from a slider levitation position reference voltage generator 31 by a comparator 32, its differential voltage is amplified by a deviation amplifier 33, and a phase delay of a control system is compensated by a phase compensator 34. Gains are varied at the times of loading and no-loading, levitation electromagnets 1a, 1b power amplified by a power amplifier 35 are driven to reduce the gain at the time of no-loading to decrease dynamic stiffness and to enhance the gain at the time of loading to increase the stiffness, thereby improving stability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は磁気浮上スライダに関
し、特に、半導体製造工場などのクリーンルームに設け
られ、レール上を浮上用電磁石によって磁気浮上しなが
ら走行するような磁気浮上スライダに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic levitation slider, and more particularly to a magnetic levitation slider which is provided in a clean room such as a semiconductor manufacturing factory and runs on a rail while being magnetically levitated by a levitation electromagnet.

【0002】[0002]

【従来の技術】図3は従来の磁気浮上スライダの縦断面
図である。図3において、磁気浮上スライダは、浮上用
電磁石1a,1bと浮上用ギャップセンサ2a,2bと
制御回路4と電源用バッテリ5などを含む。この磁気浮
上スライダは、磁性体のレール3a,3bに対して磁気
浮上スライダ10に設けられた浮上用ギャップセンサ2
a,2bによってレール3a,3bとの間の浮上方向に
おけるスライダの変位が検出され、その検出出力が制御
回路4に与えられる。制御回路4では、その変位と設定
値との偏差を増幅し、位相補償を行なった後、電力増幅
することにより、浮上用電磁石1a,1bの電磁力をそ
れぞれ制御する。
2. Description of the Related Art FIG. 3 is a vertical sectional view of a conventional magnetic levitation slider. In FIG. 3, the magnetic levitation slider includes levitation electromagnets 1a and 1b, levitation gap sensors 2a and 2b, a control circuit 4, a power supply battery 5, and the like. This magnetic levitation slider includes a levitation gap sensor 2 provided on the magnetic levitation slider 10 with respect to magnetic rails 3a and 3b.
The displacement of the slider in the flying direction between the rails 3a and 3b is detected by a and 2b, and the detection output is given to the control circuit 4. The control circuit 4 controls the electromagnetic force of the levitation electromagnets 1a and 1b by amplifying the deviation between the displacement and the set value, performing phase compensation, and then amplifying the power.

【0003】[0003]

【発明が解決しようとする課題】図4は従来の磁気浮上
スライダにおける動剛性と周波数との関係を示す特性図
であり、図5は周波数とゲインおよび位相との関係を示
す特性図である。
FIG. 4 is a characteristic diagram showing the relationship between dynamic rigidity and frequency in a conventional magnetic levitation slider, and FIG. 5 is a characteristic diagram showing relationship between frequency and gain and phase.

【0004】前述の図3に示した磁気浮上スライダにお
いて、剛性を極力大きくして使用したい場合には、制御
系のゲインを図5に示すカーブaからカーブbとなるよ
うに上げてクロスオーバー周波数を上昇させることによ
って、図4の実線で示す動剛性から点線で示す動剛性に
上げることができる。図5におけるカーブbで示すゲイ
ンでは、未だ位相余裕のある状態であり、制御系として
安定して動作させることができる。
When it is desired to use the magnetic levitation slider shown in FIG. 3 with maximum rigidity, the gain of the control system is increased from the curve a shown in FIG. 5 to the curve b and the crossover frequency is increased. By raising the value, the dynamic rigidity shown by the solid line in FIG. 4 can be increased to the dynamic rigidity shown by the dotted line. With the gain shown by the curve b in FIG. 5, there is still a phase margin, and the control system can be operated stably.

【0005】一般にスライダの制御系のゲインを設定す
る場合、無負荷から搭載負荷状態の範囲で安定に浮上で
きる定数を選ばなければならない。しかしながら、1つ
の固定したゲイン定数で無負荷から搭載負荷状態までの
範囲を安定して浮上させることは、その範囲が広いほど
定数の選び方が困難になる。すなわち、スライダの浮上
中に、スライダが負荷を搭載している状態から無負荷状
態になった場合、負荷に対する制御系のゲインが必要以
上に高すぎると、レール3a,3bおよびスライダに何
らかの外乱が加わると、浮上用電磁石1a,1bの浮上
力が強すぎるため、スライダが所定の浮上定位置で止ま
らず、浮上方向と着地方向でオーバーシュートを繰り返
し、浮上定位置に落着かなくなってしまい、発振してし
まうという現象が生じる。
Generally, when setting the gain of the slider control system, it is necessary to select a constant that allows stable flying in the range of no load to the mounted load. However, in order to stably levitate the range from no load to the mounted load state with one fixed gain constant, the wider the range, the more difficult it becomes to select the constant. That is, when the slider is in the no-load state while the slider is flying and the load is loaded, if the gain of the control system with respect to the load is unnecessarily high, some disturbance will occur on the rails 3a and 3b and the slider. When added, the levitation electromagnets 1a and 1b have too strong a levitation force, so that the slider does not stop at a predetermined flying fixed position and repeats overshooting in the flying direction and the landing direction, so that it does not settle at the floating fixed position, and oscillation occurs. The phenomenon of being done occurs.

【0006】それゆえに、この発明の主たる目的は、無
負荷時と負荷時に関係なく安定して浮上できるような磁
気浮上スライダを提供することである。
Therefore, a main object of the present invention is to provide a magnetic levitation slider which can stably levitate irrespective of no load and load.

【0007】[0007]

【課題を解決するための手段】この発明は浮上用電磁
石,レールと浮上用電磁石との間の浮上ギャップを測定
するためのギャップセンサおよびギャップセンサの出力
をフィードバック入力として受け、浮上用電磁石を制御
する制御手段を備えた磁気浮上スライダにおいて、制御
手段は無負荷時と負荷時とでゲインを可変させるための
ゲイン可変手段を含む。
The present invention receives a levitation electromagnet, a gap sensor for measuring a levitation gap between a rail and a levitation electromagnet, and an output of the gap sensor as a feedback input to control the levitation electromagnet. In the magnetic levitation slider including the control means, the control means includes a gain varying means for varying the gain between no load and load.

【0008】より好ましくは、ゲイン可変手段は位相補
償回路,比較回路または偏差増幅回路のいずれかのゲイ
ンを可変させる。
More preferably, the gain varying means varies the gain of either the phase compensation circuit, the comparison circuit or the deviation amplification circuit.

【0009】[0009]

【作用】この発明に係る磁気浮上スライダは、無負荷時
と負荷時とでゲインを可変させることにより、負荷時に
おけるスライダの浮上定位置を安定させ、負荷搭載時に
は高剛性を得ることができる。
The magnetic levitation slider according to the present invention makes it possible to stabilize the levitation fixed position of the slider under load and to obtain high rigidity when the load is loaded by varying the gain between no load and load.

【0010】[0010]

【実施例】図1はこの発明の一実施例の概略ブロック図
である。図1において、制御回路30はスライダ浮上位
置基準電圧発生回路31と比較回路32と偏差増幅回路
33と位相補償回路34と電力増幅回路35とによって
構成される。スライダ浮上位置基準電圧発生回路31は
スライダの浮上方向の基準位置を示す一定の基準電圧を
発生する。比較回路32は浮上用ギャップセンサ2a,
2bからのフィードバック電圧とスライダ浮上位置基準
電圧発生回路31から与えられる基準電圧とを比較し、
両者の差電圧を出力する。偏差増幅回路33は比較回路
32から出力された偏差としての差電圧を増幅して位相
補償回路34に与える。位相補償回路34は制御系の位
相遅れを補償する。電力増幅回路35は位相補償回路3
4の出力を浮上用電磁石1a,1bの動作に必要な適宜
のレベルに増幅する。
1 is a schematic block diagram of an embodiment of the present invention. In FIG. 1, the control circuit 30 includes a slider flying position reference voltage generation circuit 31, a comparison circuit 32, a deviation amplification circuit 33, a phase compensation circuit 34, and a power amplification circuit 35. The slider flying position reference voltage generating circuit 31 generates a constant reference voltage indicating a reference position in the flying direction of the slider. The comparison circuit 32 is a floating gap sensor 2a,
The feedback voltage from 2b and the reference voltage given from the slider flying position reference voltage generating circuit 31 are compared,
It outputs the voltage difference between the two. The deviation amplification circuit 33 amplifies the difference voltage as the deviation output from the comparison circuit 32 and supplies it to the phase compensation circuit 34. The phase compensation circuit 34 compensates the phase delay of the control system. The power amplification circuit 35 is the phase compensation circuit 3
The output of No. 4 is amplified to an appropriate level required for the operation of the levitation electromagnets 1a and 1b.

【0011】図2はゲイン可変回路の具体的な電気回路
図である。この図2に示したゲイン可変回路は図1に示
した位相補償回路34に内蔵される。すなわち、位相補
償回路34は演算増幅器341を含む。この演算増幅器
341の一方の入力端(−)には、抵抗R1を介して偏
差増幅回路33の出力が与えられる。演算増幅器341
の一方入力端と出力端との間には帰還抵抗R2が接続さ
れ、この帰還抵抗R2に対して抵抗R3と常閉リレー接
点55との直列回路が並列接続される。演算増幅器34
1の他方入力端(+)は抵抗R4を介して接地される。
演算増幅器341の出力端は図1に示した電力増幅回路
35に接続される。
FIG. 2 is a specific electric circuit diagram of the variable gain circuit. The variable gain circuit shown in FIG. 2 is built in the phase compensation circuit 34 shown in FIG. That is, the phase compensation circuit 34 includes the operational amplifier 341. The output of the deviation amplification circuit 33 is given to one input terminal (-) of the operational amplifier 341 via the resistor R1. Operational amplifier 341
A feedback resistor R2 is connected between the one input terminal and the output terminal, and a series circuit of a resistor R3 and a normally closed relay contact 55 is connected in parallel to the feedback resistor R2. Operational amplifier 34
The other input terminal (+) of 1 is grounded via a resistor R4.
The output terminal of the operational amplifier 341 is connected to the power amplification circuit 35 shown in FIG.

【0012】上述のごとく位相補償回路34を構成した
ことによって、無負荷時には位相補償回路34の常閉接
点55が閉じられた状態となって、演算増幅器341に
は抵抗R2とR3が並列的に帰還ループに挿入されるこ
とになり、ゲインが低下する。また、負荷搭載時は位相
補償回路34の常閉接点55が開いた状態で切換えら
れ、演算増幅器341には抵抗R2のみが帰還ループに
挿入され、ゲインが大きくなる。
By configuring the phase compensation circuit 34 as described above, the normally closed contact 55 of the phase compensation circuit 34 is closed when there is no load, and the resistors R2 and R3 are connected in parallel to the operational amplifier 341. It will be inserted in the feedback loop, and the gain will decrease. Further, when a load is mounted, switching is performed with the normally-closed contact 55 of the phase compensation circuit 34 opened, and only the resistor R2 is inserted into the feedback loop in the operational amplifier 341, and the gain becomes large.

【0013】したがって、この発明の実施例によれば、
無負荷時には、前述の図5に示したゲインをカーブaに
示すように低くして動剛性を図4の実線で示すように小
さくし、負荷を搭載後のゲインを図5のカーブbのよう
に高め、動剛性を図4の点線に示すように高めることが
できる。
Therefore, according to an embodiment of the present invention,
When there is no load, the gain shown in FIG. 5 is lowered as shown by the curve a to reduce the dynamic rigidity as shown by the solid line in FIG. 4, and the gain after mounting the load is as shown by the curve b in FIG. The dynamic rigidity can be increased as shown by the dotted line in FIG.

【0014】なお、上述の実施例では、ゲインの切換回
路を位相補償回路34に内蔵したが、これに限ることな
く比較回路32または偏差増幅回路33に内蔵しても同
様の効果を得ることができる。
In the above embodiment, the gain switching circuit is incorporated in the phase compensation circuit 34, but the present invention is not limited to this, and the same effect can be obtained by incorporating it in the comparison circuit 32 or the deviation amplification circuit 33. it can.

【0015】また、上述の実施例では、無負荷時と負荷
搭載時のみの2段階にゲインを切換るようにしたが、搭
載負荷量に応じてゲインを2段階以上のステップで切換
えるようにしてもよい。
Further, in the above-described embodiment, the gain is switched in two steps only when there is no load and when the load is mounted. However, the gain is switched in two or more steps depending on the mounted load amount. Good.

【0016】さらに、常閉接点55の切換は、手動的な
スイッチによるかあるいは無負荷時と負荷時とをセンサ
によって検出して切換えるようにしてもよい。
Further, the switching of the normally-closed contact 55 may be performed by a manual switch or by detecting a no-load state and a load state by a sensor.

【0017】[0017]

【発明の効果】以上のように、この発明によれば、無負
荷時と負荷時とでゲインを可変するようにしたので、ス
ライダが浮上定位置に定まらないという現象を防止で
き、安定性を向上できる。
As described above, according to the present invention, the gain can be changed between no load and load, so that the phenomenon that the slider is not fixed at the flying fixed position can be prevented, and the stability is improved. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の概略ブロック図である。FIG. 1 is a schematic block diagram of an embodiment of the present invention.

【図2】ゲイン可変回路の具体的な電気回路図である。FIG. 2 is a specific electric circuit diagram of a gain variable circuit.

【図3】従来の磁気浮上スライダの縦断面図である。FIG. 3 is a vertical sectional view of a conventional magnetic levitation slider.

【図4】従来の磁気浮上スライダにおける動剛性と周波
数との関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between dynamic rigidity and frequency in a conventional magnetic levitation slider.

【図5】周波数とゲインおよび位相との関係を示す特性
図である。
FIG. 5 is a characteristic diagram showing the relationship between frequency and gain and phase.

【符号の説明】[Explanation of symbols]

1a,1b 浮上用電磁石 2a,2b 浮上用ギャップセンサ 3a,3b レール 4 制御回路 5 電源用バッテリ 10 磁気浮上スライダ 30 制御回路 31 スライダ浮上位置基準電圧発生回路 32 比較回路 33 偏差増幅回路 34 位相補償回路 35 電力増幅回路 55 常閉接点 341 演算増幅器 R1〜R4 抵抗 1a, 1b Floating electromagnet 2a, 2b Floating gap sensor 3a, 3b Rail 4 Control circuit 5 Power supply battery 10 Magnetic levitation slider 30 Control circuit 31 Slider levitation position reference voltage generation circuit 32 Comparison circuit 33 Deviation amplification circuit 34 Phase compensation circuit 35 power amplification circuit 55 normally closed contact 341 operational amplifier R1 to R4 resistance

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 浮上用電磁石,レールと前記浮上用電磁
石との間の浮上ギャップを測定するためのギャップセン
サおよび前記ギャップセンサの出力をフィードバック入
力として受け、前記浮上用電磁石を制御する制御手段を
備えた磁気浮上スライダにおいて、 前記制御手段は無負荷時と負荷時とでゲインを可変させ
るためのゲイン可変手段を備えたことを特徴とする、磁
気浮上スライダ。
1. A levitation electromagnet, a gap sensor for measuring a levitation gap between a rail and the levitation electromagnet, and control means for receiving the output of the gap sensor as a feedback input and controlling the levitation electromagnet. A magnetic levitation slider, comprising: a magnetic levitation slider, wherein the control means includes a gain varying means for varying a gain between no load and a load.
【請求項2】 前記制御手段は、制御系の位相遅れを補
償するための位相補償回路を含み、 前記ゲイン可変手段は、前記位相補償回路のゲインを可
変することを特徴とする、請求項1の磁気浮上スライ
ダ。
2. The control means includes a phase compensating circuit for compensating for a phase delay of a control system, and the gain varying means varies the gain of the phase compensating circuit. Magnetic levitation slider.
【請求項3】 前記制御手段は基準電圧と前記各ギャッ
プセンサの出力とを比較する比較回路を含み、 前記ゲイン可変手段は前記比較回路のゲインを可変する
ようにしたことを特徴とする、請求項1の磁気浮上スラ
イダ。
3. The control means includes a comparison circuit for comparing a reference voltage with the output of each of the gap sensors, and the gain changing means changes the gain of the comparison circuit. Item 1. A magnetically levitated slider.
【請求項4】 前記制御手段は基準電圧と前記ギャップ
センサの出力との偏差を増幅する偏差増幅回路を含み、 前記ゲイン可変手段は前記偏差増幅回路のゲインを可変
することを特徴とする、請求項1の磁気浮上スライダ。
4. The control means includes a deviation amplification circuit that amplifies a deviation between a reference voltage and an output of the gap sensor, and the gain changing means changes the gain of the deviation amplification circuit. Item 1. A magnetically levitated slider.
JP34647192A 1992-12-25 1992-12-25 Magnetic levitation slider Pending JPH06197415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34647192A JPH06197415A (en) 1992-12-25 1992-12-25 Magnetic levitation slider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34647192A JPH06197415A (en) 1992-12-25 1992-12-25 Magnetic levitation slider

Publications (1)

Publication Number Publication Date
JPH06197415A true JPH06197415A (en) 1994-07-15

Family

ID=18383654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34647192A Pending JPH06197415A (en) 1992-12-25 1992-12-25 Magnetic levitation slider

Country Status (1)

Country Link
JP (1) JPH06197415A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902452A (en) * 1986-07-28 1990-02-20 Mitsubishi Rayon Co., Ltd. Process for producing an acrylic fiber having high fiber characteristics
JP2002106561A (en) * 2000-09-28 2002-04-10 Seiko Instruments Inc Controller for magnetic levitation body
KR100541563B1 (en) * 1998-12-24 2006-03-09 주식회사 로템 A folating controller of a maglev
WO2008047745A1 (en) 2006-10-18 2008-04-24 Toray Industries, Inc. Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902452A (en) * 1986-07-28 1990-02-20 Mitsubishi Rayon Co., Ltd. Process for producing an acrylic fiber having high fiber characteristics
KR100541563B1 (en) * 1998-12-24 2006-03-09 주식회사 로템 A folating controller of a maglev
JP2002106561A (en) * 2000-09-28 2002-04-10 Seiko Instruments Inc Controller for magnetic levitation body
WO2008047745A1 (en) 2006-10-18 2008-04-24 Toray Industries, Inc. Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber

Similar Documents

Publication Publication Date Title
US5449985A (en) Zero-power control type vibration eliminating apparatus
US6346757B1 (en) Magnetic bearing controller
US4308490A (en) Device for compensating the gain of a servo-controlled circuit by negative current feedback
US6359767B1 (en) Apparatus for controlling magnetic levitation system
JP5256903B2 (en) Magnetic levitation system
JPH06197415A (en) Magnetic levitation slider
JP4154804B2 (en) Steel plate damping device
JPH05219610A (en) Levitation gap controller for magnetic levitating body
JP3306893B2 (en) Magnetic bearing device
JPH0666346A (en) Active vibration insulating device
US20020011754A1 (en) Magnetic bearing apparatus
JP3536926B2 (en) Magnetic bearing
JPH09257035A (en) Control device for magnetic bearing
JPH0984214A (en) Magnetic levitation controller
JPH1187136A (en) Magnetic levitation system
JP2663683B2 (en) Anti-vibration device for transport vehicles
JP2608711B2 (en) Magnetic levitation shaft controller for magnetic bearings
JPH05306715A (en) Control method for magnetic bearing
JPH06165314A (en) Levitation gap automatic regulator for magnetic levitation apparatus
JPH05306716A (en) Controller for magnetic bearing
JP2778882B2 (en) Floating transfer device
JPH0630508A (en) Magnetic levitation method
JP3347782B2 (en) Non-contact lifting device
JPH0886314A (en) Magnetic bearing device
JPH0728482B2 (en) Magnetic levitation transportation method and device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010911