JPH0530329Y2 - - Google Patents

Info

Publication number
JPH0530329Y2
JPH0530329Y2 JP3530788U JP3530788U JPH0530329Y2 JP H0530329 Y2 JPH0530329 Y2 JP H0530329Y2 JP 3530788 U JP3530788 U JP 3530788U JP 3530788 U JP3530788 U JP 3530788U JP H0530329 Y2 JPH0530329 Y2 JP H0530329Y2
Authority
JP
Japan
Prior art keywords
superconducting coil
superconducting
helium container
coil
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3530788U
Other languages
Japanese (ja)
Other versions
JPH01139409U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3530788U priority Critical patent/JPH0530329Y2/ja
Publication of JPH01139409U publication Critical patent/JPH01139409U/ja
Application granted granted Critical
Publication of JPH0530329Y2 publication Critical patent/JPH0530329Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、超電導電力貯蔵装置(以下、SMES
と略称する。)に関する。
[Detailed description of the invention] [Industrial application field] This invention is a superconducting power storage device (hereinafter referred to as SMES).
It is abbreviated as. ) regarding.

〔従来の技術〕[Conventional technology]

SMESは、超電導コイルに永久電流を流して電
力を磁場エネルギの形で貯蔵するもので、通常コ
イルに作用する巨大な電磁力を支持するために、
第4図に示す如く岩盤1内にトーラス状の空洞2
を形成し、この空洞2の内部に超電導コイルをは
じめとする各種機器が設置される。また、SMES
は超電導コイルを液体ヘリウム等の冷媒によつて
極低温(通常4K程度)に冷却して使用するため、
第5図及び第6図に示す如く超電導コイル3をヘ
リウム容器内に封入し、さらに超電導コイル3へ
の熱侵入をできるだけ低減するために、ヘリウム
容器4を真空容器5内に設置して周辺との真空断
熱効果を持たせている。そして、超電導コイル3
で生ずる強大な電磁力(向心力)及び自重は、そ
れぞれ向心力支持部材6及び自重支持脚7を介し
て岩盤1に伝えられるようになつている。なお、
輻射侵入熱を低減するためにサーマルシールド層
8がヘリウム容器4と真空容器5との間に設けら
れる場合もある。
SMES stores electric power in the form of magnetic field energy by passing a persistent current through a superconducting coil, and in order to support the huge electromagnetic force that normally acts on the coil,
As shown in Fig. 4, a torus-shaped cavity 2 is inside the rock 1.
is formed, and various devices including superconducting coils are installed inside this cavity 2. Also, SMES
uses a superconducting coil cooled to an extremely low temperature (usually around 4K) using a coolant such as liquid helium.
As shown in FIGS. 5 and 6, the superconducting coil 3 is enclosed in a helium container, and in order to reduce heat intrusion into the superconducting coil 3 as much as possible, the helium container 4 is placed in a vacuum container 5 and the surroundings are sealed. It has a vacuum insulation effect. And superconducting coil 3
The strong electromagnetic force (centripetal force) and dead weight generated by the rock are transmitted to the rock 1 via the centripetal force supporting member 6 and the dead weight supporting legs 7, respectively. In addition,
In some cases, a thermal shield layer 8 is provided between the helium container 4 and the vacuum container 5 to reduce radiant heat intrusion.

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

ところで、このようなSMESでは、第7図に示
す如く超電導コイル3は超電導コイル導体9をド
ーナツ状に巻線(この図では25リターン巻線)
して形成されているため、超電導コイル導体9が
ヘリウム容器4内でバラバラにならないようにキ
ー(又はスペーサ)10によつて超電導コイル3
を固定する必要がある。ところが、このような方
法によると、製作時の運搬等による振動によつて
電導コイル導体9の位置がずれるという問題があ
り、超電導コイル導体9の位置がずれた場合には
電磁力(向心力)がヘリウム容器4に加わり、電
磁力によつてヘリウム容器4が破壊される可能性
がある。また、超電導コイル3の自重はキー(又
はスペーサ)10によつてヘリウム容器4の内側
や側板側にも局部的とは言え伝達されており、そ
の結果、ヘリウム容器4に対する荷重条件を厳し
くする必要があつた。
By the way, in such an SMES, as shown in FIG. 7, the superconducting coil 3 has a superconducting coil conductor 9 wound in a donut shape (25 return windings in this figure).
Since the superconducting coil conductor 9 is formed as
needs to be fixed. However, with this method, there is a problem that the position of the superconducting coil conductor 9 shifts due to vibrations caused by transportation during manufacturing, and when the position of the superconducting coil conductor 9 shifts, the electromagnetic force (centripetal force) The helium container 4 may be destroyed by the electromagnetic force applied to the helium container 4. In addition, the weight of the superconducting coil 3 is transmitted to the inside of the helium container 4 and the side plate side by the key (or spacer) 10, albeit locally, and as a result, it is necessary to tighten the load conditions on the helium container 4. It was hot.

本考案は、このような問題点に鑑みてなされた
もので、超電導コイルの電磁力及び自重を向心力
支持部材及び自重支持脚を介して岩盤に確実に伝
えることができ、ヘリウム容器の安全性及び信頼
性を向上させることができる超電導電力貯蔵装置
を提供しようとするものである。
The present invention was developed in view of these problems, and it is possible to reliably transmit the electromagnetic force and self-weight of the superconducting coil to the rock via the centripetal force support member and the self-weight support legs, thereby improving the safety and security of the helium container. The present invention aims to provide a superconducting power storage device that can improve reliability.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するために本発明は、超電導
コイル導体をドーナツ状に巻線してなる超電導コ
イルをヘリウム容器内に封入し、このヘリウム容
器を向心力支持部材及び自重支持脚を介して岩盤
内の空洞内に設置した超電導電力貯蔵装置におい
て、前記超電導コイルの電磁力及び自重が作用す
る部分の超電導コイル導体をそれぞれ略コ字形を
なすコイル固定バンドで束ね、これらコイル固定
バンドの両端を開放側を前記向心力支持部材及び
自重支持脚に向けてヘリウム容器に固定したこと
を特徴とする。
In order to solve the above problems, the present invention encapsulates a superconducting coil formed by winding a superconducting coil conductor in a donut shape in a helium container, and inserts the helium container into the rock via centripetal force supporting members and self-weight supporting legs. In a superconducting power storage device installed in a cavity, the superconducting coil conductors in the portions where the electromagnetic force and self-weight of the superconducting coil act are each bundled with coil fixing bands having a substantially U-shape, and both ends of these coil fixing bands are placed on the open side. is fixed to the helium container facing the centripetal force supporting member and the self-weight supporting leg.

〔作用〕[Effect]

本考案では、超電導コイルの電磁力及び自重が
作用する部分の超電導コイル導体をそれぞれ略コ
字形をなすコイル固定バンドで束ね、これらコイ
ル固定バンドの両端を開放側を前記向心力支持部
材及び自重支持脚に向けてヘリウム容器に固定す
ることにより、超電導コイルがヘリウム容器の外
側内面に密着するため、超電導コイルの電磁力及
び自重を向心力支持部材及び自重支持脚を介して
岩盤に確実に伝えることができる。
In the present invention, the superconducting coil conductors at the portions where the electromagnetic force and dead weight of the superconducting coil act are each bundled with a coil fixing band having a substantially U-shape, and both ends of these coil fixing bands are connected to the centripetal force supporting member and the dead weight supporting leg. By fixing it to the helium container with the superconducting coil facing toward the helium container, the superconducting coil comes into close contact with the outer inner surface of the helium container, so the electromagnetic force and self-weight of the superconducting coil can be reliably transmitted to the rock via the centripetal force support member and the self-weight support leg. .

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第3図は本考案の一実施例を示す
図で、第1図はSMESの概略図、第2図は第1図
の要部拡大図、第3図は第2図の−線矢視断
面図である。第1図及び第2図に示すように、超
電導コイル3は電磁力及び自重が作用する部分を
それぞれコイル固定バンド11,11で束ねら
れ、ヘリウム容器4内に封入されている。上記コ
イル固定バンド11は第3図に示すように略コ字
形をなし、その両端は開放側を向心力支持部材6
及び自重支持脚7に向けてヘリウム容器4の外側
内面に設けられた固定バンド取付台12の側面に
ボルト13によつて固定されている。
Figures 1 to 3 are diagrams showing one embodiment of the present invention, where Figure 1 is a schematic diagram of SMES, Figure 2 is an enlarged view of the main part of Figure 1, and Figure 3 is the same as in Figure 2. It is a sectional view taken along the line. As shown in FIGS. 1 and 2, the portions of the superconducting coil 3 on which electromagnetic force and self-weight act are bound together by coil fixing bands 11, 11, respectively, and the superconducting coil 3 is sealed in a helium container 4. The coil fixing band 11 has a substantially U-shape as shown in FIG.
It is fixed by bolts 13 to the side surface of a fixing band mount 12 provided on the outer inner surface of the helium container 4 toward the self-weight supporting leg 7 .

このように、超電導コイル3の電磁力及び自重
が作用する部分の超電導コイル導体9をそれぞれ
略コ字形をなすコイル固定バンド11,11で束
ね、これらコイル固定バンド11,11の両端を
開放側を向心力支持部材6及び自重支持脚7に向
けてヘリウム容器4の一部である固定バンド取付
台12に固定することにより、超電導コイル3が
第3図に示すように上記固定バンド取付台12つ
まりヘリウム容器4の外側内面に密着するため、
超電導コイル3の電磁力及び自重を向心力支持部
材6及び自重支持脚7を介して岩盤1に確実に伝
えることができる。従つて、ヘリウム容器4が電
磁力によつて破壊される虞れがなく、また超電導
コイル3の自重がヘリウム容器4の内側や側板側
に局部的に作用することもないので、ヘリウム容
器4の安全性及び信頼性を向上させることができ
る。
In this way, the superconducting coil conductors 9 in the portions of the superconducting coil 3 where the electromagnetic force and self-weight act are bundled with the substantially U-shaped coil fixing bands 11, 11, and both ends of these coil fixing bands 11, 11 are connected with the open side By fixing the superconducting coil 3 to the fixing band mount 12, which is a part of the helium container 4, toward the centripetal force support member 6 and the self-weight supporting leg 7, the superconducting coil 3 is fixed to the fixing band mount 12, that is, helium, as shown in FIG. Because it is in close contact with the outer inner surface of the container 4,
The electromagnetic force and dead weight of the superconducting coil 3 can be reliably transmitted to the bedrock 1 via the centripetal force supporting member 6 and the dead weight supporting legs 7. Therefore, there is no risk that the helium container 4 will be destroyed by electromagnetic force, and the weight of the superconducting coil 3 will not act locally on the inside of the helium container 4 or on the side plate side. Safety and reliability can be improved.

〔考案の効果〕[Effect of idea]

以上説明したように本考案によれば、超電導コ
イルの電磁力及び自重を向心力支持部材及び自重
支持脚を介して岩盤に確実に伝えることができ、
ヘリウム容器の安全性及び信頼性を向上させるこ
とができる。また、超電導コイルが製作時に位置
ずれを起こすことがないので、超電導コイルの組
立てが容易となり、製作コストの低減を図ること
もできる。
As explained above, according to the present invention, the electromagnetic force and self-weight of the superconducting coil can be reliably transmitted to the rock via the centripetal force supporting member and the self-weight supporting legs,
The safety and reliability of helium containers can be improved. Furthermore, since the superconducting coil does not shift in position during manufacture, the superconducting coil can be easily assembled, and manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本考案の一実施例を示す
図で、第1図はSMESの概略図、第2図は第1図
の要部拡大図、第3図は第2図の−線矢視断
面図である。また、第4図ないし第7図は従来技
術を説明するための図で、第4図はSMESの概念
図、第5図はSMESの概略図、第6図は第5図の
−線矢視断面図、第7図は第6図の要部拡大
図である。 1……岩盤、2……空洞、3……超電導コイ
ル、4……ヘリウム容器、5……真空容器、6…
…向心力支持部材、7……自重支持脚、9……超
電導コイル導体、11……コイル固定バンド、1
2……固定バンド取付台。
Figures 1 to 3 are diagrams showing one embodiment of the present invention, in which Figure 1 is a schematic diagram of SMES, Figure 2 is an enlarged view of the main part of Figure 1, and Figure 3 is the same as in Figure 2. It is a sectional view taken along the line. In addition, Figures 4 to 7 are diagrams for explaining the prior art, in which Figure 4 is a conceptual diagram of SMES, Figure 5 is a schematic diagram of SMES, and Figure 6 is viewed from the - line arrow in Figure 5. The sectional view, FIG. 7, is an enlarged view of the main part of FIG. 6. 1... Bedrock, 2... Cavity, 3... Superconducting coil, 4... Helium container, 5... Vacuum container, 6...
... Centripetal force support member, 7 ... Weight support leg, 9 ... Superconducting coil conductor, 11 ... Coil fixing band, 1
2...Fixed band mounting base.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 超電導コイル導体をドーナツ状に巻線してなる
超電導コイルをヘリウム容器内に封入し、このヘ
リウム容器を向心力支持部材及び自重支持脚を介
して岩盤内の空洞内に設置した超電導電力貯蔵装
置において、前記超電導コイルの電磁力及び自重
が作用する部分の超電導コイル導体をそれぞれ略
コ字形をなすコイル固定バンドで束ね、これらコ
イル固定バンドの両端を開放側を前記向心力支持
部材及び自重支持脚に向けてヘリウム容器に固定
したことを特徴とする超電導電力貯蔵装置。
A superconducting power storage device in which a superconducting coil formed by winding a superconducting coil conductor in a donut shape is enclosed in a helium container, and this helium container is installed in a cavity in a bedrock via a centripetal force supporting member and self-weight supporting legs, The superconducting coil conductors in the portions of the superconducting coil on which electromagnetic force and dead weight act are each bundled with coil fixing bands having a substantially U-shape, and both ends of these coil fixing bands are placed with the open sides facing the centripetal force supporting member and the dead weight supporting legs. A superconducting power storage device characterized by being fixed in a helium container.
JP3530788U 1988-03-18 1988-03-18 Expired - Lifetime JPH0530329Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3530788U JPH0530329Y2 (en) 1988-03-18 1988-03-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3530788U JPH0530329Y2 (en) 1988-03-18 1988-03-18

Publications (2)

Publication Number Publication Date
JPH01139409U JPH01139409U (en) 1989-09-22
JPH0530329Y2 true JPH0530329Y2 (en) 1993-08-03

Family

ID=31261962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3530788U Expired - Lifetime JPH0530329Y2 (en) 1988-03-18 1988-03-18

Country Status (1)

Country Link
JP (1) JPH0530329Y2 (en)

Also Published As

Publication number Publication date
JPH01139409U (en) 1989-09-22

Similar Documents

Publication Publication Date Title
JPH04188709A (en) Superconducting coil apparatus
JPH0530329Y2 (en)
JPH07142241A (en) Superconducting magnet device
JP2001143943A (en) Transformer
JP3122493B2 (en) Superconducting coil device
JP2560561B2 (en) Superconducting coil device
JPH0137841B2 (en)
JPS603555Y2 (en) superconducting coil
JPH0622965Y2 (en) Superconducting coil device
JPH11144940A (en) Superconducting magnet device
JPS6119089B2 (en)
JPS6112647Y2 (en)
JP3418862B2 (en) Radiation shield plate
JPH05275755A (en) Cryostat
JPS62229905A (en) Superconducting magnet
JP3863927B2 (en) Superconducting magnet device
JPH0642352Y2 (en) Superconducting magnet switch
JP2550168B2 (en) Foil-wound transformer
JP3068922B2 (en) Superconducting magnet
JPH07169997A (en) Inner casing holding device of superconductive magnet
JPS6248003A (en) Superconducting coil
JP2739159B2 (en) Toroidal magnet
JPH08162316A (en) Superconducting magnet apparatus
JP2570026B2 (en) Superconducting magnet for maglev train
JP3874836B2 (en) Superconducting device