JPH07169997A - Inner casing holding device of superconductive magnet - Google Patents

Inner casing holding device of superconductive magnet

Info

Publication number
JPH07169997A
JPH07169997A JP5315067A JP31506793A JPH07169997A JP H07169997 A JPH07169997 A JP H07169997A JP 5315067 A JP5315067 A JP 5315067A JP 31506793 A JP31506793 A JP 31506793A JP H07169997 A JPH07169997 A JP H07169997A
Authority
JP
Japan
Prior art keywords
inner tank
superconducting magnet
support cylinder
cylinder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5315067A
Other languages
Japanese (ja)
Inventor
Katsumi Okada
克己 岡田
Tomohisa Yamashita
知久 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Transport Engineering Inc
Original Assignee
Toshiba Corp
Toshiba Transport Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Transport Engineering Inc filed Critical Toshiba Corp
Priority to JP5315067A priority Critical patent/JPH07169997A/en
Publication of JPH07169997A publication Critical patent/JPH07169997A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make thermal insulation between outer casing and inner casing on the same level as conventional one and to make it possible to maintain a sufficient insulation in terms of vibration by making up a support cylinder with such a nonmagnetic damper of the dislocation type as Fe-Ni-Mn alloy and the like as a material with a high vibration damping power. CONSTITUTION:Damper made metal fittings 15A and 16A are provided between a connecting rod 14 connected to an outer casing 9 and an FRP-made holding cylinder (high-temperature side) 13, and a metal support cylinder 12A made of nonmagnetic damper of the dislocation type such as Fe-Ni-Mn alloy and the like is provided between the FRP-made support cylinder (high-temperature side) 13 and the FRP-made support cylinder (low-temperature side) 11. The inner casing holding device is constructed that a thermal shield plate 7 is supported by a junction of the FRP-made support cylinder (low-temperature side) 11 and the metallic support cylinder 12A. By constructing the inner casing holding device in this manner, vibration transmitted from the outer casing 9 to the inner casing 6 will certainly pass through the damper-made support cylinder 12A, where the majority of the vibration energy is converted into thermal energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気浮上式鉄道の超電
導磁石の内槽支持装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner tank supporting device for a superconducting magnet of a magnetic levitation railway.

【0002】[0002]

【従来の技術】従来の磁気浮上式鉄道の超電導磁石装置
について図3を参照して説明する。
2. Description of the Related Art A conventional superconducting magnet device for a magnetic levitation railway will be described with reference to FIG.

【0003】磁気浮上式鉄道の浮上・案内・推進用に使
用する超電導磁石装置1は車両2の下部の台車3の左右
両側面に設置して、軌道に設けた地上コイル4と対応し
て車両を浮上、案内、推進せしめる。
Superconducting magnet devices 1 used for levitation, guidance, and propulsion of a magnetically levitated railway are installed on both left and right sides of a bogie 3 below a vehicle 2 to correspond to a ground coil 4 provided on a track. To surface, guide, and promote.

【0004】超電導磁石1は超電導コイル5とこれを収
容して極低温に維持する内槽6と、内槽を覆う熱シール
ド板7、更に、これを断熱保持するため、内槽支持装置
8を介して宙吊りに収容する真空容器の外槽9に収容し
て構成される。
The superconducting magnet 1 comprises a superconducting coil 5, an inner tank 6 for accommodating the superconducting coil 5 and maintaining it at a cryogenic temperature, a heat shield plate 7 for covering the inner tank, and an inner tank supporting device 8 for holding the heat insulation. It is configured to be housed in an outer tank 9 of a vacuum container which is housed in a hanging manner via.

【0005】超電導磁石はこのような構成と役割をも
ち、従来の電車における台車の駆動電導機と車輪の役を
果たしている。このため超電導磁石に要求される性能と
して前記の駆動力に耐える強度、剛性と共に、車両の運
動性能に関連する車両のばね下重量の一部として、或い
は浮上力のためにも重量の軽減が求められる。
The superconducting magnet has such a structure and a role, and plays the role of a drive electric conductor and wheels of a truck in a conventional electric train. Therefore, in addition to the strength and rigidity to withstand the driving force described above as the performance required for the superconducting magnet, the weight reduction is required as a part of the unsprung weight of the vehicle related to the dynamic performance of the vehicle or for the levitation force. To be

【0006】しかし、内部に超電導コイル5を収容した
内槽6に外部からの熱の侵入を防いで冷却用液体ヘリウ
ムの気化を最小限にする為に、外槽9に対し内槽6を支
持する内槽支持装置8もあまり大きく強固なものにする
ことが出来ない。
However, in order to prevent heat from entering from the outside into the inner tank 6 containing the superconducting coil 5 and to minimize vaporization of the cooling liquid helium, the inner tank 6 is supported with respect to the outer tank 9. The inner tank supporting device 8 cannot be made too large and strong.

【0007】更に、磁気浮上式鉄道の場合は軌道10に
連続的に配置した地上コイル4に発生する移動磁束に沿
って超電導磁石は移動するが、このとき地上コイル4か
ら作用する電磁力には高次高調波が含まれており、この
高調波加振が超電導磁石にきびしい負荷をあたえるの
で、これ等の負荷に耐え得る超電導磁石が要求される。
このような内槽6を支持する内槽支持装置8の構造とし
て図4に示す構造の多重円筒挟み込み方式が採用されて
いる。これは電磁気的な作用力に対し充分な機械的強度
を有し、同時に熱侵入の低減をはかる構造になってい
る。
Further, in the case of the magnetic levitation railway, the superconducting magnet moves along the moving magnetic flux generated in the ground coil 4 continuously arranged on the track 10, but the electromagnetic force acting from the ground coil 4 at this time is Since high-order harmonics are included and the harmonic excitation gives a severe load to the superconducting magnet, a superconducting magnet capable of withstanding these loads is required.
As a structure of the inner tank supporting device 8 which supports the inner tank 6 as described above, a multi-cylinder pinching method having a structure shown in FIG. 4 is adopted. This has a structure that has sufficient mechanical strength against electromagnetic force and at the same time reduces heat intrusion.

【0008】即ち、内槽6をまず、FRP(繊維強化プ
ラスチック)製支持筒11(低温側)で支え、これをア
ルミニューム(或いはステンレス鋼)製支持筒12で支
え、更にFRP製支持筒13(高温側)で支持する三重
の多重支持挟み込み方式である。これを外槽に締結して
いる締結棒14に、押さえ金具15、16により固定す
る。
That is, the inner tank 6 is first supported by an FRP (fiber reinforced plastic) support tube 11 (low temperature side), which is supported by an aluminum (or stainless steel) support tube 12, and then an FRP support tube 13 It is a triple-supporting sandwiching method that supports on the (high temperature side). This is fixed to the fastening rod 14 fastened to the outer tub with the holding metal fittings 15 and 16.

【0009】このような構成により、熱絶縁と共に支持
筒の強度(耐圧縮性と引張性)と軽量化を確保してい
る。
With such a structure, strength (compression resistance and tensile strength) and weight saving of the support cylinder are secured together with heat insulation.

【0010】[0010]

【発明が解決しようとする課題】このように超電導磁石
はきびしい軽量化とともに電磁気的な高調波加振に耐え
なければならない。しかもその高調波加振は数百ヘルツ
におよぶものであるので超電導磁石の部分振動にも配慮
しないと、内槽から外槽間の相対振動による交流ロスや
内槽の機械ロスが発生するという問題が生じる。
As described above, the superconducting magnet must be severely lightweight and must endure electromagnetic harmonic excitation. Moreover, since the harmonic vibrations reach several hundreds of hertz, if the partial vibration of the superconducting magnet is not considered, AC loss due to relative vibration between the inner tank and the outer tank and mechanical loss of the inner tank will occur. Occurs.

【0011】この交流ロスや機械ロス発生のメカニズム
を以下に説明する。
The mechanism of this AC loss and mechanical loss generation will be described below.

【0012】内槽支持装置8を固定する外槽9の外板
は、構造的寸法的重量的に許容できる最大厚さの厚板で
構成しているが、前記数百ヘルツの高調波加振により部
分的な振動を生ずる。共振点などで外槽9の振動が拡大
する場合、外槽の振動を直接的に内槽6に伝達してしま
う。
The outer plate of the outer tub 9 for fixing the inner tub supporting device 8 is composed of a thick plate having the maximum thickness that is structurally and dimensionally allowable. Causes partial vibration. When the vibration of the outer tank 9 expands at the resonance point or the like, the vibration of the outer tank is directly transmitted to the inner tank 6.

【0013】内槽6に振動が伝達されると、外界と熱的
に絶縁されていても、内槽自身に機械的な摩擦熱(機械
ロス)が発生したり、超電導コイルとの相対距離の変化
することにより内槽表面に生ずる渦電流に応じたジュー
ル熱(交流ロス)が発生することになる。内槽にこのよ
うな機械ロスと交流ロスが発生すれば、液体ヘリウムな
どの冷媒により低温に保たれている内槽の温度は上昇
し、超電導磁石の安定性が確保できなくなるという問題
が生じる。
When the vibration is transmitted to the inner tank 6, mechanical frictional heat (mechanical loss) is generated in the inner tank itself even if it is thermally insulated from the outside world, and the relative distance from the superconducting coil is increased. Due to the change, Joule heat (AC loss) corresponding to the eddy current generated on the inner tank surface is generated. When such mechanical loss and AC loss occur in the inner tank, the temperature of the inner tank, which is kept at a low temperature by a refrigerant such as liquid helium, rises, and the stability of the superconducting magnet cannot be ensured.

【0014】内槽の振動がさらに大きくなり液体ヘリウ
ムなどの冷媒の蒸発量が急激に増加し、内槽の温度がさ
らに上昇すると超電導状態の破壊(クエンチ)や、冷媒
の冷凍機の冷凍能力を超えてしまうと浮上式鉄道のシス
テム自体が成立しなくなる事態に発展する恐れがある。
When the vibration of the inner tank further increases and the evaporation amount of the refrigerant such as liquid helium sharply increases and the temperature of the inner tank further rises, the superconducting state is destroyed (quenching) and the refrigerating capacity of the refrigerator of the refrigerant is increased. If it exceeds, there is a risk that the floating railway system itself will not be established.

【0015】本発明は、外槽と内槽の熱的絶縁を従来と
同等とし、なおかつ、振動的にも充分に絶縁することが
出来る超電導磁石の内槽支持装置を得ることを目的とす
る。
It is an object of the present invention to obtain an inner tank supporting device for a superconducting magnet, which has the same thermal insulation between the outer tank and the inner tank as the conventional one, and can sufficiently insulate vibrationally.

【0016】[0016]

【課題を解決するための手段】浮上式鉄道の超電導磁石
装置に収納される多重円筒挟み込み方式の内槽支持装置
の一部にステンレス鋼と同等の機械的性質を有し、かつ
振動減衰能が高い材料としてFe−Ni−Mn合金など
の転位型非磁性制振材による支持円筒で支持筒を構成
し、必要に応じてその表面に良熱伝導性金属膜を形成
し、又、サーマルアンカーを設ける。
[Means for Solving the Problems] A part of an inner tank supporting device of a multi-cylinder sandwiching type housed in a superconducting magnet device of a levitation railway has a mechanical property equivalent to that of stainless steel and has a vibration damping capability. As a high material, a supporting cylinder is made of a supporting cylinder made of a dislocation type non-magnetic damping material such as Fe-Ni-Mn alloy, and if necessary, a good heat conductive metal film is formed on the supporting cylinder, and a thermal anchor is formed. Set up.

【0017】[0017]

【作用】上記のような構成による多重円筒挟み方式の内
槽支持装置は、内槽と外槽の熱的な絶縁性が良好で、
且、外槽から内槽へ伝達される機械的振動を大幅に低減
する。
The multi-cylinder sandwich type inner tank supporting device having the above-described structure has good thermal insulation between the inner tank and the outer tank,
Moreover, the mechanical vibration transmitted from the outer tank to the inner tank is significantly reduced.

【0018】[0018]

【実施例】本発明を図1に示す実施例に基づいて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described based on the embodiment shown in FIG.

【0019】外槽9と接合されている締結棒14と、F
RP製支持筒(高温側)13との間に制振材製金具15
A、16Aを設け、FRP製支持筒(高温側)13とF
RP製支持筒(低温側)11との間にFe−Ni−Mn
合金などの転位型非磁性制振材製の金属支持筒12Aを
設ける。FRP製支持筒(低温側)11と金属製支持筒
12Aとの接合部において熱シールド板7を支持する構
成とする。
A fastening rod 14 joined to the outer tank 9 and F
Bracket 15 made of damping material between the RP support cylinder (high temperature side) 13
A and 16A are provided, and FRP support cylinder (high temperature side) 13 and F
Fe-Ni-Mn between the RP support cylinder (low temperature side) 11
A metal support cylinder 12A made of a dislocation type non-magnetic damping material such as an alloy is provided. The heat shield plate 7 is supported at the joint between the FRP support cylinder (low temperature side) 11 and the metal support cylinder 12A.

【0020】このように内槽支持装置を構成すること
で、外槽9から内槽6へ伝達される振動は、確実に制振
材製支持筒12Aを経由することとなり、ここで振動エ
ネルギーの大半が、熱エネルギーに変換される。制振材
製支持筒12Aは、熱シールド板7と接続しているの
で、この熱エネルギーはほとんど熱シールド板7に伝達
され、内槽6への侵入熱を増加させる事にはならない。
By constructing the inner tank support device in this way, the vibration transmitted from the outer tank 9 to the inner tank 6 surely passes through the support cylinder 12A made of the vibration damping material. Most are converted to thermal energy. Since the vibration-damping material support cylinder 12A is connected to the heat shield plate 7, most of this heat energy is transferred to the heat shield plate 7 and does not increase the heat entering the inner tank 6.

【0021】また、振動減衰能の高い支持筒12Aはス
テンレス鋼と同等程度の材料強度があり、内槽支持装置
8としての機械的な強度も満足される。
Further, the support cylinder 12A having a high vibration damping ability has a material strength equivalent to that of stainless steel, and the mechanical strength of the inner tank support device 8 is also satisfied.

【0022】以上により、内槽6の機械ロスは大幅に抑
制されると共に、内槽への侵入熱を増加させることもな
く超電導磁石は安定したものとなる。
As described above, the mechanical loss of the inner tank 6 is greatly suppressed, and the superconducting magnet becomes stable without increasing the heat entering the inner tank.

【0023】他の実施例 (図2参照) 前述の実施例のような内槽支持装置8において、アルミ
ニュームや銅、銀などの良熱伝導体17を制振材製押え
金具15A、16A、制振材製支持筒12Aの表面にメ
ッキもしくは、溶射、爆着、圧着などで薄膜を形成させ
ると共に、冷却配管19より、サーマルアンカ18を取
る構成にすると良い。
Other Embodiments (See FIG. 2) In the inner tank supporting device 8 as in the above-mentioned embodiment, a good heat conductor 17 such as aluminum, copper, silver or the like is attached to the pressing metal fittings 15A, 16A, It is preferable to form a thin film on the surface of the vibration-damping material support cylinder 12A by plating, spraying, bombarding, pressure bonding, or the like, and remove the thermal anchor 18 from the cooling pipe 19.

【0024】この様な構成とすることで制振材製支持筒
12Aで変換された熱エネルギーはより確実に熱シール
ド板7に伝達されるので制振材製支持筒12Aの温度上
昇が大幅に低減され、内槽6への熱侵入が抑制でき、超
電導磁石は安定したものとなる。
With this structure, the heat energy converted by the damping material supporting cylinder 12A is more reliably transmitted to the heat shield plate 7, so that the temperature rise of the damping material supporting cylinder 12A is significantly increased. It is reduced, heat invasion into the inner tank 6 can be suppressed, and the superconducting magnet becomes stable.

【0025】尚、上記実施例では、支持装置として折返
し支持筒群にて接続、支持する多重円筒管構成の場合に
ついて説明したが、高温部と低温部を接続し、機械的強
度を有する一般的な遮熱支持材について適用しても同様
の効果が得られる。
In the above embodiment, the case where the supporting device has a multi-cylindrical pipe structure in which a folded support cylinder group is connected and supported has been described. However, a general structure having a mechanical strength by connecting a high temperature part and a low temperature part is described. The same effect can be obtained even when applied to a heat-insulating support material.

【0026】[0026]

【発明の効果】本発明により超電導磁石の外槽の共振点
などで振動が拡大する場合、内槽に伝達される振動量が
低減されることで、内槽の機械ロスやACロスを抑制す
ることが出来る。これにより、液体ヘリウムなどの冷媒
によって極低温状態に保持されている内槽容器の温度上
昇が抑制され、その結果、超電導磁石の特性は安定した
ものになる。
According to the present invention, when the vibration expands at the resonance point of the outer tub of the superconducting magnet, the amount of vibration transmitted to the inner tub is reduced, thereby suppressing mechanical loss and AC loss of the inner tub. You can As a result, the temperature rise of the inner tank container kept in a cryogenic state by the refrigerant such as liquid helium is suppressed, and as a result, the characteristics of the superconducting magnet become stable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超電導磁石装置の断面図。FIG. 1 is a sectional view of a superconducting magnet device according to the present invention.

【図2】本発明の他の実施例を示す断面図。FIG. 2 is a sectional view showing another embodiment of the present invention.

【図3】超電導磁石装置を搭載した従来の磁気浮上式鉄
道の部分断面図。
FIG. 3 is a partial cross-sectional view of a conventional magnetic levitation railway equipped with a superconducting magnet device.

【図4】図3の部分断面図。FIG. 4 is a partial cross-sectional view of FIG.

【符号の説明】[Explanation of symbols]

1…超電導磁石装置 2…車両 3…台車 4…地上コイル 5…超電導磁石コイル 6…内槽 7…熱シールド板 8…支持装置 9…外槽 10…軌道 11…FRP製支持筒(低温側) 12…金属製支持筒 12A…制振材製支持筒 13…FRP製支持筒(高温側) 14…締結棒 15、16…押え金具 15A、16A…制振材製押え金具 17…熱伝導性金属膜 18…サーマルアンカ 1 ... Superconducting magnet device 2 ... Vehicle 3 ... Bogie 4 ... Ground coil 5 ... Superconducting magnet coil 6 ... Inner tank 7 ... Heat shield plate 8 ... Support device 9 ... Outer tank 10 ... Orbit 11 ... FRP support cylinder (low temperature side) 12 ... Metal support cylinder 12A ... Damping material support cylinder 13 ... FRP support cylinder (high temperature side) 14 ... Fastening rods 15, 16 ... Holding metal fittings 15A, 16A ... Damping material holding metal fittings 17 ... Thermal conductive metal Membrane 18 ... Thermal anchor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 知久 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomohisa Yamashita No. 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Fuchu factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】超電導磁石コイルを収容した極低温の内槽
とこの内槽を覆う熱シールド板と、金属或いはFRP製
の円筒を多重にして形成した支持具及びその押え金具か
らなる円筒支持装置により前記内槽を支持して宙吊りに
収容し、内部を真空熱絶縁した外槽等からなる超電導磁
石装置において、 前記外槽或いは熱シールド板に接触する前記金属製支持
円筒及び押え金具をステンレス鋼材よりも振動減衰能が
高いFe−Ni−Mn合金などの転位型非磁性制振金属
で構成した多重円筒支持装置を特徴とする超電導磁石装
置の内槽支持装置。
1. A cylindrical support device comprising a cryogenic inner tank containing a superconducting magnet coil, a heat shield plate covering the inner tank, a support member formed by stacking a cylinder made of metal or FRP, and a metal fitting for the support member. In a superconducting magnet device comprising an outer tank, etc., which is supported by the inner tank and is accommodated in a suspension, and the inside of which is vacuum heat insulated, the metal supporting cylinder and the pressing metal fitting in contact with the outer tank or the heat shield plate are made of stainless steel. An inner tank support device for a superconducting magnet device, which is characterized by a multi-cylindrical support device made of a dislocation-type non-magnetic damping metal such as an Fe-Ni-Mn alloy having a higher vibration damping capability.
【請求項2】前記熱シールド板や外槽と接している支持
筒或いは押さえ金具部を、表面にアルミニウーム、銅、
銀などの良熱伝導体膜を形成したステンレス鋼よりも振
動減衰能が高い転位型非磁性制振金属から構成したこと
を特徴とする請求項1記載の超電導磁石装置の内槽支持
装置。
2. A support cylinder or a press fitting part which is in contact with the heat shield plate or the outer tub, and whose surface is made of aluminum, copper,
2. The inner tank supporting device for a superconducting magnet device according to claim 1, wherein the device is made of a dislocation type non-magnetic damping metal having a vibration damping capacity higher than that of stainless steel on which a film of a good heat conductor such as silver is formed.
【請求項3】前記良熱伝導体膜を、振動減衰能が高い材
料の表面に1mm以下の厚さに形成したことを特徴とす
る請求項2記載の超電導磁石装置の内槽支持装置。
3. The inner tank supporting device for a superconducting magnet device according to claim 2, wherein the good thermal conductor film is formed on a surface of a material having a high vibration damping ability to have a thickness of 1 mm or less.
【請求項4】前記振動減衰能が高い材料からなる支持筒
にサーマルアンカーを設けたことを特徴とする請求項1
記載の超電導磁石装置の内槽支持装置。
4. A thermal anchor is provided on a support cylinder made of a material having a high vibration damping ability.
An inner tank supporting device of the superconducting magnet device described.
JP5315067A 1993-12-15 1993-12-15 Inner casing holding device of superconductive magnet Pending JPH07169997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315067A JPH07169997A (en) 1993-12-15 1993-12-15 Inner casing holding device of superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5315067A JPH07169997A (en) 1993-12-15 1993-12-15 Inner casing holding device of superconductive magnet

Publications (1)

Publication Number Publication Date
JPH07169997A true JPH07169997A (en) 1995-07-04

Family

ID=18061035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315067A Pending JPH07169997A (en) 1993-12-15 1993-12-15 Inner casing holding device of superconductive magnet

Country Status (1)

Country Link
JP (1) JPH07169997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324706A (en) * 2001-04-26 2002-11-08 Hitachi Ltd Inner tank supporting device of superconducting magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324706A (en) * 2001-04-26 2002-11-08 Hitachi Ltd Inner tank supporting device of superconducting magnet

Similar Documents

Publication Publication Date Title
US11725925B1 (en) High-temperature superconducting (HTS) magnetic levitation (maglev) Dewar capable of increasing damping and levitation force and width calculating method thereof
US4651117A (en) Superconducting magnet with shielding apparatus
JPH07169997A (en) Inner casing holding device of superconductive magnet
JP3274093B2 (en) Maglev vehicle
JP3810932B2 (en) Non-contact induction current collector
JP2848820B2 (en) Superconducting magnet device
JPH0521227A (en) Superconductive magnet
JPH05275755A (en) Cryostat
JPH0547550A (en) Superconducting magnet
JPH06244027A (en) Superconductive magnet device
JP2931169B2 (en) Magnetically levitated superconducting magnet device for vehicles
JP3122493B2 (en) Superconducting coil device
JPH0312903A (en) Superconducting magnet with mechanism of periodic damping
JPH07170714A (en) Superconductive magnet
JP3268047B2 (en) Superconducting magnet device
JPH0715809A (en) Superconducting magnet apparatus
JP2848742B2 (en) Superconducting magnet device
JP2570026B2 (en) Superconducting magnet for maglev train
JPH104221A (en) Cryogenic temperature tank
JPH1187135A (en) Superconducting magnet for magnetically levitated vehicle
JP2971660B2 (en) Superconducting magnet device
JP2016211714A (en) Superconductive magnetic bearing for superconductive flywheel power storage system
JPH04354307A (en) Superconductive magnet
JPS6254982A (en) Cryostat
JPH0567523A (en) Superconducting magnet