JPS62229905A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JPS62229905A
JPS62229905A JP61072860A JP7286086A JPS62229905A JP S62229905 A JPS62229905 A JP S62229905A JP 61072860 A JP61072860 A JP 61072860A JP 7286086 A JP7286086 A JP 7286086A JP S62229905 A JPS62229905 A JP S62229905A
Authority
JP
Japan
Prior art keywords
coil
winding
superconducting
cooling layer
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61072860A
Other languages
Japanese (ja)
Inventor
Nobuhiro Yoshino
吉野 信博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61072860A priority Critical patent/JPS62229905A/en
Publication of JPS62229905A publication Critical patent/JPS62229905A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To transmit the heat created in the center part of a winding quickly to cool the winding and improve the characteristics of superconducting coil by a method wherein a coil cooling layer is provided on the internal surface of the winding and internal coil cooling layers made of maferial with a high heat conductivity are provided so as to be contacted with the coil cooling layer and inserted into the winding of the superconducting coil. CONSTITUTION:A coil cooling layer 9 is provided on the internal surface of the winding of a superconducting coil 3 and internal coil cooling layers 10 and 10' made of material with a high heat conductivity such as copper are provided so as to be contacted with the coil cooling layer 9 and inserted into the winding vertically. The loss heat created inside the coil by friction, magnetization and demagnetization is transmitted from the internal cooling layers 10 and 10' wrapped and inserted into the coil to liguid helium in a cooling chamber 8 fhrough the coil cooling layer 9 formed on the internal surface of the coil winding 14 and an internal chamber partition plate 1B and the winding can be cooled faster than wifh the constitution in which the cooling layer is not provided inside the coil.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は超電導磁気浮上式鉄道等に使用される超電導
磁石に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) This invention relates to a superconducting magnet used in a superconducting magnetic levitation railway or the like.

(従来の技術) 現在、将来的な交通機関として、超電導磁気浮上式鉄道
の開発が進められている。
(Prior Art) Currently, superconducting magnetic levitation railways are being developed as a future means of transportation.

この超電導磁気浮上式鉄道に使用される超電導磁石は、
超電導コイルを収納した内槽を真空容器である外槽内に
保持する構成となっている。
The superconducting magnets used in this superconducting magnetic levitation railway are
The structure is such that an inner tank housing a superconducting coil is held within an outer tank, which is a vacuum container.

超電導磁気浮上式鉄道の開発における重要な課題として
、超電導磁石の軽量・コンパクト化がある。この超電導
磁石の軽量・コンパクト化を図る方法として、従来は巻
線部の電流密度を向上させる方法が行なわれてきた。一
方、車両側超電導コイルと地上側コイルとの距離を短縮
すれば、超電導コイルの起磁力を下げることができ、そ
れによって超電導コイルを軽量・コンパクト化すること
ができる。これを第9図の車両断面図で説明する。
An important issue in the development of superconducting magnetic levitation railways is making superconducting magnets lighter and more compact. Conventionally, a method for making superconducting magnets lighter and more compact has been to improve the current density in the windings. On the other hand, by shortening the distance between the vehicle-side superconducting coil and the ground-side coil, the magnetomotive force of the superconducting coil can be lowered, thereby making it possible to make the superconducting coil lighter and more compact. This will be explained using the cross-sectional view of the vehicle in FIG.

軌道上に設置された浮上コイル12の上を、超電導コイ
ル11を取付けた車両13が走行する時、この2つのコ
イル11.12間に電磁誘導反発力が生じ、車両13は
浮上する。この浮上刃を得るために必要な超電導コイル
11の起磁力は超電導コイル11の中心と地上の浮上コ
イル12の中心間距離Yに関係しており、この距離Yが
小さい程、起磁力も小さくてよい。前記距離Yを出来る
だけ小さくするため、従来は偏平断面を有するコイル・
内槽が採用されてきた。この具体例としては、第6図及
び第7図に示すような構造のものがある。
When a vehicle 13 equipped with a superconducting coil 11 runs on a levitation coil 12 installed on a track, an electromagnetic induction repulsive force is generated between the two coils 11 and 12, and the vehicle 13 levitates. The magnetomotive force of the superconducting coil 11 necessary to obtain this levitation blade is related to the distance Y between the center of the superconducting coil 11 and the center of the levitation coil 12 on the ground, and the smaller this distance Y is, the smaller the magnetomotive force is. good. In order to make the distance Y as small as possible, conventionally a coil with a flat cross section was used.
Inner tanks have been adopted. A specific example of this is the structure shown in FIGS. 6 and 7.

この超電導磁石は環状(レーストラック形状)に構成し
た内槽1を有し、この内槽1の内側に複数の補強材2を
一体に取付け、前記内槽1の内部中央に超電導コイル3
を設置している。この超電導コイル3は超電導線を層間
絶縁層と共に複数回巻線し、更に外側に絶縁層4を設け
て一体的に含浸絶縁し、剛性の強化を図った後、内槽1
の内側に複数の穴6及び切欠部7を有する間隔片5を適
宜の間隔で配設し、超電導コイル3を保持する構造とな
っている。前記コイル3の冷却方式としては、間隔片5
の穴6と切欠部7を利用した、いわゆる周囲浸漬冷却方
式をとっている。
This superconducting magnet has an annular (racetrack-shaped) inner tank 1, a plurality of reinforcing members 2 are integrally attached to the inside of the inner tank 1, and a superconducting coil 3 is installed in the center of the inner tank 1.
is installed. This superconducting coil 3 is made by winding a superconducting wire multiple times together with an interlayer insulating layer, and then providing an insulating layer 4 on the outside and integrally impregnating and insulating it to strengthen the rigidity.
Spacer pieces 5 having a plurality of holes 6 and notches 7 are arranged at appropriate intervals inside the superconducting coil 3 to hold the superconducting coil 3 therein. As a cooling method for the coil 3, the spacing piece 5
A so-called ambient immersion cooling method is used, which utilizes the holes 6 and cutouts 7.

しかしながら、上記構造では内槽1と超電導コイル3と
の間に間隔片5が介在するため、超電導磁石をコンパク
トにし、コイル中心間距離(第9図に示すYの距離)を
短縮するには限界がある。
However, in the above structure, since the spacing piece 5 is interposed between the inner tank 1 and the superconducting coil 3, there is a limit to making the superconducting magnet compact and shortening the distance between the coil centers (distance Y shown in Fig. 9). There is.

そこで、コイル固定の間隔片5をなくし、超電導磁石を
コンパクト化する内槽構造が考えられた。
Therefore, an inner tank structure was devised that eliminates the spacer piece 5 that fixes the coil and makes the superconducting magnet more compact.

その例としては、第8図に示すようなものがある。An example of this is shown in FIG.

この第8図は第6図■−■線に沿った第7図と同様な部
分断面図であって、レーストラック形状をなす内槽1が
前後に対向離間する環状の両側板IA、IA’ と、こ
の両側板間にトラック内周側に変位させて取付けられた
区画板IB、ICとで構成され、この区画板iB、1c
によって液体ヘリウムの充填冷却室8を形成し、その外
周部に両側板IA、  IA’及び区画板IBで囲まれ
た環形の溝状巻線部14を形成している。そして、この
溝状巻線部14内に超電導線を巻回し超電導コイル3と
した後、前記巻線部14の外周開口部に巻線部カバーI
Dを被せて溶接固定し、その組立後に巻線部14を一体
的に含浸絶縁する構造となっている。
This FIG. 8 is a partial sectional view similar to FIG. 7 taken along the line ■-■ in FIG. and partition plates IB and IC, which are mounted between the two side plates and displaced toward the inner circumferential side of the track.
A cooling chamber 8 filled with liquid helium is formed, and an annular groove-shaped winding portion 14 surrounded by side plates IA, IA' and partition plates IB is formed on the outer periphery of the chamber 8. Then, after winding a superconducting wire in this groove-shaped winding part 14 to form a superconducting coil 3, a winding part cover I is attached to an outer peripheral opening of the winding part 14.
D is covered and fixed by welding, and after assembly, the winding portion 14 is integrally impregnated and insulated.

なお、図中4は超電導コイル3の外側を覆う絶縁層であ
る。
Note that 4 in the figure is an insulating layer that covers the outside of the superconducting coil 3.

この内槽構造の場合には、液体ヘリウムの充填冷却室8
が第6図及び第7図に示す従来の冷却方式(超電導コイ
ル3の全周囲を覆う浸漬方式)とは異なり、内槽1の内
側にコイル巻線部14とは区画板IBを介した状態で配
置される。即ち、レーストラック形状の内槽1のトラッ
ク内周側に冷却室8を有する構成となっているため、地
上側浮上コイルとのコイル中心間距離(第9図に示すY
の距離)を大幅に低減することができる。
In the case of this inner tank structure, the liquid helium filling cooling chamber 8
However, unlike the conventional cooling method (immersion method that covers the entire circumference of the superconducting coil 3) shown in FIG. 6 and FIG. It will be placed in That is, since the cooling chamber 8 is provided on the inner circumferential side of the track of the racetrack-shaped inner tank 1, the distance between the coil centers and the levitation coil on the ground side (Y shown in FIG.
distance) can be significantly reduced.

しかしながら、前記区画板IB、ICは通常ステンレス
鋼で構成され、超電導コイル3の冷却は前記区画板IB
を介して行なわれるので、液体ヘリウムの充填冷却室8
から最も遠いコイル部分3Aで、摩擦熱、コイル励磁消
磁時に超電導線に発生する損失熱に対して、冷却能力が
充分でなく、コイル3のクエンチを起す原因となってい
た。
However, the partition plates IB and IC are usually made of stainless steel, and the superconducting coil 3 is cooled by the partition plates IB and IC.
Since the cooling chamber 8 is filled with liquid helium,
In the coil portion 3A farthest from the coil 3, the cooling capacity was insufficient for frictional heat and loss heat generated in the superconducting wire during coil excitation and demagnetization, which caused the coil 3 to quench.

この問題を解消する方法として、コイル巻線部14の内
表面に熱伝導率の高い材料1例えば銅を被膜状に被着し
て形成したコイル冷却層9を第5図の如(設け、このコ
イル冷却層9の冷熱伝導によりコイル全周を均一に冷却
させる方法がある(第5図参照)。
As a method to solve this problem, a coil cooling layer 9 formed by depositing a film of a material with high thermal conductivity, such as copper, on the inner surface of the coil winding portion 14 as shown in FIG. There is a method in which the entire circumference of the coil is uniformly cooled by heat conduction through the coil cooling layer 9 (see FIG. 5).

銅の熱伝導率はステンレス鋼の熱伝導率に対して約60
00倍であるので、区画板IBの板厚を5M。
The thermal conductivity of copper is about 60 compared to that of stainless steel.
00 times, the thickness of the partition plate IB is 5M.

銅の層厚を0.05mとしても、60倍の熱伝導が行な
われる。従って、コイル巻線部14の内表面に厚さ0.
05m程度の銅を被膜させたコイル冷却層9を形成する
ことにより、超電導コイル3を全周囲から速やかに冷却
することが可能である。
Even if the copper layer thickness is 0.05 m, heat conduction is 60 times greater. Therefore, the inner surface of the coil winding portion 14 has a thickness of 0.
By forming the coil cooling layer 9 coated with copper with a thickness of about 0.5 m, it is possible to quickly cool the superconducting coil 3 from all around it.

しかしながら、第5図に示すように巻線部内表面に銅の
コイル冷却層9を被膜形成し、コイル全周から冷却する
構造とした場合でも、超電導コイル3の巻線中央部3B
で発熱が生じた場合の冷却に対しては不十分である。な
ぜならば、超電導コイル3の中央部で発生した摩擦熱、
励磁・消磁による損失熱は、超電導線を構成するNb 
T1 。
However, as shown in FIG. 5, even if a copper coil cooling layer 9 is formed on the inner surface of the winding section to cool the entire circumference of the coil, the central part 3B of the winding of the superconducting coil 3 is
It is insufficient for cooling when heat is generated. This is because frictional heat generated in the center of the superconducting coil 3,
The heat loss due to excitation and demagnetization is caused by the Nb constituting the superconducting wire.
T1.

Cuを経て、更に超電導線間に含浸されたエポキシ樹脂
と、内槽1やステンレス製区画板IBを通して、冷却室
8内の液体ヘリウムに伝熱されるため、超電導コイル3
の中央部3Bが冷却されるには時間がかかることになる
。即ち、コイル中央部3Bで短時間に発熱した場合、冷
却が間に合わず、発熱によるコイルクエンチを起すこと
になる。
The heat is transferred to the liquid helium in the cooling chamber 8 through the Cu, the epoxy resin impregnated between the superconducting wires, the inner tank 1 and the stainless steel partition plate IB, so that the superconducting coil 3
It will take some time for the central part 3B of the cylinder to cool down. That is, if heat is generated in the central portion 3B of the coil in a short period of time, cooling will not be done in time, and the coil will be quenched due to the heat generation.

(発明が解決しようとする問題点) 従来の技術は前述したようなものであり、超電導コイル
の巻線中央部で発生した熱を速やかに伝熱冷却し、コイ
ル中央部の発熱によるコイルクエンチの問題を解決する
ことができなかった。
(Problems to be Solved by the Invention) The conventional technology is as described above, in which the heat generated at the center of the winding of a superconducting coil is quickly transferred and cooled, and the coil quenching due to heat generation at the center of the coil is prevented. Couldn't solve the problem.

この発明は超電導コイルの巻線中央部で発生した熱を速
やかに伝熱冷却し、超電導コイルの特性を向上させるよ
うにした超電導磁石を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a superconducting magnet in which the heat generated at the center of the winding of a superconducting coil is quickly transferred and cooled, thereby improving the characteristics of the superconducting coil.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)この発明は超電
導コイルの巻線内部に熱伝導率の高い材料を用いたコイ
ル内部冷却層を挿入し、このコイル内部冷却層を巻線部
内表面のコイル冷却層に接続することによって、コイル
内部で発生した摩擦熱、励磁・消磁時の損失熱を速やか
に冷却室内の液体ヘリウムに伝熱させ、超電導コイルの
特性を向上させるようにしたことを特徴とする。
(Means and effects for solving the problem) This invention inserts a coil internal cooling layer made of a material with high thermal conductivity inside the winding of a superconducting coil, and this coil internal cooling layer is formed on the inner surface of the winding part. By connecting to the coil cooling layer, the frictional heat generated inside the coil and the heat lost during excitation/demagnetization are quickly transferred to the liquid helium in the cooling chamber, improving the characteristics of the superconducting coil. shall be.

(実施例) 以下、本発明の一実施例を第1図及び第2図に従い説明
する。図中1は真空容器である外槽(図示せず)内に保
持されるレーストラック形状の内槽であって、この内槽
構造は第5図に示した従来例と同様である。即ち、前記
内槽1が前後に対向離間する環状の両側板IA、IA’
 と、この両側板間にトラック内周側に変位させて取付
けられたステンレス製の区画板IB、ICとで構成され
ていること、前記区画板IB、ICによって液体ヘリウ
ムの充填冷却室8が形成され、その外周部に両側板IA
、IA’及び区画板IBで囲まれる環形の溝状巻線部1
4が形成されていること、この巻線部14の内表面に熱
伝導率の高い材料1例えば銅のコイル冷却層9が被膜形
成されていること、前記巻線部14の内部空間に超電導
線を巻線しエポキシ樹脂を含浸させて一体化させた超電
導コイル3が配置されること、この超電導コイル3の外
側を覆う絶縁層4を有すること、超電導コイル3の巻線
後に溶接固定される巻線部カバーIDを具備すること、
以上の構成において第5図の内槽構造と同一である。
(Example) An example of the present invention will be described below with reference to FIGS. 1 and 2. In the figure, reference numeral 1 denotes a racetrack-shaped inner tank held in an outer tank (not shown), which is a vacuum container, and the structure of this inner tank is similar to the conventional example shown in FIG. That is, the inner tank 1 has annular side plates IA, IA' spaced apart from each other in the front and back.
and partition plates IB and IC made of stainless steel, which are mounted between the two side plates and displaced toward the inner circumferential side of the track, and a cooling chamber 8 filled with liquid helium is formed by the partition plates IB and IC. and both side plates IA are attached to its outer periphery.
, IA' and partition plate IB.
4 is formed on the inner surface of the winding portion 14, a coil cooling layer 9 of a material with high thermal conductivity 1, for example, copper is formed as a coating on the inner surface of the winding portion 14, and a superconducting wire is formed in the internal space of the winding portion 14. A superconducting coil 3 is disposed in which the superconducting coil 3 is wound and impregnated with epoxy resin, an insulating layer 4 is provided covering the outside of the superconducting coil 3, and a winding is fixed by welding after the superconducting coil 3 is wound. Equipped with line part cover ID,
The above configuration is the same as the inner tank structure shown in FIG.

而して、本発明は前記のような間接冷却形の超電導磁石
において、巻線部内表面のコイル冷却層9に接続し超電
導コイル3の巻線内部に縦向きに挿入された熱伝導率の
高い材料、例えば銅からなるコイル内部冷却層10.1
0’を設けてなるものである。
Therefore, the present invention provides a superconducting magnet of the indirect cooling type as described above, which has a high thermal conductivity that is connected to the coil cooling layer 9 on the inner surface of the winding part and inserted vertically into the inside of the winding of the superconducting coil 3. Coil internal cooling layer 10.1 made of material, e.g. copper
0' is provided.

このようなコイル内部冷却層10.10’を設けると、
コイル内部に発生した摩擦熱、励磁・消磁による損失熱
は、コイル内部に巻込み挿入した内部冷却層10. t
o’からコイル巻線部14の内表面に被膜形成されたコ
イル冷却層9を通り、内槽区画板IBを経て冷却室8内
の液体ヘリウムに伝熱され、コイル内部に冷却層を持た
ない場合よりも早く冷却される。これにより、コイル内
部の摩擦熱、励磁・消磁による損失熱によってコイル内
部から発生していたクエンチを防ぐことができ、超電導
コイルの特性を向上させることが可能となる。
When such a coil internal cooling layer 10.10' is provided,
Frictional heat generated inside the coil and heat loss due to excitation/demagnetization are absorbed by the internal cooling layer 10, which is wound and inserted inside the coil. t
The heat is transferred from o' through the coil cooling layer 9 formed on the inner surface of the coil winding part 14, through the inner tank partition plate IB, to the liquid helium in the cooling chamber 8, and there is no cooling layer inside the coil. Cools down faster than usual. This makes it possible to prevent quenching occurring from inside the coil due to frictional heat inside the coil and heat loss due to excitation/demagnetization, and it becomes possible to improve the characteristics of the superconducting coil.

なお、第2図はコイル内部に縦方向に向けて冷却層10
.10’を設けた場合の実施例について説明したが、前
記冷却層10.10’を第3図の如く横方向に向けてコ
イル内部に挿入してもよい。この実施例における他の構
成は第2図の実施例と同様であるから、同一部分に同符
号を付して詳細な説明は省略する。
In addition, FIG. 2 shows a cooling layer 10 vertically inside the coil.
.. Although the embodiment has been described in which the cooling layer 10 and 10' are provided, the cooling layer 10 and 10' may be inserted inside the coil laterally as shown in FIG. The rest of the structure in this embodiment is the same as that in the embodiment shown in FIG. 2, so the same parts are given the same reference numerals and a detailed explanation will be omitted.

而して、前述した第3図の実施例の場合、コイル内部で
発生した熱はコイル内部の横方向に挿入された冷却層1
0.10’からコイル巻線部14の内表面に被膜形成さ
れたコイル冷却層9を経て伝熱されるため、第2図の実
施例よりも伝熱距離が長くなり、冷却性能は第2図の場
合よりも若干悪くなるが、コイル巻線時における内部冷
却層10.10’の挿入巻込みが容易であるという利点
をもっている。
In the case of the embodiment shown in FIG. 3 described above, the heat generated inside the coil is absorbed by the cooling layer 1 inserted laterally inside the coil.
Since heat is transferred from 0.10' through the coil cooling layer 9 formed on the inner surface of the coil winding part 14, the heat transfer distance is longer than that of the embodiment shown in FIG. 2, and the cooling performance is as shown in FIG. Although it is slightly worse than the case of 2, it has the advantage that it is easy to insert and wind the internal cooling layer 10, 10' during coil winding.

第4図はコイル内部の冷却層10として、コイル3の縦
方向及び横方向に交差するように内部冷却層10を設け
たもので、他の構成は第2図及び第3図の実施例と同様
であるから、同一部分に同符号を付して詳細な説明は省
略する。
FIG. 4 shows an example in which an internal cooling layer 10 is provided as a cooling layer 10 inside the coil so as to intersect with the vertical and horizontal directions of the coil 3, and the other configuration is the same as the embodiment shown in FIGS. 2 and 3. Since they are similar, the same parts will be given the same reference numerals and detailed explanation will be omitted.

〔−易の効果〕[-Effect of ease]

この発明によれば、従来超電導コイルの特性の低下の一
つの要因となっていた、コイル内部での発熱によるクエ
ンチを防ぎ、超電導コイルの特性を向上させることがで
きる。
According to the present invention, it is possible to prevent quenching due to heat generation inside the coil, which has conventionally been one of the causes of deterioration of the characteristics of superconducting coils, and to improve the characteristics of superconducting coils.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超電導磁石を示す全体的な正面図、第
2図は第1図のl=X線に沿う拡大断面図、第3図及び
第4図は本発明における他の実施例を示す第2図相当部
分の拡大断面図、第5図は従来の超電導磁石を示す一部
断面図、第6図は従来の直接冷却形超電導磁石を示す全
体的な正面図、第7図は第6図の■−■線に沿う拡大断
面図、第8図は従来の間接冷却形超電導磁石を示す一部
断面図、第9図は車両を含めた軌道構成の断面図である
。 1・・・レーストラック形状の内槽、IA、IA’・・
・内槽両側板、IB、IC・・・内槽区画板、ID・・
・巻線部カバー、3・・・超電導コイル、4・・・絶縁
層、8・・・液体ヘリウムの充填冷却室、9・・・コイ
ル冷却層、10.10’ ・・・コイル内部冷却層、1
4・・・コイル巻線部。 出願人代理人 弁理士 鈴江武彦 第19図 第2図 第3図 第4図 第5図 第6図 第7図
FIG. 1 is an overall front view showing a superconducting magnet of the present invention, FIG. 2 is an enlarged sectional view taken along the l=X line in FIG. 1, and FIGS. 3 and 4 are other embodiments of the present invention. Fig. 5 is a partial sectional view showing a conventional superconducting magnet, Fig. 6 is an overall front view showing a conventional directly cooled superconducting magnet, and Fig. 7 is an enlarged sectional view of a portion corresponding to Fig. 2. FIG. 6 is an enlarged sectional view taken along the line ■-■ in FIG. 6, FIG. 8 is a partial sectional view showing a conventional indirectly cooled superconducting magnet, and FIG. 9 is a sectional view of the track configuration including a vehicle. 1... Racetrack-shaped inner tank, IA, IA'...
・Inner tank side plates, IB, IC...Inner tank partition plate, ID...
- Winding section cover, 3... Superconducting coil, 4... Insulating layer, 8... Liquid helium filling cooling chamber, 9... Coil cooling layer, 10.10'... Coil internal cooling layer ,1
4...Coil winding section. Applicant's Representative Patent Attorney Takehiko Suzue Figure 19 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims]  真空容器である外槽内に保持されるレーストラック形
状の内槽であって、トラック内周側に液体ヘリウムの充
填冷却室をトラック外周側に巻線部を区画形成した内槽
と、この内槽の巻線部内表面に被膜形成させた熱伝導率
の高い材料からなるコイル冷却層と、前記巻線部内に超
電導線を巻線して設けた超電導コイルと、この超電導コ
イルの巻線後に溶接固定される巻線部カバーとを具備す
る間接冷却形の超電導磁石において、巻線部内表面のコ
イル冷却層に接続し超電導コイルの巻線内部に挿入され
た熱伝導率の高い材料からなるコイル内部冷却層を設け
たことを特徴とする超電導磁石。
It is a racetrack-shaped inner tank held in an outer tank that is a vacuum container, and has a cooling chamber filled with liquid helium on the inner circumference of the track, a winding section on the outer circumference of the track, and A coil cooling layer made of a material with high thermal conductivity formed as a film on the inner surface of the winding part of the tank, a superconducting coil formed by winding a superconducting wire inside the winding part, and welding after the winding of this superconducting coil. In an indirectly cooled superconducting magnet equipped with a fixed winding part cover, the inside of the coil made of a material with high thermal conductivity is connected to the coil cooling layer on the inner surface of the winding part and inserted inside the winding of the superconducting coil. A superconducting magnet characterized by having a cooling layer.
JP61072860A 1986-03-31 1986-03-31 Superconducting magnet Pending JPS62229905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072860A JPS62229905A (en) 1986-03-31 1986-03-31 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072860A JPS62229905A (en) 1986-03-31 1986-03-31 Superconducting magnet

Publications (1)

Publication Number Publication Date
JPS62229905A true JPS62229905A (en) 1987-10-08

Family

ID=13501521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072860A Pending JPS62229905A (en) 1986-03-31 1986-03-31 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPS62229905A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325080A (en) * 1990-11-21 1994-06-28 Kabushiki Kaisha Toshiba Superconducting coil apparatus and method of manufacturing the same
US5404122A (en) * 1989-03-08 1995-04-04 Kabushiki Kaisha Toshiba Superconducting coil apparatus with a quenching prevention means
JP2006203154A (en) * 2004-04-20 2006-08-03 National Institutes Of Natural Sciences Superconducting pulse coil, and superconducting device and superconducting power storage using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404122A (en) * 1989-03-08 1995-04-04 Kabushiki Kaisha Toshiba Superconducting coil apparatus with a quenching prevention means
US5325080A (en) * 1990-11-21 1994-06-28 Kabushiki Kaisha Toshiba Superconducting coil apparatus and method of manufacturing the same
JP2006203154A (en) * 2004-04-20 2006-08-03 National Institutes Of Natural Sciences Superconducting pulse coil, and superconducting device and superconducting power storage using same

Similar Documents

Publication Publication Date Title
US3801942A (en) Electric magnet with superconductive windings
JP2859427B2 (en) Superconducting coil device
US7616083B2 (en) Resin-impregnated superconducting magnet coil comprising a cooling layer
US20060293189A1 (en) Machine comprising a rotor and a superconducting rotor winding
JPH07142241A (en) Superconducting magnet device
JPS62229905A (en) Superconducting magnet
JP4895860B2 (en) Superconducting magnet device
Ambrosio et al. Development of react and wind common coil dipoles for VLHC
JPH05275755A (en) Cryostat
JP3083763B2 (en) Hybrid superconducting magnet
JPS6248003A (en) Superconducting coil
JPH06325932A (en) Superconducting coil
JPH0137841B2 (en)
JPH0838454A (en) Magnet of magnetic resonance image device
JPH05121235A (en) Superconductive coil device
JP2868936B2 (en) Superconducting magnet
JP2011035216A (en) Re-based superconducting coil conduction cooling method and device therefor
JPH09306723A (en) Refrigerator cooled superconducting magnet device
JPS6036697B2 (en) rotating electric machine
JPS6156851B2 (en)
JP2642612B2 (en) Superconducting coil device for magnetic levitation train
JPH081845B2 (en) Superconducting coil
JPH0727816B2 (en) Superconducting coil
JPS607366B2 (en) Superconducting coil device
Elsel Electric magnet with superconductive windings