JPH07142241A - Superconducting magnet device - Google Patents

Superconducting magnet device

Info

Publication number
JPH07142241A
JPH07142241A JP29066593A JP29066593A JPH07142241A JP H07142241 A JPH07142241 A JP H07142241A JP 29066593 A JP29066593 A JP 29066593A JP 29066593 A JP29066593 A JP 29066593A JP H07142241 A JPH07142241 A JP H07142241A
Authority
JP
Japan
Prior art keywords
superconducting coil
absorbing member
heat
superconducting
heat absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29066593A
Other languages
Japanese (ja)
Inventor
Takashi Yazawa
孝 矢澤
Toru Kuriyama
透 栗山
Kei Koyanagi
圭 小柳
Hideaki Maeda
秀明 前田
Hideki Nakagome
秀樹 中込
Masami Urata
昌身 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29066593A priority Critical patent/JPH07142241A/en
Publication of JPH07142241A publication Critical patent/JPH07142241A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a superconducting magnet device which can ensure the safety of a superconducting coil, which can contribute toward the effective utilization of the bore diameter of the superconducting coil and which is coupled directly to a refrigerator. CONSTITUTION:The superconducting magnet device is provided with a superconducting coil 6, with a heat-absorbing member 7 which is formed of a good heat-conducting member and which is connected thermally to the outer circumferential face of the superconducting coil 6, with a cooling stage 11 and with a GM refrigerator 9 which cools the heat-absorbing member 7 through thermal conduction by the cooling stage 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導磁石装置に係
り、特に超電導コイルを極低温用冷凍機で直接的に伝導
冷却する超電導磁石装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet device, and more particularly to a superconducting magnet device in which a superconducting coil is directly conductively cooled by a cryogenic refrigerator.

【0002】[0002]

【従来の技術】周知のように、現在実用化されている超
電導磁石装置の多くは、超電導コイルを臨界温度以下に
冷却する手段として、超電導コイルを液体ヘリウムで代
表される極低温液体中に浸漬する方式を採用している。
しかし、この方式では、液体ヘリウムや液体窒素といっ
た扱い難く、高価な冷媒をクライオスタットへ出し入れ
する必要があるので、無駄に消費される冷媒量が多く、
ランニングコストの増加を免れ得ない。
2. Description of the Related Art As is well known, most of the superconducting magnet devices currently in practical use are immersed in a cryogenic liquid typified by liquid helium as a means for cooling the superconducting coil below a critical temperature. The method to do is adopted.
However, in this method, it is difficult to handle liquid helium or liquid nitrogen, and it is necessary to take an expensive refrigerant in and out of the cryostat, so that a large amount of refrigerant is wasted.
There is no avoiding an increase in running costs.

【0003】ところで、近年、新しい蓄冷材の発見等に
伴ってギホード・マクマホン型冷凍機で代表される極低
温用冷凍機の性能が飛躍的に向上している。このような
ことから、最近では、超電導コイルを極低温用冷凍機で
直接的に伝導冷却する超電導磁石装置が提案されてい
る。この超電導磁石装置では、冷媒を用いることなく、
あるいは冷媒の無駄をなくすことができるので、ランニ
ングコストを大幅に低下することができる。
By the way, in recent years, with the discovery of new regenerator materials, the performance of cryogenic refrigerators typified by Gifode-McMahon type refrigerators has been dramatically improved. Under these circumstances, recently, a superconducting magnet device has been proposed in which the superconducting coil is directly conductively cooled by a cryogenic refrigerator. In this superconducting magnet device, without using a refrigerant,
Alternatively, since the waste of the refrigerant can be eliminated, the running cost can be significantly reduced.

【0004】しかしながら、超電導コイルを極低温用冷
凍機で直接的に伝導冷却する、いわゆる冷凍機直結式の
超電導磁石装置にあっても次のような問題があった。す
なわち、従来の冷凍機直結式の超電導磁石装置にあって
は、超電導コイルの巻枠を介して伝導で超電導コイルを
冷却するようにしている。具体的には、良熱伝導材で形
成された巻枠に超電導線を巻回してコイル本体を形成
し、その後に線間および巻枠との間の隙間にエポキシ樹
脂等の樹脂を含浸して超電導コイルと巻枠とを一体化す
る。そして、これを真空容器内に配置するとともに、そ
の巻枠を良熱伝導部材を介して極低温用冷凍機の冷却ス
テージに熱的に接続した構成を採用している。
However, the so-called direct-cooling type superconducting magnet device in which the superconducting coil is directly conductively cooled by the cryogenic refrigerator has the following problems. That is, in the conventional superconducting magnet device directly connected to the refrigerator, the superconducting coil is cooled by conduction through the winding frame of the superconducting coil. Specifically, a superconducting wire is wound around a winding frame made of a good heat conducting material to form a coil body, and then a resin such as an epoxy resin is impregnated into the gap between the wires and the winding frame. The superconducting coil and the bobbin are integrated. Then, this is arranged in a vacuum container, and the reel is thermally connected to the cooling stage of the cryogenic refrigerator via a good heat conducting member.

【0005】しかし、上記構成であると、実際に超電導
コイルを伝導で極低温に冷却した時およびこの状態で超
電導コイルに通電した時に次のような現象が起こる。す
なわち、巻枠を介して超電導コイルを極低温に冷却する
と、巻枠と超電導コイルとは共に半径方向に熱収縮す
る。この状態で超電導コイルに通電すると、こんどは電
磁力によって超電導コイルが半径方向外側へ膨らむよう
に変形する。このため、超電導コイルと巻枠との界面に
おいて引張り応力が作用し、この引張り応力で樹脂の剥
離が生じ、この剥離時に発生する摩擦熱で超電導コイル
がクエンチ(常電導転移)することがあり、安定性に欠
ける問題があった。
However, with the above structure, the following phenomenon occurs when the superconducting coil is actually cooled to a cryogenic temperature by conduction and when the superconducting coil is energized in this state. That is, when the superconducting coil is cooled to a cryogenic temperature via the winding frame, both the winding frame and the superconducting coil thermally contract in the radial direction. When the superconducting coil is energized in this state, the superconducting coil is deformed by the electromagnetic force so as to expand outward in the radial direction. Therefore, tensile stress acts on the interface between the superconducting coil and the winding frame, the tensile stress causes the resin to peel, and the frictional heat generated during the peeling may quench the superconducting coil (normal conduction transition). There was a problem of lack of stability.

【0006】また、上記構成であると、超電導コイルの
内側に巻枠が存在しているので、巻枠によって超電導コ
イルの有効ボア径が制限され、装置としての応用性に欠
ける問題もあった。
Further, with the above structure, since the winding frame exists inside the superconducting coil, the effective bore diameter of the superconducting coil is limited by the winding frame, and there is a problem of lack of applicability as a device.

【0007】[0007]

【発明が解決しようとする課題】上述の如く、従来の冷
凍機直結式の超電導磁石装置にあっては、超電導コイル
の安定性を確保することが本質的に困難であるばかり
か、超電導コイルの有効ボア径が制限されるので、装置
としての応用性に欠ける問題があった。そこで本発明
は、上述した不具合を解消できる冷凍機直結式の超電導
磁石装置を提供することを目的としている。
As described above, in the conventional superconducting magnet device directly connected to the refrigerator, it is essentially difficult to ensure the stability of the superconducting coil, and the superconducting coil is Since the effective bore diameter is limited, there is a problem of lack of applicability as a device. Therefore, an object of the present invention is to provide a superconducting magnet device of a refrigerator direct connection type capable of solving the above-mentioned problems.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る超電導磁石装置は、超電導コイルと、
良熱伝導部材で形成されて前記超電導コイルの外周面に
熱的に接続された吸熱部材と、冷却ステージを備え、こ
の冷却ステージで前記吸熱部材を伝導冷却する冷凍機と
を備えている。
In order to achieve the above object, a superconducting magnet device according to the present invention comprises a superconducting coil,
A heat absorbing member formed of a good heat conducting member and thermally connected to the outer circumferential surface of the superconducting coil, a cooling stage, and a refrigerator for conducting and cooling the heat absorbing member by the cooling stage are provided.

【0009】[0009]

【作用】本発明に係る超電導磁石装置では、超電導コイ
ルを製作する時に用いた巻枠が取り除かれている。今、
吸熱部材が超電導コイルの外周面をほぼ覆う筒状に形成
されており、樹脂含浸によって超電導コイルと吸熱部材
とが一体化されているものとすると、吸熱部材を介して
伝導で超電導コイルを極低温に冷却した時およびこの状
態で超電導コイルに通電した時に次のような現象が起こ
る。すなわち、吸熱部材を介して超電導コイルが極低温
に冷却されると、超電導コイルが超電導状態に転移す
る。このとき、吸熱部材と超電導コイルとは共に半径方
向に熱収縮する。この状態で超電導コイルに通電する
と、こんどは電磁力によって超電導コイルが半径方向外
側へ膨らむように変形する。このため、超電導コイルと
吸熱部材との界面には圧縮応力が作用し、上記界面での
樹脂の剥離が生じ難い状態となる。したがって、超電導
コイルへの通電時に起こり易いクエンチを効果的に防止
することが可能となる。
In the superconducting magnet device according to the present invention, the bobbin used when manufacturing the superconducting coil is removed. now,
If the heat-absorbing member is formed in a tubular shape that almost covers the outer peripheral surface of the superconducting coil and the superconducting coil and the heat-absorbing member are integrated by resin impregnation, the superconducting coil is cryogenic by conduction through the heat-absorbing member. The following phenomenon occurs when the superconducting coil is energized in this state when it is cooled down. That is, when the superconducting coil is cooled to an extremely low temperature via the heat absorbing member, the superconducting coil changes to the superconducting state. At this time, both the heat absorbing member and the superconducting coil thermally contract in the radial direction. When the superconducting coil is energized in this state, the superconducting coil is deformed by the electromagnetic force so as to expand outward in the radial direction. For this reason, compressive stress acts on the interface between the superconducting coil and the heat absorbing member, and the resin is unlikely to peel off at the interface. Therefore, it is possible to effectively prevent the quenching that tends to occur when the superconducting coil is energized.

【0010】また、超電導コイルの内側に巻枠が存在し
ていないので、超電導コイルの有効ボア径が制限される
ことがなく、装置としての応用性を拡大することが可能
となる。
Further, since there is no winding frame inside the superconducting coil, the effective bore diameter of the superconducting coil is not limited, and the applicability as a device can be expanded.

【0011】[0011]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1には本発明の一実施例に係る超電導磁石装置の
概略構成が示されている。この超電導磁石装置は、大き
く別けて、内部が真空雰囲気となるように排気された真
空容器1を備えている。真空容器1は、たとえばステン
レス鋼などの非磁性材で形成されている。真空容器1の
上壁2および下壁3には、それぞれ孔4a,4bが対向
関係に設けてあり、これらの孔4a,4bを連通させる
ようにステンレス鋼などの非磁性材で形成された筒体5
の両端部が上壁2および下壁3の内面に気密に接続され
ている。したがって、筒体5の内側は大気圧に、外側は
真空雰囲気に保持されている。
Embodiments will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of a superconducting magnet device according to an embodiment of the present invention. This superconducting magnet device is roughly provided with a vacuum container 1 that is evacuated so that the inside is in a vacuum atmosphere. The vacuum container 1 is formed of a non-magnetic material such as stainless steel. Holes 4a and 4b are provided in the upper wall 2 and the lower wall 3 of the vacuum container 1 so as to face each other, and a cylinder made of a non-magnetic material such as stainless steel so as to communicate these holes 4a and 4b. Body 5
Both ends of the are connected airtightly to the inner surfaces of the upper wall 2 and the lower wall 3. Therefore, the inside of the cylindrical body 5 is kept at atmospheric pressure and the outside is kept in a vacuum atmosphere.

【0012】筒体5の回りで真空雰囲気中には、筒体5
とは非接触に、かつ筒体5と同心的に超電導コイル6が
配置されており、この超電導コイル6は吸熱部材7を介
して熱伝導部材8に熱的に接続されている。そして、熱
伝導部材8は極低温用冷凍機、この例ではギホード・マ
クマホン型冷凍機(以後、GM冷凍機と略称する。)9
の冷却ステージに接続されている。
In the vacuum atmosphere around the cylindrical body 5, the cylindrical body 5
A superconducting coil 6 is arranged in a non-contact manner with and concentrically with the tubular body 5, and the superconducting coil 6 is thermally connected to the heat conducting member 8 via the heat absorbing member 7. The heat conducting member 8 is a cryogenic refrigerator, in this example, a Gifode-McMahon type refrigerator (hereinafter abbreviated as GM refrigerator) 9.
Connected to the cooling stage.

【0013】GM冷凍機9は、30K 程度に冷却される第
1段冷却ステージ10と、4K以下程度(超電導線材の超
電導転移温度以下)に冷却される第2段冷却ステージ1
1とを備えており、各冷却ステージが真空容器1内に位
置するように真空容器1の上壁2に設けられた図示しな
い装着孔を使って真空容器1に取り付けられている。そ
して、第2段冷却ステージ11に熱伝導部材8が熱的お
よび機械的に接続されている。
The GM refrigerator 9 has a first-stage cooling stage 10 cooled to about 30K and a second-stage cooling stage 1 cooled to about 4K or less (below the superconducting transition temperature of a superconducting wire).
1, and each cooling stage is attached to the vacuum container 1 using a mounting hole (not shown) provided on the upper wall 2 of the vacuum container 1 so that each cooling stage is located in the vacuum container 1. The heat conducting member 8 is thermally and mechanically connected to the second cooling stage 11.

【0014】超電導コイル6,吸熱部材7および熱伝導
部材8は、具体的には、図2および図3に示すように構
成されている。すなわち、超電導コイル6は、この例の
場合、電気絶縁材で被覆されたNbTi合金などの金属
系超電導線、電気絶縁材で被覆されたNb3 Snなどの
化合物系超電導線あるいは酸化物超電導線で形成されて
いる。具体的には、これらの超電導線を巻枠の外周に所
定回数巻回した後に、エポキシ樹脂のように熱伝導率の
比較的良い樹脂を含浸して硬化させ、その後に巻枠の全
部を取り去り、全体が所定精度の円筒形状となるように
成形したものとなっている。
The superconducting coil 6, the heat absorbing member 7 and the heat conducting member 8 are specifically constructed as shown in FIGS. 2 and 3. That is, in this example, the superconducting coil 6 is made of a metal superconducting wire such as NbTi alloy coated with an electrical insulating material, a compound superconducting wire such as Nb 3 Sn coated with an electrical insulating material, or an oxide superconducting wire. Has been formed. Specifically, after winding these superconducting wires around the outer circumference of the reel a predetermined number of times, the resin is impregnated with a resin having a relatively high thermal conductivity such as epoxy resin and cured, and then the reel is entirely removed. , Is formed into a cylindrical shape with a predetermined accuracy.

【0015】吸熱部材7は、銅やアルミニウムなどの良
熱伝導金属材で内径が超電導コイル6の外径より所定だ
け大きく、かつ軸方向長さが超電導コイル6のそれより
若干長い円筒状に形成された筒状部12と、この筒状部
12の一端側内面に内側に突出するように筒状部12と
一体に形成された環状部13とで構成されている。な
お、筒状部12と環状部13とには、これらに周方向の
渦電流通路が形成されないようにするために、軸方向に
延びる切込み14が形成されている。また、環状部13
の幅は、超電導コイル6の半径方向の厚みtの数分の1
に設定されている。
The heat absorbing member 7 is made of a good heat conductive metal material such as copper or aluminum and has a cylindrical shape whose inner diameter is larger than the outer diameter of the superconducting coil 6 by a predetermined amount and whose axial length is slightly longer than that of the superconducting coil 6. The tubular portion 12 and the annular portion 13 integrally formed with the tubular portion 12 so as to project inward from the inner surface of the tubular portion 12 at one end side. The tubular portion 12 and the annular portion 13 are provided with notches 14 extending in the axial direction so as to prevent circumferential eddy current passages from being formed therein. In addition, the annular portion 13
Is a fraction of the radial thickness t of the superconducting coil 6.
Is set to.

【0016】このように構成された吸熱部材7内に、図
3に示すように、超電導コイル6が挿入され、この状態
で超電導コイル6と筒状部12および環状部13とがエ
ポキシ樹脂などの含浸樹脂層15によって接着固定され
ている。
As shown in FIG. 3, the superconducting coil 6 is inserted into the heat absorbing member 7 having the above-mentioned structure. In this state, the superconducting coil 6 and the tubular portion 12 and the annular portion 13 are made of epoxy resin or the like. It is adhered and fixed by the impregnated resin layer 15.

【0017】一方、熱伝導部材8は、図2に示すよう
に、銅やアルミニウムなどの良熱伝導金属材で外径が筒
状部12の外径と同程度に、内径が環状部13の内径よ
り所定だけ大きい環状に形成された部分16と、この部
分16から一体に延びる部分17とで構成されている。
なお、部分16には、この部分に周方向の渦電流通路が
形成されないようにするために、切込み18が形成され
ている。
On the other hand, as shown in FIG. 2, the heat conducting member 8 is made of a good heat conducting metal material such as copper or aluminum and has an outer diameter of the same as the outer diameter of the cylindrical portion 12 and an inner diameter of the annular portion 13. It is composed of an annular portion 16 that is larger than the inner diameter by a predetermined amount, and a portion 17 that integrally extends from this portion 16.
A cut 18 is formed in the portion 16 in order to prevent a circumferential eddy current passage from being formed in this portion.

【0018】このように形成された熱伝導部材8は、吸
熱部材7に設けられた切込み14に切込み18を合せる
ようにして部分16が環状部13の外面に当てがわれ、
この状態で部分16が環状部13に対してねじ止めされ
ている。すなわち、上記ねじ止めによって部分16と環
状部13とが熱的および機械的に接続されている。そし
て、部分17が前述したGM冷凍機9の第2段冷却ステ
ージ11に熱的および機械的に接続されている。
In the heat conducting member 8 thus formed, the portion 16 is applied to the outer surface of the annular portion 13 so that the notch 18 is aligned with the notch 14 provided in the heat absorbing member 7,
In this state, the portion 16 is screwed to the annular portion 13. That is, the portion 16 and the annular portion 13 are thermally and mechanically connected by the screwing. The portion 17 is thermally and mechanically connected to the second cooling stage 11 of the GM refrigerator 9 described above.

【0019】上記構成から判るように、超電導コイル6
は、吸熱部材7および熱伝導部材8を介してGM冷凍機
9の第2段冷却ステージ11に熱的に接続され、かつそ
の荷重が吸熱部材7および熱伝導部材8を介してGM冷
凍機9によって支持されている。
As can be seen from the above structure, the superconducting coil 6
Is thermally connected to the second stage cooling stage 11 of the GM refrigerator 9 via the heat absorbing member 7 and the heat conducting member 8, and its load is passed through the heat absorbing member 7 and the heat conducting member 8 to the GM refrigerator 9 Supported by.

【0020】なお、図1では外部から超電導コイル6へ
通電するための電流リード系統や真空容器構成壁からの
輻射による熱侵入を防止するための熱シールド板や真空
排気系などの本発明に直接関係ない要素が省略されてい
る。
Note that, in FIG. 1, a current lead system for energizing the superconducting coil 6 from the outside, a heat shield plate for preventing heat intrusion due to radiation from the vacuum chamber constituent wall, a vacuum exhaust system, etc. are directly applied to the present invention. Irrelevant elements are omitted.

【0021】このような構成であると、GM冷凍機9を
運転開始させると、このGM冷凍機9の第1段および第
2段冷却ステージ10,11が温度低下する。この結
果、超電導コイル6,吸熱部材7および熱伝導部材8の
顕熱が伝導によって第2段冷却ステージ11に伝わり、
この第2段冷却ステージ11を介してGM冷凍機9によ
って吸収される。したがって、これらが徐々に冷却され
る。そして、最終的に、これら超電導コイル6,吸熱部
材7,熱伝導部材8は、第2段冷却ステージ11の最低
到達温度に近い温度、つまり4K以下に冷却される。
With this structure, when the GM refrigerator 9 is started, the temperatures of the first and second cooling stages 10 and 11 of the GM refrigerator 9 are lowered. As a result, the sensible heat of the superconducting coil 6, the heat absorbing member 7 and the heat conducting member 8 is transmitted to the second cooling stage 11 by conduction,
It is absorbed by the GM refrigerator 9 through the second cooling stage 11. Therefore, these are gradually cooled. Then, finally, the superconducting coil 6, the heat absorbing member 7, and the heat conducting member 8 are cooled to a temperature close to the minimum reached temperature of the second stage cooling stage 11, that is, 4K or less.

【0022】このように超電導コイル6および吸熱部材
7が極低温に冷却されると、これらは熱収縮する。ま
た、この温度では、超電導コイル6を形成している線材
が超電導状態に転移する。
When the superconducting coil 6 and the heat absorbing member 7 are cooled to an extremely low temperature in this way, they contract heat. Further, at this temperature, the wire material forming the superconducting coil 6 transitions to the superconducting state.

【0023】この状態で超電導コイル6への励磁を開始
し、目標レベルに向けて電流値を徐々に増加させていく
と、線間に生じる電磁力も徐々に大きくなる。この電磁
力は超電導コイル6を半径方向外側へ膨らませるような
力として作用する。
When excitation of the superconducting coil 6 is started in this state and the current value is gradually increased toward the target level, the electromagnetic force generated between the lines also gradually increases. This electromagnetic force acts as a force for expanding the superconducting coil 6 outward in the radial direction.

【0024】この場合、超電導コイル6を半径方向外側
へ膨らませる力は、超電導コイル6と吸熱部材7との界
面に圧縮力として作用する。したがって、上記界面での
樹脂の剥離が生じ難い状態となる。また、もし剥離が生
じた場合でも、剥離位置が超電導コイル6の外周面近
く、つまり内周に比べて磁場の弱い場所(超電導線の臨
界電流は、通常、温度が高い程、また磁場が強い程小さ
くなる。)であるため、クエンチは起こり難い。さら
に、励(消)磁時に吸熱部材7および熱伝導部材8に渦
電流が流れようとするが、吸熱部材7を構成している筒
状部12および環状部13ならびに熱伝導部材8を構成
している部分16が超電導コイル6の外周面近くの磁場
の弱い場所に位置しており、しかもこれらには周方向へ
の渦電流通路が形成されないようにするための切込み1
4,18が設けられているので、渦電流を小さな値に抑
えることができ、渦電流による発熱でクエンチするのも
防止できる。したがって、超電導コイル6への通電時に
起こり易いクエンチを効果的に防止することが可能とな
る。
In this case, the force for expanding the superconducting coil 6 outward in the radial direction acts as a compressive force on the interface between the superconducting coil 6 and the heat absorbing member 7. Therefore, the resin is unlikely to peel off at the interface. Further, even if peeling occurs, the peeling position is near the outer peripheral surface of the superconducting coil 6, that is, a place where the magnetic field is weaker than the inner periphery (the critical current of the superconducting wire is usually higher at higher temperature and stronger magnetic field). Quench is unlikely to occur. Further, although an eddy current tends to flow through the heat absorbing member 7 and the heat conducting member 8 at the time of excitation (demagnetization), the cylindrical portion 12 and the annular portion 13 and the heat conducting member 8 constituting the heat absorbing member 7 are constituted. The portion 16 is located near the outer peripheral surface of the superconducting coil 6 in a place where the magnetic field is weak, and a cut 1 for preventing an eddy current passage in the circumferential direction from being formed in these portions.
Since Nos. 4 and 18 are provided, the eddy current can be suppressed to a small value, and quenching due to heat generation due to the eddy current can be prevented. Therefore, it is possible to effectively prevent the quenching that tends to occur when the superconducting coil 6 is energized.

【0025】また、上記構成であると、超電導コイル6
の内側に巻枠が存在していないので、超電導コイル6の
有効ボア径が制限されることがなく、装置としての応用
性を拡大することが可能となる。
Further, with the above structure, the superconducting coil 6
Since there is no winding frame inside, the effective bore diameter of the superconducting coil 6 is not limited, and the applicability as a device can be expanded.

【0026】さらに、この実施例では、超電導コイル6
の荷重を吸熱部材7および熱伝導部材8を介してGM冷
凍機9で支持させるようにしているので、構造を単純化
できる利点もある。
Further, in this embodiment, the superconducting coil 6
Since the load of (1) is supported by the GM refrigerator 9 via the heat absorbing member 7 and the heat conducting member 8, there is also an advantage that the structure can be simplified.

【0027】このように構成された超電導磁石装置は、
理化学分析用のNMRスペクトロメータや半導体単結晶
引上げ装置の磁場供給源として好適であるが、勿論、こ
れらの用途以外にも使用できる。そして、吸熱部材7の
各部肉厚および熱伝導部材8の肉厚は、使用している材
料、超電導コイル6の熱容量、輻射による熱侵入量、超
電導コイル6の重量等を考慮に入れて最適な値に設定さ
れる。
The superconducting magnet device configured as described above is
It is suitable as a magnetic field source for an NMR spectrometer for physicochemical analysis or a semiconductor single crystal pulling apparatus, but of course it can be used for other purposes. The thickness of each part of the heat absorbing member 7 and the thickness of the heat conducting member 8 are optimal in consideration of the material used, the heat capacity of the superconducting coil 6, the amount of heat intrusion due to radiation, the weight of the superconducting coil 6 and the like. Set to the value.

【0028】なお、本発明は、上述した実施例に限定さ
れるものではなく、種々変形して実施することができ
る。たとえば、上述した実施例では、樹脂含浸した超電
導コイル6を予め作っておき、これを吸熱部材7の筒状
部12内に挿入し、この状態で超電導コイル6と吸熱部
材7とを樹脂を使って含浸接着するようにしているが、
樹脂含浸していない超電導コイルを吸熱部材の筒状部内
に収容し、この状態で樹脂含浸して超電導コイルへの含
浸と吸熱部材に対する含浸接着とを同時に行うようにし
てもよい。このようにすると、製作工程数を減らすこと
ができる。また、含浸方式も、巻線後の含浸に限らず、
巻線層間にプリプレグガラス等の半硬化の繊維強化プラ
スチック(FRP)を挟んで巻線した後、加熱して巻線
部を含浸体としてもよい。また、樹脂含浸した超伝導コ
イルと吸熱部材の筒状部とを、いわゆる焼きばめ方式で
嵌合させるようにしてもよいし、焼きばめ後に樹脂含浸
して超電導コイルと吸熱部材とを含浸接着するようにし
てもよい。
The present invention is not limited to the above-mentioned embodiments, but can be modified in various ways. For example, in the above-described embodiment, the resin-impregnated superconducting coil 6 is prepared in advance, and this is inserted into the tubular portion 12 of the heat absorbing member 7. In this state, the superconducting coil 6 and the heat absorbing member 7 are made of resin. It is impregnated and adhered, but
The superconducting coil not impregnated with the resin may be housed in the tubular portion of the heat absorbing member, and in this state, the resin may be impregnated to simultaneously impregnate the superconducting coil and bond the impregnating member to the heat absorbing member. By doing so, the number of manufacturing steps can be reduced. Also, the impregnation method is not limited to impregnation after winding,
A semi-cured fiber reinforced plastic (FRP) such as prepreg glass may be sandwiched between winding layers and wound, and then the winding may be heated to form an impregnated body. The resin-impregnated superconducting coil and the tubular portion of the heat absorbing member may be fitted together by a so-called shrink fit method, or the resin may be impregnated after the shrink fitting to impregnate the superconducting coil and the heat absorbing member. You may make it adhere | attach.

【0029】また、図4に示すように、樹脂含浸した超
電導コイル6と吸熱部材7との間にインジウムリボンや
インジウムシート、またインジウムに代えてベリリウム
あるいはグリースなどのように接触熱抵抗を低減可能な
介在物19を介在させるようにしてもよい。このように
すると、超電導コイル6と吸熱部材7との間の熱抵抗を
減らすことができる。
Further, as shown in FIG. 4, contact heat resistance can be reduced by using an indium ribbon or an indium sheet between the resin-impregnated superconducting coil 6 and the heat absorbing member 7, or beryllium or grease instead of indium. You may make it interpose the inclusion 19 which does not exist. By doing so, the thermal resistance between the superconducting coil 6 and the heat absorbing member 7 can be reduced.

【0030】また、図5に示すように、樹脂含浸した超
電導コイル6と吸熱部材7とを含浸接着あるいは超電導
コイル6と吸熱部材7との間にインジウムリボンやイン
ジウムシートなどの介在物19を介在させた後で、常温
下において吸熱部材7の外周に巻線20を施し、この巻
線20の締付力で含浸樹脂層や介在物19に予応力をか
けるようにしてもよい。このようにすると、極低温下に
おける熱収縮量の違いで超電導コイル6と吸熱部材7と
の間の熱抵抗が増加するのを防止することができる。
Further, as shown in FIG. 5, the resin-impregnated superconducting coil 6 and the heat absorbing member 7 are impregnated and bonded, or an inclusion 19 such as an indium ribbon or an indium sheet is interposed between the superconducting coil 6 and the heat absorbing member 7. After this, the winding 20 may be provided on the outer circumference of the heat absorbing member 7 at room temperature, and the impregnating resin layer and the inclusions 19 may be prestressed by the tightening force of the winding 20. By doing so, it is possible to prevent an increase in the thermal resistance between the superconducting coil 6 and the heat absorbing member 7 due to the difference in the amount of heat shrinkage at extremely low temperatures.

【0031】また、図6に示すように、エポキシ樹脂と
の接着性のよいFRP製の巻枠を用いて巻線を行った後
にエポキシ樹脂の含浸を行ない、上記巻枠のフランジ部
21a,21bが残っている形の超電導コイル6aを形
成し、この超電導コイル6aを吸熱部材7の筒状部12
に挿入して超電導コイル6aと吸熱部材7とをエポキシ
樹脂等で含浸接着してもよい。このようにすると、FR
P製のフランジ部21a,21bの機械的強度が小さい
ので、超電導コイル6aとフランジ部21a,21bと
の界面で剥離が生じても発生熱量が少なく、クエンチが
発生するようなことはない。また、フランジ部21a,
21bの存在によって超電導コイル6aの機械的な保護
を図ることができる。
Further, as shown in FIG. 6, the winding is carried out by using a winding frame made of FRP having good adhesiveness with the epoxy resin, and then impregnation with the epoxy resin is carried out to form the flange portions 21a and 21b of the winding frame. Is formed, the superconducting coil 6a is formed, and the superconducting coil 6a is connected to the tubular portion 12 of the heat absorbing member 7.
Then, the superconducting coil 6a and the heat absorbing member 7 may be impregnated and bonded with an epoxy resin or the like. By doing this, FR
Since the flange portions 21a and 21b made of P have low mechanical strength, even if peeling occurs at the interface between the superconducting coil 6a and the flange portions 21a and 21b, the amount of heat generated is small and quenching does not occur. In addition, the flange portion 21a,
Due to the presence of 21b, the superconducting coil 6a can be mechanically protected.

【0032】また、図7に示すように、超電導線を巻回
してなる巻線部22の外側に銅線やアルミニウム線ある
いは他の超電導線の等の良熱伝導線23を調整巻線24
として巻回し、これらに樹脂含浸した後に調整巻線24
の外周部を切削加工して良熱伝導線23を露出させてな
る超電導コイル6bを用意し、この超電導コイル6bと
吸熱部材7の筒状部12とを、いわゆる焼きばめによっ
て嵌合させるようにしてもよいし、焼きばめ後に樹脂含
浸して超電導コイル6bと吸熱部材7とを含浸接着する
ようにしてもよい。また、超電導コイル6bと吸熱部材
7とを直接含浸接着したり、間に柔質金属、たとえばイ
ンジウムを介在させて接着したり、あるいはSUS バンド
により接着してもよい。
Further, as shown in FIG. 7, a good heat conducting wire 23 such as a copper wire, an aluminum wire or another superconducting wire is provided on the outside of the winding portion 22 formed by winding the superconducting wire, and the adjusting winding 24 is provided.
Winding, and impregnating them with resin, and then adjusting winding 24
A superconducting coil 6b having a good heat conducting wire 23 exposed by cutting the outer peripheral portion of is prepared, and the superconducting coil 6b and the tubular portion 12 of the heat absorbing member 7 are fitted by so-called shrink fitting. Alternatively, the resin may be impregnated after shrink fitting, and the superconducting coil 6b and the heat absorbing member 7 may be impregnated and bonded. The superconducting coil 6b and the heat absorbing member 7 may be directly impregnated and adhered, a soft metal such as indium may be interposed therebetween, or a SUS band may be adhered.

【0033】また、図1に示す実施例では、超電導コイ
ル6の荷重およびこれに加わる力を吸熱部材7および熱
伝導部材8を介してGM冷凍機9で支持させるようにし
ているが、図8に示すように、吸熱部材7の筒状部12
と真空容器1の上壁2との間に断熱材製の吊りボルト2
5を設け、この吊りボルト25とGM冷凍機9とで支持
させるようにしてもよい。なお、この場合には、部分1
7だけを備えた熱伝導部材8aの使用が可能となる。
In the embodiment shown in FIG. 1, the load of the superconducting coil 6 and the force applied thereto are supported by the GM refrigerator 9 via the heat absorbing member 7 and the heat conducting member 8. As shown in FIG.
Between the upper wall 2 of the vacuum container 1 and the vacuum vessel 1
5 may be provided and supported by the suspension bolt 25 and the GM refrigerator 9. In this case, part 1
It is possible to use the heat conducting member 8a provided with only 7.

【0034】また、図1に示す実施例では、吸熱部材7
を構成している筒状部12と環状部13とに軸方向に延
びる切込み14を設け、この切込み14で周方向の渦電
流通路を断切っているが、図9(a) に示すように、切込
み14に、たとえばステンレス鋼や窒化アルミニウム等
のように抵抗率が高く、かつ非磁性の部材を充填材26
として充填し、これを筒状部12および環状部13に溶
接あるいはロウ付けすることによって、渦電流通路を遮
断した状態で吸熱部材7aの機械的強度を確保するよう
にしてもよい。
Further, in the embodiment shown in FIG. 1, the heat absorbing member 7
A notch 14 extending in the axial direction is provided in the tubular portion 12 and the annular portion 13 that form the above, and the notch 14 cuts the circumferential eddy current passage. As shown in FIG. 9 (a), In the notch 14, a non-magnetic member having a high resistivity such as stainless steel or aluminum nitride is used as the filler 26.
Alternatively, the mechanical strength of the heat absorbing member 7a may be ensured in a state where the eddy current passage is blocked by welding or brazing this to the tubular portion 12 and the annular portion 13.

【0035】また、図9(b) に示すように、筒状部12
と環状部13とを抵抗率が高く、非磁性で、かつ機械的
強度の大きいステンレス鋼で形成し、これら筒状部12
と環状部13の内面にアルミニウムや銅等の良熱伝導層
27をメッキ、蒸着、張合せ等によって周方向に少なく
とも1箇所の分離部28が形成されるように設け、この
良熱伝導層27を介して超電導コイルを冷却するように
した吸熱部材7bを用いてもよい。すなわち、この場合
には、伝導冷却を良熱伝導層27で行わせ、機械的強度
保持を筒状部12と環状部13とで行わせている。そし
て、この場合には筒状部12と環状部13とに切込みを
設ける必要はなく、分離部28によって渦電流通路が遮
断される。
Further, as shown in FIG. 9 (b), the cylindrical portion 12
And the annular portion 13 are made of stainless steel having high resistivity, non-magnetism, and high mechanical strength.
A good heat conducting layer 27 made of aluminum, copper or the like is provided on the inner surface of the annular portion 13 so as to form at least one separating portion 28 in the circumferential direction by plating, vapor deposition, bonding or the like. Alternatively, the heat absorbing member 7b configured to cool the superconducting coil via may be used. That is, in this case, conduction cooling is performed by the good heat conduction layer 27, and mechanical strength is maintained by the tubular portion 12 and the annular portion 13. In this case, it is not necessary to make a cut in the cylindrical portion 12 and the annular portion 13, and the separation portion 28 blocks the eddy current passage.

【0036】また、上述した各実施例は、超電導コイル
を1つだけ設けた例であるが、たとえば図10に示すよ
うに、超電導コイル6を2つ設ける場合には、内側の超
電導コイル6を伝導冷却する吸熱部材7cに外側に向け
て突出する鍔部29を一体に設け、外側の超電導コイル
6を伝導冷却する吸熱部材7dを鍔部29に熱的、機械
的に接続し、吸熱部材7dを図示しない冷凍機の冷却ス
テージに熱的に接続すす構成を採用すればよい。この場
合、鍔部29に半径方向に延びる切込みを周方向に複数
設けることによって渦電流による発熱を抑えることがで
きる。
In each of the above-mentioned embodiments, only one superconducting coil is provided. However, when two superconducting coils 6 are provided, for example, as shown in FIG. A flange portion 29 projecting outward is integrally provided on the heat absorbing member 7c for conducting and cooling, and a heat absorbing member 7d for conducting and cooling the outer superconducting coil 6 is thermally and mechanically connected to the flange portion 29 to form a heat absorbing member 7d. May be thermally connected to a cooling stage of a refrigerator (not shown). In this case, heat generation due to eddy current can be suppressed by providing a plurality of notches extending in the radial direction in the flange portion 29 in the circumferential direction.

【0037】また、上述した各実施例では、超電導コイ
ルの外周面を介して超電導コイルを伝導冷却している
が、図11(a) に示すように、巻線時に層間に良熱伝導
材で箔状、リボン状、網状等に形成された熱案内部材3
0を巻込んだものに樹脂含浸してなる超電導コイル6c
を用い、上記熱案内部材30を吸熱部材7eの環状部1
3aに熱的に接触させることによって、筒状部12aお
よび熱案内部材30を介して伝導で超電導コイル6cを
冷却するようにしてもよい。この場合には、外周面だけ
から冷却する場合に比べて冷却性能が向上するので、筒
状部12aの軸方向長さを短くでき、軽量化を図ること
ができる。なお、超電導コイルを形成している線材には
絶縁被覆が設けられているが、この線材と熱案内部材3
0との間の電気絶縁をより確かなものにするために、熱
案内部材30の表面に絶縁被覆を設けるようにしてもよ
い。
Further, in each of the above-mentioned embodiments, the superconducting coil is conductively cooled through the outer peripheral surface of the superconducting coil. However, as shown in FIG. Heat guide member 3 formed in a foil shape, a ribbon shape, a net shape, or the like
Superconducting coil 6c obtained by impregnating 0 in which resin is impregnated
The heat guide member 30 is connected to the annular portion 1 of the heat absorbing member 7e.
The superconducting coil 6c may be cooled by conduction through the tubular portion 12a and the heat guide member 30 by making thermal contact with the 3a. In this case, since the cooling performance is improved as compared with the case of cooling from only the outer peripheral surface, the axial length of the tubular portion 12a can be shortened and the weight can be reduced. Although the wire forming the superconducting coil is provided with an insulating coating, this wire and the heat guide member 3
An insulating coating may be provided on the surface of the heat guide member 30 in order to secure the electrical insulation between the heat guide member 30 and the heat guide member 30.

【0038】また、熱案内部材30によって十分な冷却
性能が得られる場合には、図11(b) に示すように、筒
状部の省略された吸熱部材7fの使用が可能である。ま
た、図1に示した例では、筒状部12と環状部13とを
備えた吸熱部材7を用いているが、図12に示すよう
に、良熱伝導金属材で樋状に形成された部分31と、一
端側が部分31に熱的、機械的に接続された熱伝導部材
32とを備えてなる吸熱部材7gを用いるようにしても
よい。この場合には、部分31の凹面に対して超電導コ
イル6を樹脂等で含浸接着する。そして、実際に図示し
ない真空容器内に配置するに際しては、部分31を下
に、超電導コイル6を上にし、超電導コイル6の軸心線
を水平にして超電導コイル6の伝導冷却と超電導コイル
6の荷重支持とを吸熱部材7gで行わせるようにしても
よい。また、比較的低磁場を発生させる場合には、超電
導コイルを酸化物系超電導線で形成することもできる。
When sufficient cooling performance can be obtained by the heat guide member 30, as shown in FIG. 11 (b), it is possible to use the heat absorbing member 7f with the tubular portion omitted. Further, in the example shown in FIG. 1, the heat absorbing member 7 including the tubular portion 12 and the annular portion 13 is used, but as shown in FIG. 12, it is formed of a good heat conductive metal material in a gutter shape. The heat absorbing member 7g including the portion 31 and the heat conducting member 32 whose one end side is thermally and mechanically connected to the portion 31 may be used. In this case, the superconducting coil 6 is impregnated and bonded to the concave surface of the portion 31 with resin or the like. When actually arranging the superconducting coil 6 in a vacuum container (not shown), the superconducting coil 6 is placed downward, the axis 31 of the superconducting coil 6 is set horizontally, and the conduction cooling of the superconducting coil 6 and the superconducting coil 6 are performed. The load supporting may be performed by the heat absorbing member 7g. Further, when a relatively low magnetic field is generated, the superconducting coil can be formed of an oxide-based superconducting wire.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
超電導コイルの安定性を確保できるとともに、超電導コ
イルのボア径の有効活用に寄与できる。
As described above, according to the present invention,
It is possible to ensure the stability of the superconducting coil and contribute to effective use of the bore diameter of the superconducting coil.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る超電導磁石装置の概略
構成図
FIG. 1 is a schematic configuration diagram of a superconducting magnet device according to an embodiment of the present invention.

【図2】同装置における超電導コイル、吸熱部材および
熱伝導部材を取出して示す分解斜視図
FIG. 2 is an exploded perspective view showing a superconducting coil, a heat absorbing member, and a heat conducting member in the same device.

【図3】同装置における超電導コイルと吸熱部材との熱
的結合構成を説明するための断面図
FIG. 3 is a sectional view for explaining a thermal coupling configuration between a superconducting coil and a heat absorbing member in the same device.

【図4】超電導コイルと吸熱部材との熱的結合構成の別
の例を説明するための断面図
FIG. 4 is a cross-sectional view for explaining another example of the thermal coupling structure between the superconducting coil and the heat absorbing member.

【図5】超電導コイルと吸熱部材との熱的結合構成のさ
らに別の例を説明するための断面図
FIG. 5 is a sectional view for explaining still another example of the thermal coupling configuration between the superconducting coil and the heat absorbing member.

【図6】超電導コイルと吸熱部材との熱的結合構成の異
なる例を説明するための断面図
FIG. 6 is a sectional view for explaining an example of a different thermal coupling configuration between the superconducting coil and the heat absorbing member.

【図7】超電導コイルと吸熱部材との熱的結合構成のさ
らに異なる例を説明するための断面図
FIG. 7 is a cross-sectional view for explaining a further different example of the thermal coupling configuration between the superconducting coil and the heat absorbing member.

【図8】超電導コイルの荷重支持手段の別の例を示す断
面図
FIG. 8 is a cross-sectional view showing another example of load supporting means for a superconducting coil.

【図9】吸熱部材の変形例をそれぞれ示す上面図FIG. 9 is a top view showing a modified example of the heat absorbing member.

【図10】2個の超電導コイルを同心円状に配置する場
合の吸熱部材の構成例を局部的に示す断面図
FIG. 10 is a cross-sectional view locally showing a configuration example of a heat absorbing member when two superconducting coils are arranged in a concentric circle shape.

【図11】超電導コイルと吸熱部材との熱的結合構成の
変形例をそれぞれ説明するための局部的な断面図
FIG. 11 is a local cross-sectional view for explaining respective modified examples of the thermal coupling configuration of the superconducting coil and the heat absorbing member.

【図12】超電導コイルと吸熱部材との熱的結合構成の
別の変形例を説明するための局部的な斜視図
FIG. 12 is a local perspective view for explaining another modified example of the thermal coupling structure between the superconducting coil and the heat absorbing member.

【符号の説明】[Explanation of symbols]

1…真空容器 2…上壁 3…下壁 4a,4b…孔 5…筒体 6,6a,6
b,6c…超電導コイル 7,7a,7b,7c,7d,7e,7f,7g…吸熱
部材 8,8a,32…熱伝導部材 9…GM冷凍機 10…第1段冷却ステージ 11…第2段冷
却ステージ 12,12a…筒状部 13,13a…
環状部 14,18…切込み 15…含浸樹脂
層 16,17…部分 19…介在物 20…巻線 24…調整巻線 25…吊りボルト 26…充填材 27…良熱伝導層 28…分離部 29…鍔部 30…熱案内部
材 31…樋状の部分
DESCRIPTION OF SYMBOLS 1 ... Vacuum container 2 ... Upper wall 3 ... Lower wall 4a, 4b ... Hole 5 ... Cylindrical body 6, 6a, 6
b, 6c ... Superconducting coil 7, 7a, 7b, 7c, 7d, 7e, 7f, 7g ... Heat absorption member 8, 8a, 32 ... Heat conduction member 9 ... GM refrigerator 10 ... First stage cooling stage 11 ... Second stage Cooling stage 12, 12a ... Cylindrical part 13, 13a ...
Annular portion 14, 18 ... Notch 15 ... Impregnated resin layer 16, 17 ... Part 19 ... Inclusion 20 ... Winding 24 ... Adjusting winding 25 ... Suspension bolt 26 ... Filler 27 ... Good heat conduction layer 28 ... Separation part 29 ... Collar part 30 ... Heat guide member 31 ... Gutter-shaped part

フロントページの続き (72)発明者 前田 秀明 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 中込 秀樹 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 浦田 昌身 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内Front page continuation (72) Hideaki Maeda, 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Inside Toshiba Research & Development Center, Inc. (72) Hideki Nakagome 1 Komukai-shiba, Kawasaki, Kanagawa Incorporated company Toshiba Research and Development Center (72) Inventor Masami Urata No. 1 Komukai Toshiba-cho, Kouki-ku, Kawasaki-shi, Kanagawa Incorporated company Toshiba Research and Development Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】超電導コイルと、良熱伝導部材で形成され
て前記超電導コイルの外周面に熱的に接続された吸熱部
材と、冷却ステージを備え、この冷却ステージで前記吸
熱部材を伝導冷却する冷凍機とを具備してなることを特
徴とする超電導磁石装置。
1. A superconducting coil, a heat absorbing member formed of a good heat conducting member and thermally connected to an outer peripheral surface of the superconducting coil, and a cooling stage. The cooling stage conductively cools the heat absorbing member. A superconducting magnet device comprising a refrigerator.
【請求項2】前記吸熱部材は、前記超電導コイルの外周
面をほぼ覆う筒状部を備えてなることを特徴とする請求
項1に記載の超電導磁石装置。
2. The superconducting magnet device according to claim 1, wherein the heat absorbing member includes a cylindrical portion that substantially covers an outer peripheral surface of the superconducting coil.
【請求項3】前記吸熱部材は、前記超電導コイルを支持
する支持部材を兼ねていることを特徴とする請求項1に
記載の超電導磁石装置。
3. The superconducting magnet device according to claim 1, wherein the heat absorbing member also serves as a supporting member for supporting the superconducting coil.
JP29066593A 1993-11-19 1993-11-19 Superconducting magnet device Pending JPH07142241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29066593A JPH07142241A (en) 1993-11-19 1993-11-19 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29066593A JPH07142241A (en) 1993-11-19 1993-11-19 Superconducting magnet device

Publications (1)

Publication Number Publication Date
JPH07142241A true JPH07142241A (en) 1995-06-02

Family

ID=17758914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29066593A Pending JPH07142241A (en) 1993-11-19 1993-11-19 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JPH07142241A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135318A (en) * 1997-10-28 1999-05-21 Kyushu Electric Power Co Inc Superconducting magnet
JP2005353931A (en) * 2004-06-14 2005-12-22 Japan Superconductor Technology Inc Heat transfer structure of superconducting coil and superconducting magnet
JP2006203154A (en) * 2004-04-20 2006-08-03 National Institutes Of Natural Sciences Superconducting pulse coil, and superconducting device and superconducting power storage using same
JP2008244284A (en) * 2007-03-28 2008-10-09 Sumitomo Electric Ind Ltd Superconducting coil manufacturing method and superconducting coil
JP2009026804A (en) * 2007-07-17 2009-02-05 Railway Technical Res Inst Heat generation preventing device for metallic heat exchanger of superconducting equipment
JP2010503237A (en) * 2006-09-07 2010-01-28 マサチューセッツ・インスティテュート・オブ・テクノロジー Inductive quench for magnet protection
JP2010272745A (en) * 2009-05-22 2010-12-02 Sumitomo Heavy Ind Ltd Superconducting coil and superconducting magnet device
JP2011035216A (en) * 2009-08-04 2011-02-17 Railway Technical Res Inst Re-based superconducting coil conduction cooling method and device therefor
WO2011118501A1 (en) * 2010-03-23 2011-09-29 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet
JP2011222729A (en) * 2010-04-09 2011-11-04 Japan Superconductor Technology Inc Superconducting magnet
JP2013102183A (en) * 2009-06-15 2013-05-23 Toshiba Corp Superconductive magnet device
JP2015176990A (en) * 2014-03-14 2015-10-05 株式会社東芝 Superconducting coil device
US9234692B2 (en) 2009-06-15 2016-01-12 Kabushiki Kaisha Toshiba Superconducting magnetic apparatus
JP2016046379A (en) * 2014-08-22 2016-04-04 住友重機械工業株式会社 Superconducting electromagnet
GB2578315A (en) * 2018-10-22 2020-05-06 Siemens Healthcare Ltd Thermal buses for cryogenic applications
GB2596826A (en) * 2020-07-07 2022-01-12 Siemens Healthcare Ltd Flexible thermal bus for superconducting coil

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135318A (en) * 1997-10-28 1999-05-21 Kyushu Electric Power Co Inc Superconducting magnet
JP2006203154A (en) * 2004-04-20 2006-08-03 National Institutes Of Natural Sciences Superconducting pulse coil, and superconducting device and superconducting power storage using same
JP2005353931A (en) * 2004-06-14 2005-12-22 Japan Superconductor Technology Inc Heat transfer structure of superconducting coil and superconducting magnet
JP2010503237A (en) * 2006-09-07 2010-01-28 マサチューセッツ・インスティテュート・オブ・テクノロジー Inductive quench for magnet protection
JP2008244284A (en) * 2007-03-28 2008-10-09 Sumitomo Electric Ind Ltd Superconducting coil manufacturing method and superconducting coil
JP2009026804A (en) * 2007-07-17 2009-02-05 Railway Technical Res Inst Heat generation preventing device for metallic heat exchanger of superconducting equipment
JP2010272745A (en) * 2009-05-22 2010-12-02 Sumitomo Heavy Ind Ltd Superconducting coil and superconducting magnet device
US9234692B2 (en) 2009-06-15 2016-01-12 Kabushiki Kaisha Toshiba Superconducting magnetic apparatus
JP2013102183A (en) * 2009-06-15 2013-05-23 Toshiba Corp Superconductive magnet device
JP2011035216A (en) * 2009-08-04 2011-02-17 Railway Technical Res Inst Re-based superconducting coil conduction cooling method and device therefor
CN102792396A (en) * 2010-03-23 2012-11-21 日本超导体技术公司 Superconducting magnet
WO2011118501A1 (en) * 2010-03-23 2011-09-29 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet
JP2011222729A (en) * 2010-04-09 2011-11-04 Japan Superconductor Technology Inc Superconducting magnet
JP2015176990A (en) * 2014-03-14 2015-10-05 株式会社東芝 Superconducting coil device
JP2016046379A (en) * 2014-08-22 2016-04-04 住友重機械工業株式会社 Superconducting electromagnet
GB2578315A (en) * 2018-10-22 2020-05-06 Siemens Healthcare Ltd Thermal buses for cryogenic applications
GB2578315B (en) * 2018-10-22 2021-01-06 Siemens Healthcare Ltd Thermal buses for cryogenic applications
US11551841B2 (en) 2018-10-22 2023-01-10 Siemens Healthcare Limited Thermal buses for cryogenic applications
GB2596826A (en) * 2020-07-07 2022-01-12 Siemens Healthcare Ltd Flexible thermal bus for superconducting coil
GB2596826B (en) * 2020-07-07 2022-08-24 Siemens Healthcare Ltd Flexible thermal bus for superconducting coil

Similar Documents

Publication Publication Date Title
JPH07142241A (en) Superconducting magnet device
US7616083B2 (en) Resin-impregnated superconducting magnet coil comprising a cooling layer
JPH10116724A (en) Superconducting device
KR20140025477A (en) Superconducting magnets with thermal radiation shields
KR19980086667A (en) Superconducting coil
JPH07142237A (en) Superconducting magnet device
JPH11186025A (en) Superconducting coil
JPH06151168A (en) Superconducting magnet and manufacture thereof
US4651117A (en) Superconducting magnet with shielding apparatus
JPS6213010A (en) Superconductive electromagnet
GB2490189A (en) Superconducting magnet with thermally conductive cooling and methods for its manufacture
JPH07142242A (en) Superconducting magnet device
JPS6350844B2 (en)
US5387889A (en) Superconducting magnet apparatus
JPH10116725A (en) Superconducting magnet device
JP3104268B2 (en) Superconducting magnet application equipment
JP3268047B2 (en) Superconducting magnet device
JPH11176629A (en) Superconducting magnet device
JPH05198429A (en) Superconductor coil
JPH05275755A (en) Cryostat
JPH06325932A (en) Superconducting coil
JPH09306723A (en) Refrigerator cooled superconducting magnet device
JP2868936B2 (en) Superconducting magnet
JPH0137841B2 (en)
JPH11144940A (en) Superconducting magnet device