JPH05302809A - Two wave length interference length measuring device - Google Patents

Two wave length interference length measuring device

Info

Publication number
JPH05302809A
JPH05302809A JP4109870A JP10987092A JPH05302809A JP H05302809 A JPH05302809 A JP H05302809A JP 4109870 A JP4109870 A JP 4109870A JP 10987092 A JP10987092 A JP 10987092A JP H05302809 A JPH05302809 A JP H05302809A
Authority
JP
Japan
Prior art keywords
wavelength
polarization
measuring
wave lengths
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4109870A
Other languages
Japanese (ja)
Inventor
Shuji Toyonaga
修司 豊永
Akira Ishida
明 石田
Kiyoshi Uchikawa
清 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4109870A priority Critical patent/JPH05302809A/en
Publication of JPH05302809A publication Critical patent/JPH05302809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To enable accurate displacement measurement even in the case with a difference in functions for two wave lengths in an optical element by providing a polarization means which is penetrative for only polarization component crossing perpendicularly to each other in the light paths of two wave lengths measuring beam and two wave lengths reference beam. CONSTITUTION:Two wave lengths incidence beam 14 is separated into two wave lengths measuring beam 17 and two wave lengths reference beam 18 by a polarization beam splitter 15. The beams 17 and 18 after going into corner cube prisms 19 and 23 respectively are returned again to the beam splitter 15 and become two wave lengths measuring output beam 24 and two wave lengths reference output beam 25. As the light elimination ratio in the beam splitter 15 is poor, the beams 24 and 25 become elliptic polarization light. When both beams 24, 25 are let go into a polarization means 26 which is a combination of a pair of polarization element having different penetration polarization azimuth for 90 degree, the penetrated two beams 27, 28 become linear polarization lights crossing perpendicularly to each other, combined in one by beam combination element 29 and become two wave length single output beam 32 so that accurate measurement becomes possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高精度な測長計測が要
求される機器に用いられる2波長干渉測長装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-wavelength interferometric length measuring apparatus used for equipment which requires highly accurate length measuring measurement.

【0002】[0002]

【従来の技術】超精密加工技術の進展に伴い、光波干渉
法を用いた高精度な変位測定が多く利用されている。光
波干渉法を用いた高精度変位測定において問題となるの
が、空気ゆらぎによる測定誤差である。その空気ゆらぎ
による問題を解決する方法として、2つの波長の光を用
いてそれぞれの光について変位量を得その値から空気ゆ
らぎが補正された変位量を求める方法が研究されてきて
いる。
2. Description of the Related Art With the progress of ultra-precision processing technology, high-precision displacement measurement using light wave interferometry is widely used. A problem in high-precision displacement measurement using light wave interferometry is a measurement error due to air fluctuations. As a method for solving the problem caused by the air fluctuation, a method has been studied in which light having two wavelengths is used to obtain a displacement for each light and a displacement for which the air fluctuation is corrected is obtained from the displacement.

【0003】[0003]

【発明が解決しようとする課題】このような2波長干渉
測長装置による計測方法では、2波長の光を共軸で干渉
計内を通すため、各光学素子を2波長に対して同一に機
能するように構成することが必要である。しかしなが
ら、実際上は各光学素子を2波長に対して理想的に機能
させることは難しいため、2波長に対する機能の微妙な
差異が測定の誤差として影響してくるという問題があっ
た。
In the measuring method using such a two-wavelength interferometer, since two wavelengths of light are passed through the interferometer coaxially, each optical element has the same function for two wavelengths. Need to be configured. However, in practice, it is difficult to cause each optical element to function ideally for two wavelengths, so there is a problem that a subtle difference in function for two wavelengths affects measurement errors.

【0004】本発明の目的は、光学素子において2波長
に対する機能に差異がある場合にも、高精度な変位測定
を可能にする干渉計を提供することにある。
An object of the present invention is to provide an interferometer which enables highly accurate displacement measurement even when there is a difference in the function for two wavelengths in an optical element.

【0005】[0005]

【課題を解決するための手段】本発明による2波長干渉
測長装置は、(a)同軸の2波長光ビームを発生する光
源手段と、(b)最も好ましくは偏光ビームスプリッタ
ーであるが、前記光源手段より得られる2波長入力ビー
ムを互いにほぼ直交する偏光状態を有する2波長測長ビ
ームと2波長参照ビームとに分割する偏光ビーム分割手
段と、(c)最も好ましくは直角プリズムまたはコーナ
ーキューブプリズム、或は4分の1波長板と逆反射装置
であるが、前記2波長測長ビームを前記2波長入力ビー
ムと重ならないで前記偏光ビーム分割手段から出射する
ように折り返す測長ビーム反射手段と、(d)最も好ま
しくは直角プリズムまたはコーナーキューブプリズムで
あるが、前記2波長参照ビームを前記2波長測長ビーム
反射手段により折り返され前記偏光ビーム分割手段から
出射する2波長測長ビームに対して分離された状態でか
つ前記2波長入力ビームと重ならないで出射するように
折り返す固定の参照ビーム反射手段と、(e)最も好ま
しくは透過偏光方位が互いに垂直で一体化された偏光子
であるが、前記測長ビーム反射手段及び前記参照ビーム
反射手段のそれぞれにより折り返され前記偏光ビーム分
割手段から出射する互いに分離した2波長測長ビームと
2波長参照ビームとの光路中において互いに直交する偏
光成分のみを通過する一対の偏光手段と、(f)前記一
対の偏光手段を通過した2波長測長ビームと2波長参照
ビームとを2波長単一出力ビームに変換するビーム合成
手段と、(g)最も好ましくはダイクロイックミラーで
あるが、前記2波長単一出力ビームをそれぞれの波長域
に分離する手段と、(h)前記波長域分離手段により分
離されたそれぞれのビームを干渉させて前記測長ビーム
反射手段の変位量を検出する検出手段とを有する。
The two-wavelength interferometer according to the present invention comprises (a) light source means for generating a coaxial two-wavelength light beam, and (b) most preferably a polarizing beam splitter. Polarizing beam splitting means for splitting a two-wavelength input beam obtained from the light source means into a two-wavelength measuring beam having polarization states substantially orthogonal to each other and a two-wavelength reference beam, and (c) most preferably a right-angle prism or a corner cube prism Or a quarter-wave plate and a retro-reflecting device, but a length-measuring beam reflecting means for returning the two-wavelength measuring beam so as not to overlap the two-wavelength input beam so as to be emitted from the polarized beam splitting means. (D) Most preferably a right-angle prism or a corner cube prism, but the two-wavelength reference beam is bent by the two-wavelength measuring beam reflecting means. A fixed reference beam reflecting means that is returned so as to be separated from the two-wavelength measuring beam that is output from the polarized beam splitting means and that does not overlap with the two-wavelength input beam; Preferably, the polarizers are such that the transmission polarization directions are perpendicular to each other and are integrated, but two wavelength measurement beams separated from each other by the measurement beam reflection means and the reference beam reflection means and emitted from the polarization beam splitting means. A pair of polarizing means that passes only polarization components orthogonal to each other in the optical paths of the long beam and the two-wavelength reference beam; and (f) a two-wavelength measuring beam and a two-wavelength reference beam that pass through the pair of polarizing means. Beam combining means for converting to a dual wavelength single output beam, and (g) most preferably a dichroic mirror, said dual wavelength single output beam A means for separating the respective wavelength ranges, and detection means for detecting a displacement amount of the measurement beam reflector means causes interference respective beams separated by (h) the wavelength region separating means.

【0006】そして、測長ビーム反射手段の変位量を検
出する検出手段としては、分離された各波長の出力ビー
ムの直交偏光成分を干渉させ、0゜,90゜,180゜
の位相を持つ干渉光を作り出す干渉手段、前記3つの干
渉光を受光して3位相の信号を出力する光検出手段、前
記3位相の出力信号より90゜位相の信号から0゜,1
80゜位相の信号を差し引き、DCレベルが零で90゜
位相差を持つ2つの出力信号を得る減算手段、前記減算
手段により得られた2つの出力信号から被測定物の変位
を計算する演算手段、及び2波長に対して前記変位測定
手段より得られた2つの変位量から空気ゆらぎを補正し
た変位を求める補正手段で構成することが有効である。
As the detecting means for detecting the displacement amount of the length measuring beam reflecting means, the orthogonal polarization components of the separated output beams of the respective wavelengths are interfered with each other and the interference having the phases of 0 °, 90 ° and 180 ° is performed. Interference means for producing light, light detection means for receiving the three interference lights and outputting signals of three phases, 0 °, 1 from a signal of 90 ° phase from the output signal of the three phases
Subtracting means for subtracting the 80 ° phase signal to obtain two output signals having a DC level of zero and a 90 ° phase difference, and computing means for calculating the displacement of the object to be measured from the two output signals obtained by the subtracting means. , And correction means for obtaining a displacement in which air fluctuations are corrected from the two displacement amounts obtained by the displacement measuring means for two wavelengths.

【0007】[0007]

【作用】上記の構成によれば、測長ビーム反射手段と固
定の参照ビーム反射手段とからそれぞれ反射されて偏光
ビーム分割手段から出射する2波長測長ビーム及び2波
長参照ビームが、それぞれ互いに偏光軸が直交する一対
の偏光手段を通過するため、各ビームの偏光状態が互い
に完全に直交する直線偏光に揃えられ、これにより偏光
ビーム分割手段の偏光分離作用が2波長それぞれに対し
て完全ではなくとも、正確な測定が可能となる。
According to the above structure, the two-wavelength measuring beam and the two-wavelength reference beam reflected by the length measuring beam reflecting means and the fixed reference beam reflecting means and emitted from the polarization beam splitting means are polarized with respect to each other. Since the light beams pass through the pair of polarization means whose axes are orthogonal to each other, the polarization states of the respective beams are aligned to be linearly polarized lights which are completely orthogonal to each other, whereby the polarization separation action of the polarization beam splitting means is not perfect for each of the two wavelengths. In addition, accurate measurement is possible.

【0008】[0008]

【実施例】図1は、本発明の2波長測長ビーム反射手段
がコーナーキューブプリズムで構成された第1実施例の
概略構成を示している。同軸の2波長入力ビーム14は
光源13より得られ、光源13としては第2高調波発生
を利用した2波長光源でかつ偏光面が回転可能なものが
望ましい。2波長入力ビーム14は、偏光ビームスプリ
ッター15により2波長測長ビーム17と2波長参照ビ
ーム18とに分割される。ここで用いる偏光ビームスプ
リッター15は、その偏光分離面16が一般には多層膜
で形成されるため2つの波長に対して共に完全な偏光分
離機能を持つことは難しく、消光比は理想的なものでは
ない。このため、分割される2波長測長ビーム17と2
波長参照ビーム18とは互いに直交する完全な直線偏光
ではなく、わずかに楕円偏光となる。
FIG. 1 shows a schematic structure of a first embodiment in which the two-wavelength measuring beam reflecting means of the present invention is composed of a corner cube prism. The coaxial two-wavelength input beam 14 is obtained from the light source 13, and it is desirable that the light source 13 is a two-wavelength light source utilizing the second harmonic generation and having a rotatable polarization plane. The two-wavelength input beam 14 is split by the polarization beam splitter 15 into a two-wavelength measuring beam 17 and a two-wavelength reference beam 18. Since the polarization beam splitting surface 16 of the polarization beam splitter 15 used here is generally formed of a multilayer film, it is difficult to have a perfect polarization splitting function for both wavelengths, and the extinction ratio is not ideal. Absent. Therefore, the split dual-wavelength measuring beams 17 and 2
The wavelength reference beam 18 is slightly elliptically polarized instead of being perfectly linearly polarized orthogonal to each other.

【0009】そして、2波長測長ビーム17は可動コー
ナーキューブプリズム19に入射し、コーナーキューブ
プリズム19で偏光ビームスプリッター15に再び戻さ
れ、偏光分離面16を透過して2波長測長出力ビーム2
4となる。他方、2波長参照ビーム18はコーナーキュ
ーブプリズム23に入射し、コーナーキューブプリズム
で再び戻され偏光分離面16で反射された後2波長参照
出力ビーム25となる。
Then, the two-wavelength measuring beam 17 is incident on the movable corner cube prism 19, is returned to the polarization beam splitter 15 again by the corner cube prism 19, passes through the polarization splitting surface 16, and is transmitted to the two-wavelength measuring output beam 2.
It becomes 4. On the other hand, the two-wavelength reference beam 18 enters the corner cube prism 23, is returned again by the corner cube prism, is reflected by the polarization splitting surface 16, and becomes the two-wavelength reference output beam 25.

【0010】ここで、2波長測長出力ビーム24は偏光
ビームスプリッター15の消光比が悪いため、紙面に平
行に長軸を持つ楕円偏光となっており、2波長参照出力
ビーム25も同じ理由により紙面に垂直に長軸を持つ楕
円偏光となる。2波長測長出力ビーム24と2波長参照
出力ビーム25とは、透過偏光方位が図中上下の部分で
90゜異なる一対の偏光子が組み合わされた偏光手段2
6に入射し、2波長測長出力ビーム24は下段の透過偏
光方位が紙面に平行な部分に入射し、2波長参照出力ビ
ーム25は上段の透過偏光方位が紙面に垂直な部分に入
射する。このため、偏光手段26を透過した2つのビー
ム27、28は互いに直交した直線偏光となり、ビーム
結合素子29により結合され2波長単一出力ビーム32
となる。2波長測長出力ビーム27は、2波長単一出力
ビームに変換するビーム合成手段の偏光分離面30を透
過し紙面に平行な直線偏光成分(P偏光)となり、2波
長参照出力ビーム28は反射面31で反射され、さらに
偏光分離面30で反射され紙面に垂直な直線偏光成分
(S偏光)となる。
Since the extinction ratio of the polarization beam splitter 15 is poor in the two-wavelength measurement output beam 24, the two-wavelength measurement output beam 24 is elliptically polarized light having a major axis parallel to the paper surface, and the two-wavelength reference output beam 25 is also for the same reason. It becomes elliptically polarized light with its long axis perpendicular to the plane of the paper. The two-wavelength measurement output beam 24 and the two-wavelength reference output beam 25 are a polarization unit 2 in which a pair of polarizers whose transmission polarization directions differ by 90 ° in the upper and lower parts in the drawing are combined.
6, the two-wavelength measurement output beam 24 is incident on the lower part of the transmission polarization direction parallel to the paper surface, and the two-wavelength reference output beam 25 is incident on the upper part of the transmission polarization direction perpendicular to the paper surface. Therefore, the two beams 27 and 28 that have passed through the polarization means 26 become linearly polarized lights that are orthogonal to each other, and are combined by the beam combining element 29 to form a two-wavelength single output beam 32.
Becomes The two-wavelength measurement output beam 27 is transmitted through the polarization splitting surface 30 of the beam combining means for converting into a two-wavelength single output beam and becomes a linear polarization component (P-polarized light) parallel to the paper surface, and the two-wavelength reference output beam 28 is reflected. The light is reflected by the surface 31 and further reflected by the polarization splitting surface 30 to become a linearly polarized light component (S polarized light) perpendicular to the paper surface.

【0011】2波長単一出力ビーム32の互いに直交す
る偏光成分間の位相差は、2波長測長ビームと2波長参
照ビームの光路差に比例して変化する。2波長単一出力
ビーム32はダイクロイッミラー33に入射し、それぞ
れの波長のみのビーム34Aと34Bに分離される。分
離されたビーム34A,34Bは、それぞれ2分の1波
長板35A,35Bにより互いに直交する偏光成分を4
5゜回転させ、非偏光ビームスプリッター36A,36
Bで2方向に分岐される。直進する各ビーム37A,3
7Bはそれぞれ偏光ビームスプリッター39A,39B
に入射し、偏光干渉する。光検出器45A,45Bに入
射する干渉光40A,40Bの位相を0゜とすると、光
検出器46A,46Bに入射する干渉光41A,41B
は干渉光40A,40Bに対して180゜の位相を持
つ。
The phase difference between the polarization components orthogonal to each other of the dual wavelength single output beam 32 changes in proportion to the optical path difference between the dual wavelength measurement beam and the dual wavelength reference beam. The dual wavelength single output beam 32 is incident on the dichroic mirror 33 and is split into beams 34A and 34B of respective wavelengths. The separated beams 34A and 34B generate polarization components that are orthogonal to each other by the half-wave plates 35A and 35B.
Rotate 5 °, non-polarizing beam splitter 36A, 36
B is branched in two directions. Beams 37A, 3 going straight
7B are polarization beam splitters 39A and 39B, respectively.
Incident on and interferes with polarized light. Assuming that the phase of the interference light 40A, 40B incident on the photodetectors 45A, 45B is 0 °, the interference light 41A, 41B incident on the photodetector 46A, 46B.
Has a phase of 180 ° with respect to the interference lights 40A and 40B.

【0012】他方、非偏光ビームスプリッター36A,
36Bにより90゜方向に分離されたビーム38A,3
8Bは4分の1波長板42A,42Bに入射し、互いに
直交する偏光成分間でさらに90゜位相がずらされる。
直交偏光成分間でさらに90゜位相をずらされたビーム
は、紙面に平行に透過偏光方位を持つ偏光子43A,4
3Bに入射し偏光干渉する。干渉光44A,44Bは干
渉光40A,40Bに対して90゜の位相を持つ。光検
出器45A,45B、46A,46B、47A,47B
は利得が可変であり同じDCレベル及びACレベルを持
つ3位相の信号を出力する。その3位相の出力信号は減
算器48A,48Bにより90゜位相の信号から0゜位
相,180゜位相の信号を差し引いて、DCレベルが零
で90゜位相差を持つ2つの信号を出力する。出力され
た信号は演算器49A,49Bに入りコーナーキューブ
プリズム19の変位が計算され出力される。そして、そ
れぞれの波長に対して計算された変位量は補正手段とし
ての演算器50に入り、空気ゆらぎを補正された変位量
として計算され出力される。
On the other hand, the non-polarizing beam splitter 36A,
Beams 38A and 3 separated in the 90 ° direction by 36B
8B is incident on the quarter-wave plates 42A and 42B, and the phases thereof are further shifted by 90 ° between polarization components orthogonal to each other.
The beam whose phase is further shifted by 90 ° between the orthogonal polarization components is a polarizer 43A, 4 having a transmission polarization direction parallel to the paper surface.
It is incident on 3B and causes polarization interference. The interference lights 44A and 44B have a phase of 90 ° with respect to the interference lights 40A and 40B. Photodetectors 45A, 45B, 46A, 46B, 47A, 47B
Outputs a three-phase signal having a variable gain and the same DC level and AC level. The output signals of the three phases are subtracted by the subtracters 48A and 48B from the signals of the 90 ° phase to the signals of the 0 ° and 180 ° phases, and two signals having a DC level of zero and a 90 ° phase difference are output. The output signal enters the calculators 49A and 49B and the displacement of the corner cube prism 19 is calculated and output. Then, the displacement amount calculated for each wavelength enters a calculator 50 as a correction means, and is calculated and output as a displacement amount in which the air fluctuation is corrected.

【0013】図2は、本発明の2波長測長ビーム反射手
段が4分の1波長板と逆反射装置とで構成された場合の
実施例を示す概略構成図である。第1の実施例と違うの
は、図1のコーナーキューブプリズム19が4分の1波
長板20と平面ミラー21及びコーナーキューブプリズ
ム22に置き変ったということである。偏光分離面16
により分割された紙面と平行に長軸を持つ楕円偏光の2
波長測長ビーム17は4分の1波長板20を透過し平面
ミラー21で反射され、再び4分の1波長板20を透過
し紙面に垂直に長軸を持つ楕円偏光となる。さらに、偏
光ビームスプリッター15に戻されたビームは、偏光分
離面16で反射されコーナーキューブプリズム22に入
射して再び偏光ビームスプリッター15に戻される。そ
の後、偏光分離面16で反射され、前と同様にして4分
の1波長板20と平面ミラー21により長軸が紙面に平
行な楕円偏光として反射されてくる。その光は、さらに
偏光分離面16を透過し偏光ビームスプリッター15か
ら出射する。その後の経過は第1の実施例と同じであ
る。
FIG. 2 is a schematic diagram showing an embodiment in which the two-wavelength measuring beam reflecting means of the present invention comprises a quarter-wave plate and a retro-reflecting device. The difference from the first embodiment is that the corner cube prism 19 of FIG. 1 is replaced with a quarter wave plate 20, a plane mirror 21 and a corner cube prism 22. Polarization splitting surface 16
Of elliptically polarized light having a major axis parallel to the plane of the paper divided by
The wavelength measuring beam 17 passes through the quarter-wave plate 20 and is reflected by the plane mirror 21 and again passes through the quarter-wave plate 20 to become elliptically polarized light having a long axis perpendicular to the paper surface. Further, the beam returned to the polarization beam splitter 15 is reflected by the polarization splitting surface 16, enters the corner cube prism 22, and is returned to the polarization beam splitter 15 again. After that, the light is reflected by the polarization splitting surface 16, and is reflected by the quarter-wave plate 20 and the plane mirror 21 as elliptically polarized light whose major axis is parallel to the paper surface in the same manner as before. The light further passes through the polarization splitting surface 16 and exits from the polarization beam splitter 15. The subsequent process is the same as in the first embodiment.

【0014】そして、図2に示した実施例の構成におい
ても、同様に演算器49A,49Bから出力されるそれ
ぞれの波長に対して計算された平面ミラー21の変位量
が、補正手段としての演算器50に入り、空気ゆらぎを
補正された変位量として計算され出力される。 尚、上
記の各実施例の構成においては、2波長測長ビームと2
波長参照ビームとをその光路差に比例するような位相差
をもつ直交偏光成分として2波長単一出力ビームに変換
する構成としたが、2波長測長ビームと2波長参照ビー
ムとの光路差検出のためには、互いに微小波長だけこと
なる2波長のビート信号により検出する所謂ヘテロダイ
ン方式によることも可能である。この方式を採用する場
合には、例えば図1に示した構成において偏光ビームス
プリッター15の消光比の不完全性を補償するために、
偏光ビームスプリッター15を射出した直後の2波長測
長ビーム17と2波長参照ビーム18との光路中に互い
に偏光軸が直交する偏光板を挿入することが有効であ
る。すなわち、2波長測長ビーム17の位置に偏光軸が
紙面に平行な偏光(P偏光)を通過させる偏光板を配置
し、2波長参照ビーム18の位置には紙面に垂直な偏光
(S偏光)を通過させる偏光板を配置することにより、
ヘテロダイン方式で必要な波長の僅かに異なる光の偏光
を揃えつつ相互へのノイズ光の侵入を防止することがで
き、測定精度を向上させることが可能となる。
Also in the configuration of the embodiment shown in FIG. 2, similarly, the displacement amount of the plane mirror 21 calculated for each wavelength output from the calculators 49A and 49B is calculated as the correction means. It enters the device 50 and is calculated and output as a displacement amount in which air fluctuations are corrected. In the configuration of each of the above-mentioned embodiments, the two-wavelength measuring beam and the two-wavelength measuring beam are used.
The configuration is such that the wavelength reference beam and the orthogonal polarization component having a phase difference proportional to the optical path difference are converted into a dual wavelength single output beam, but the optical path difference between the dual wavelength measurement beam and the dual wavelength reference beam is detected. For this purpose, it is possible to use a so-called heterodyne system in which beat signals of two wavelengths which differ from each other by a minute wavelength are used for detection. When this method is adopted, for example, in order to compensate for the incompleteness of the extinction ratio of the polarization beam splitter 15 in the configuration shown in FIG.
It is effective to insert polarizing plates whose polarization axes are orthogonal to each other in the optical paths of the two-wavelength measuring beam 17 and the two-wavelength reference beam 18 immediately after being emitted from the polarization beam splitter 15. That is, a polarizing plate that passes polarized light (P-polarized light) whose polarization axis is parallel to the paper surface is arranged at the position of the two-wavelength measuring beam 17, and polarized light perpendicular to the paper surface (S-polarized light) at the position of the two-wavelength reference beam 18. By arranging a polarizing plate that allows
In the heterodyne method, it is possible to prevent the intrusion of noise light into each other while aligning the polarizations of lights having slightly different wavelengths, and improve the measurement accuracy.

【0015】[0015]

【発明の効果】以上説明したように、偏光ビーム分割手
段の性能に2波長に対する微妙な差異がある場合にも、
2波長測長ビームと2波長参照ビームとにおける偏光分
離を完全に行うことができるため、高精度な変位測定が
可能な2波長干渉測長装置が達成できる。
As described above, even when there is a slight difference in the performance of the polarized beam splitting means for two wavelengths,
Since the polarization separation between the two-wavelength measuring beam and the two-wavelength reference beam can be performed completely, a two-wavelength interferometric measuring device capable of highly accurate displacement measurement can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による2波長干渉測長装置
の概略構成図。
FIG. 1 is a schematic configuration diagram of a two-wavelength interferometer length measuring device according to a first embodiment of the present invention.

【図2】本発明の第2実施例による2波長干渉測長装置
の概略構成図。
FIG. 2 is a schematic configuration diagram of a two-wavelength interferometer length measuring device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

13……2波長光源、 15……偏光ビームスプリッター 19……可動コーナーキューブプリズム 20……4分の1波長板 21……可動平面ミラー 22,23……固定コーナーキューブプリズム 26……偏光手段 29……ビーム結合素子 34……ダイクロイックミラー 35A,35B……2分の1波長板 36A,36B……非偏光ビームスプリッター 39A,39B……偏光ビームスプリッター 42A,42B……4分の1波長板 43A,43B……偏光子 45A,45B、46A,46B、47A,47B……
光検出手段 48A,48B、49A,49B、50……演算手段
13 ... Two-wavelength light source, 15 ... Polarizing beam splitter 19 ... Movable corner cube prism 20 ... Quarter wave plate 21 ... Movable plane mirror 22, 23 ... Fixed corner cube prism 26 ... Polarizing means 29 ... Beam combining element 34 ... Dichroic mirror 35A, 35B ... Half wave plate 36A, 36B ... Non-polarizing beam splitter 39A, 39B ... Polarizing beam splitter 42A, 42B ... Quarter wave plate 43A , 43B ... Polarizers 45A, 45B, 46A, 46B, 47A, 47B ...
Light detecting means 48A, 48B, 49A, 49B, 50 ... Computing means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】同軸の2波長光ビームを発生する光源手段
と、前記光源手段より得られる2波長入力ビームを互い
にほぼ直交する偏光状態を有する2波長測長ビームと2
波長参照ビームとに分割する偏光ビーム分割手段と、前
記2波長測長ビームを前記2波長入力ビームと重ならな
いで前記偏光ビーム分割手段から出射するように折り返
す測長ビーム反射手段と、前記2波長参照ビームを前記
2波長測長ビーム反射手段により折り返され前記偏光ビ
ーム分割手段から出射する2波長測長ビームに対して分
離された状態でかつ前記2波長入力ビームと重ならない
で出射するように折り返す固定の参照ビーム反射手段
と、前記測長ビーム反射手段及び前記参照ビーム反射手
段のそれぞれにより折り返され前記偏光ビーム分割手段
から出射する互いに分離した2波長測長ビームと2波長
参照ビームとの光路中において互いに直交する偏光成分
のみを通過する一対の偏光手段と、前記一対の偏光手段
を通過した2波長測長ビームと2波長参照ビームとを2
波長単一出力ビームに変換するビーム合成手段と、前記
2波長単一出力ビームをそれぞれの波長域に分離する波
長域分離手段と、前記波長域分離手段により分離された
それぞれのビームを干渉させて前記測長ビーム反射手段
の変位量を検出する検出手段とを有することを特徴とす
る2波長干渉測長装置。
1. A light source means for generating a coaxial two-wavelength light beam, and a two-wavelength measuring beam having a polarization state in which a two-wavelength input beam obtained from the light source means is substantially orthogonal to each other.
A polarized beam splitting means for splitting the two-wavelength measuring beam into a wavelength reference beam; a measuring beam reflecting means for returning the two-wavelength measuring beam so as to be emitted from the polarized beam splitting means without overlapping with the two-wavelength input beam; The reference beam is turned back by the two-wavelength measuring beam reflecting means and turned back so as to be emitted in a state separated from the two-wavelength measuring beam emitted from the polarization beam splitting means and without overlapping with the two-wavelength input beam. In the optical paths of the fixed reference beam reflecting means, the two-wavelength measuring beam and the two-wavelength reference beam, which are folded back by the length measuring beam reflecting means and the reference beam reflecting means and emitted from the polarized beam splitting means, respectively. A pair of polarizing means that pass only the polarization components orthogonal to each other, and a two-wavelength measuring device that passes the pair of polarizing means. A beam and two-wavelength reference beam 2
Beam combining means for converting into a single wavelength output beam, wavelength range separating means for separating the two wavelength single output beam into respective wavelength ranges, and respective beams separated by the wavelength range separating means A two-wavelength interferometric length measuring apparatus, comprising: a detecting unit that detects a displacement amount of the length measuring beam reflecting unit.
【請求項2】前記検出手段は、前記波長域分離手段によ
り分離されたそれぞれのビームの直交偏光成分を干渉さ
せて前記測長ビーム反射手段の変位に対して0゜,90
゜,180゜の位相をもつ干渉光を作り出す干渉手段
と、前記干渉光をそれぞれ受光し0゜,90゜,180
゜の位相を持つ3つの信号を出力する光検出手段と、前
記3つの出力より90゜位相の信号からそれぞれ0゜,
180゜位相の信号を差し引きDCレベルが零で互いに
直角位相の2つの信号を出力する減算手段と、該減算手
段により得られた2つの出力信号から前記測長ビーム反
射手段の変位を計算する演算手段と、2波長に対して前
記演算手段より得られた2つの変位量から空気ゆらぎを
補正した変位量を計算する補正手段とを有することを特
徴とする請求項1記載の2波長干渉測長装置。
2. The detecting means interferes the orthogonal polarization components of the respective beams separated by the wavelength band separating means to make 0 °, 90 ° with respect to the displacement of the length measuring beam reflecting means.
Interfering means for producing interference light having a phase of °, 180 ° and 0 °, 90 °, 180 for receiving the interference light, respectively.
A light detecting means for outputting three signals having a phase of 0 °, and a signal having a phase of 90 ° from the three outputs, 0 °,
Subtracting means for subtracting a 180 ° phase signal and outputting two signals having a DC level of zero and quadrature with each other, and an operation for calculating the displacement of the length measuring beam reflecting means from the two output signals obtained by the subtracting means. 2. The two-wavelength interferometer length measuring apparatus according to claim 1, further comprising: a means and a correction means for calculating a displacement amount obtained by correcting the air fluctuation from the two displacement amounts obtained by the arithmetic means for two wavelengths. apparatus.
【請求項3】前記2波長測長ビーム反射手段が、光軸方
向に変位可能な直角プリズムまたはコーナーキューブプ
リズムからなることを特徴とする請求項1乃至2記載の
2波長干渉測長装置。
3. The two-wavelength interferometer according to claim 1, wherein the two-wavelength measuring beam reflecting means comprises a right-angle prism or a corner cube prism which can be displaced in the optical axis direction.
【請求項4】前記2波長測長ビーム反射手段が、光軸方
向に変位可能な1個の平面ミラーからなり、前記偏光ビ
ーム分割手段と前記平面ミラーとの間に2波長に対して
機能する4分の1波長板を配置したことを特徴とする請
求項1乃至2記載の2波長干渉測長装置。
4. The two-wavelength measuring beam reflecting means comprises one plane mirror which is displaceable in the optical axis direction, and functions for two wavelengths between the polarized beam splitting means and the plane mirror. The two-wavelength interferometer according to claim 1 or 2, wherein a quarter-wave plate is arranged.
JP4109870A 1992-04-28 1992-04-28 Two wave length interference length measuring device Pending JPH05302809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4109870A JPH05302809A (en) 1992-04-28 1992-04-28 Two wave length interference length measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4109870A JPH05302809A (en) 1992-04-28 1992-04-28 Two wave length interference length measuring device

Publications (1)

Publication Number Publication Date
JPH05302809A true JPH05302809A (en) 1993-11-16

Family

ID=14521285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4109870A Pending JPH05302809A (en) 1992-04-28 1992-04-28 Two wave length interference length measuring device

Country Status (1)

Country Link
JP (1) JPH05302809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748315A (en) * 1995-03-23 1998-05-05 Nikon Corporation Optical interference measuring apparatus and method for measuring displacement of an object having an optical path separating system
EP2221866A2 (en) 2004-01-07 2010-08-25 Nikon Corporation Stacking apparatus and method for stacking integrated circuit elements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748315A (en) * 1995-03-23 1998-05-05 Nikon Corporation Optical interference measuring apparatus and method for measuring displacement of an object having an optical path separating system
EP2221866A2 (en) 2004-01-07 2010-08-25 Nikon Corporation Stacking apparatus and method for stacking integrated circuit elements
EP2221865A2 (en) 2004-01-07 2010-08-25 Nikon Corporation Stacking apparatus and method for stacking integrated circuit elements

Similar Documents

Publication Publication Date Title
US3728030A (en) Polarization interferometer
US7193721B2 (en) Systems using polarization-manipulating retroreflectors
US6897962B2 (en) Interferometer using beam re-tracing to eliminate beam walk-off
US7355719B2 (en) Interferometer for measuring perpendicular translations
US4702603A (en) Optical phase decoder for interferometers
US20070229841A1 (en) Detector configuration for interferometric distance measurement
US5767971A (en) Apparatus for measuring refractive index of medium using light, displacement measuring system using the same apparatus, and direction-of-polarization rotating unit
JPH0339605A (en) Optical surface shape measuring instrument
JP3413945B2 (en) Fringe counting displacement interferometer
JPH05302809A (en) Two wave length interference length measuring device
JP2572111B2 (en) Laser interferometer
JPH09280822A (en) Light wave interference measuring device
JPS58196416A (en) Optical fiber laser gyroscope
JPH0540011A (en) Gauge interferometer
JP3382644B2 (en) Orthogonal polarization heterodyne interferometer
JP2992829B2 (en) Laser length gauge
JPH0543058U (en) Air refractive index measuring device
JPH07167606A (en) Interference measuring device
JP2981927B2 (en) Multi-phase splitting optical system
US20230349824A1 (en) Interferometric gas sensor
JPH02298804A (en) Interferometer
JPH10281718A (en) Polarizing optical element, method for adjusting polarizing azimuth, and light wave interferometer using the same
JP2000018910A (en) Optical wave interference measuring method and apparatus thereof
JPH0511881B2 (en)
JP2002333304A (en) Optical heterodyne interferometer