JPH0511881B2 - - Google Patents
Info
- Publication number
- JPH0511881B2 JPH0511881B2 JP24318087A JP24318087A JPH0511881B2 JP H0511881 B2 JPH0511881 B2 JP H0511881B2 JP 24318087 A JP24318087 A JP 24318087A JP 24318087 A JP24318087 A JP 24318087A JP H0511881 B2 JPH0511881 B2 JP H0511881B2
- Authority
- JP
- Japan
- Prior art keywords
- polarized light
- linearly polarized
- light
- beam splitter
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010287 polarization Effects 0.000 claims description 22
- 230000003287 optical effect Effects 0.000 claims description 9
- 238000005259 measurement Methods 0.000 description 5
- 230000008033 biological extinction Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
- Optical Transform (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、例えば移動物体の移動方向や移動
距離等を高精度で測定するのに用いられるレーザ
干渉装置であつて、直交2周波のレーザ光を用い
るものに関する。[Detailed Description of the Invention] [Industrial Field of Application] The present invention is a laser interference device used to measure, for example, the moving direction and moving distance of a moving object with high precision. Concerning things that use light.
従来のこの種のレーザ干渉装置の一例を第2図
に示す。この装置は、シングルビーム・インター
フエロメータとも呼ばれるものであり、次のよう
に構成している。
An example of a conventional laser interference device of this type is shown in FIG. This device is also called a single beam interferometer and is constructed as follows.
即ち、レーザ光源2から、互いに直交しかつ周
波数の異なる第1および第2の直線偏光、例えば
図中に黒丸で示すように偏光方向が紙面に垂直方
向で周波数が1の第1の直線偏光41vおよび図
中に棒線で示すように偏光方向が紙面に水平方向
で周波数が2(≠1)の第2の直線偏光42hで
あつていずれも周波数が安定化されたものを出力
させ、これらを垂直方向の直線偏光を透過させ水
平方向の直線偏光を反射させる偏光ビーム分割器
6によつてそこを透過する第1の直線偏光41v
とそこで反射する第2の直線偏光42hとに分割
する。 That is, from the laser light source 2, first and second linearly polarized lights that are orthogonal to each other and have different frequencies, for example, as shown by the black circles in the figure, the first linearly polarized light 41v whose polarization direction is perpendicular to the plane of the paper and whose frequency is 1 are emitted. Then, as shown by the bar line in the figure, the second linearly polarized light 42h whose polarization direction is horizontal to the plane of the paper and whose frequency is 2 (≠ 1 ), both of which have stabilized frequencies, are output. The first linearly polarized light 41v is transmitted through a polarizing beam splitter 6 that transmits the vertically polarized light and reflects the horizontally polarized light.
and the second linearly polarized light 42h reflected there.
そして、分割した第1の直線偏光41vを、1/
4波長板のような位相子8を透過させて図中に円
で示すような円偏光41cに変換し、それを移動
物体(図示省略)に取り付けた平面鏡のような反
射器10に入射させてそこで入射時と同光路上に
反射させ、かつ位相子8を再び透過させて前記第
1の直線偏光41vと偏光方向を90度異にする
(即ち偏光方向が水平方向の)直線偏光41hに
戻し、この直線偏光41hを前記偏光ビーム分割
器6で反射させかつ偏光子12を透過させて検出
器14に入射させる。 Then, the divided first linearly polarized light 41v is divided into 1/
The light is transmitted through a phase shifter 8 such as a four-wavelength plate and converted into circularly polarized light 41c as shown by a circle in the figure, which is then incident on a reflector 10 such as a plane mirror attached to a moving object (not shown). Therefore, it is reflected onto the same optical path as when it was incident, and transmitted through the phase shifter 8 again to return the linearly polarized light 41h, which has a polarization direction 90 degrees different from the first linearly polarized light 41v (that is, the polarization direction is horizontal). , this linearly polarized light 41h is reflected by the polarization beam splitter 6, transmitted through the polarizer 12, and made incident on the detector 14.
一方、前記偏光ビーム分割器6で分割した第2
の直線偏光42hを、1/4波長板のような位相子
16を透過させて円偏光42cに変換し、それを
平面鏡のような反射器18に入射させてそこで入
射時と同光路上に反射させ、かつ位相子16を再
び透過させて前記第2の直線偏光42hと偏光方
向を90度異にする(即ち偏光方向が垂直方向の)
直線偏光42vに戻し、この直線偏光42vを前
記偏光ビーム分割器6を透過させかつ偏光子12
を透過させて検出器14に入射させる。 On the other hand, the second beam split by the polarizing beam splitter 6
The linearly polarized light 42h is transmitted through a phase shifter 16 such as a 1/4 wavelength plate and converted into circularly polarized light 42c, which is then incident on a reflector 18 such as a plane mirror where it is reflected on the same optical path as when it was incident. and pass through the phase shifter 16 again to make the polarization direction different from the second linearly polarized light 42h by 90 degrees (that is, the polarization direction is perpendicular).
The linearly polarized light 42v is returned to the linearly polarized light 42v, and the linearly polarized light 42v is transmitted through the polarization beam splitter 6 and polarized by the polarizer 12.
is transmitted and incident on the detector 14.
偏光子12は、斜め45度方向の光を透過させる
ものであるため、両直線偏光41hおよび42v
の同成分同士がそこで重ね合わされて干渉を起こ
す。検出器14ではこの重ね合わせた光43を検
出する。 Since the polarizer 12 transmits light in an oblique direction of 45 degrees, both linearly polarized lights 41h and 42v
The same components are superimposed on each other and cause interference. The detector 14 detects this superimposed light 43.
その場合、反射器10がそこに入射する円偏光
41cの光軸方向(図中X方向)に移動すると、
光のドツプラー効果によつて、戻つて来る円偏光
41cや直線偏光41hの周波数は1±Δ1とな
るため、重ね合わせた光43の周波数は=2
−(1±Δ1)となる。この1,2は既知であるか
ら、±Δ1により、即ちΔ1の極性(±)により反
射器10の、即ちそれを取り付けた移動物体の移
動方向を、Δ1の絶対値により移動物体の移動速
度を、またΔ1の積分値により移動物体の移動距
離をそれぞれ測定することができる。 In that case, when the reflector 10 moves in the optical axis direction (X direction in the figure) of the circularly polarized light 41c incident thereon,
Due to the Doppler effect of light, the frequency of the returning circularly polarized light 41c and linearly polarized light 41h is 1 ±Δ 1 , so the frequency of the superimposed light 43 is = 2
−( 1 ±Δ 1 ). Since these 1 and 2 are known, the moving direction of the reflector 10 , that is, the moving object to which it is attached, can be determined by ±Δ 1 , that is, the polarity (±) of Δ 1, and the moving direction of the moving object can be determined by the absolute value of Δ 1 . The moving speed and the moving distance of the moving object can be measured by the integral value of Δ1 .
上記から分るように、測定を正確に行うために
は、レーザ光源2から出力する二つの直線偏光4
1v,41hの周波数1,2の安定度が共に高い
ことが重要であり、そのため従来からレーザ光源
2の安定化を図つて例えば1×10-8程度の周波数
安定度を確保するようにしている。
As can be seen from the above, in order to perform measurements accurately, two linearly polarized lights 4 output from the laser light source 2 are required.
It is important that the stability of both frequencies 1 and 2 of 1v and 41h is high, and therefore the laser light source 2 has traditionally been stabilized to ensure frequency stability of, for example, 1×10 -8 . .
ところが、上記レーザ干渉装置における偏光ビ
ーム分割器6は、正確には、反射器10側から戻
つて来る直線偏光41hを100%反射させる訳で
はなく、その消光比が例えば400:1の場合、1/4
00だけ透過させてしまい、この透過した直線偏光
41h′がレーザ光源2に戻ることになり、これが
原因でレーザ光源2の動作が不安定となり、測定
精度が悪化するという問題がある。 However, the polarizing beam splitter 6 in the laser interference device does not accurately reflect 100% of the linearly polarized light 41h returning from the reflector 10 side, and when its extinction ratio is, for example, 400:1, 1 /Four
00 is transmitted, and this transmitted linearly polarized light 41h' returns to the laser light source 2, which causes the operation of the laser light source 2 to become unstable and the measurement accuracy to deteriorate.
そこでこの発明は、レーザ光源に対する戻り光
を極力小さくすることによつて、レーザ光源の動
作の安定化、ひいては測定精度の向上を図つたレ
ーザ干渉装置を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a laser interference device that stabilizes the operation of a laser light source and improves measurement accuracy by minimizing the amount of light returned to the laser light source.
この発明のレーザ干渉装置は、レーザ光源から
互いに直交しかつ周波数の異なる第1および第2
の直線偏光を出力させ、これらを第1の偏光ビー
ム分割器によつてそこを透過する第1の直線偏光
とそこで反射する第2の直線偏光とに分割し、分
割した第1の直線偏光を第2の偏光ビーム分割器
を透過させ、かつ位相子を透過させて円偏光に変
換し、この円偏光を第1の移動式の反射器によつ
て入射時と同光路上に反射させ、かつ前記位相子
を再び透過させて前記第1の直線偏光と偏光方向
を90度異にする直線偏光に戻し、この直線偏光を
前記第2の偏光ビーム分割器で反射させてビーム
重ね合せ器に入射させ、かつ前記第1の偏光ビー
ム分割器で分割した第2の直線偏光を第2の反射
器で反射させて前記ビーム重ね合せ器に入射させ
てそこで前記直線偏光と重ね合わせ、そしてこの
重ね合わせた光を検出器によつて検出するよう構
成したことを特徴とする。
The laser interference device of the present invention has first and second beams that are orthogonal to each other and have different frequencies from a laser light source.
outputs linearly polarized light, and splits these into first linearly polarized light that is transmitted through it and second linearly polarized light that is reflected by a first polarization beam splitter, and the split first linearly polarized light is transmitting the second polarizing beam splitter and transmitting the retarder to convert the circularly polarized light into circularly polarized light; the circularly polarized light is reflected by the first movable reflector onto the same optical path as the incident optical path; and The linearly polarized light is transmitted through the phase shifter again and returned to a linearly polarized light having a polarization direction different by 90 degrees from the first linearly polarized light, and this linearly polarized light is reflected by the second polarized beam splitter and enters a beam combiner. and the second linearly polarized light split by the first polarizing beam splitter is reflected by a second reflector and incident on the beam superimposer where it is superimposed with the linearly polarized light, and this superposition is performed. The present invention is characterized in that it is configured such that the light emitted by the light is detected by the detector.
上記構成によれば、レーザ光源に戻る光は、第
1の移動式の反射器側から戻つて来る光の内、第
2の偏光ビーム分割器と第1の偏光ビーム分割器
の両方を透過したものだけであつて両偏光ビーム
分割器の消光比の積に減衰されるため、殆ど無視
し得る程度になる。
According to the above configuration, the light returning to the laser light source passes through both the second polarizing beam splitter and the first polarizing beam splitter among the light returning from the first movable reflector side. Since it is attenuated by the product of the extinction ratios of both polarizing beam splitters, it becomes almost negligible.
第1図は、この発明の一実施例に係るレーザ干
渉装置を示す概略構成図である。第2図の装置と
同一または相当する部分には同一符号を付し、以
下においては従来例との相違点を主に説明する。
FIG. 1 is a schematic configuration diagram showing a laser interference device according to an embodiment of the present invention. The same reference numerals are given to the same or corresponding parts as those in the apparatus shown in FIG. 2, and the differences from the conventional example will be mainly explained below.
この実施例の装置は、次のように構成してい
る。即ち、レーザ光源2から前述したような偏光
方向が例えば紙面に垂直方向で周波数が例えば1
の第1の直線偏光41vおよび偏光方向が例えば
紙面に水平方向で周波数が例えば2の第2の直線
偏光42hであつていずれも周波数が安定化され
たものを出力させ、これらを例えば垂直方向の直
線偏光を透過させ水平方向の直線偏光を反射させ
る第1の偏光ビーム分割器61によつてそこを透
過する第1の直線偏光41vとそこで反射する第
2の直線偏光42hとに分割する。 The apparatus of this embodiment is constructed as follows. That is, the polarization direction as described above from the laser light source 2 is, for example, perpendicular to the plane of the paper, and the frequency is, for example, 1.
The first linearly polarized light 41v and the second linearly polarized light 42h whose polarization direction is, for example, horizontal to the plane of the paper and whose frequency is, for example, 2 , both of which have stabilized frequencies, are output, and these are outputted, for example, in the vertical direction. A first polarizing beam splitter 61 that transmits linearly polarized light and reflects horizontally polarized light splits the beam into first linearly polarized light 41v that is transmitted therethrough and second linearly polarized light 42h that is reflected there.
このレーザ光源2には、それ自身で2周波のレ
ーザ光を出力できるレーザを用いても良いし、あ
るいは1周波のレーザ光を出力するレーザとそれ
を2周波のレーザ光に分ける変換器とを組み合わ
せたもの等を用いても良い。また偏光ビーム分割
器61としては、キユーブ形あるいは平面形の偏
光ビームスプリツタ等が採り得る。後述する第2
の偏光ビーム分割器62も同様である。 This laser light source 2 may be a laser that can output two-frequency laser light by itself, or a laser that outputs one-frequency laser light and a converter that separates it into two-frequency laser light. A combination or the like may also be used. Further, as the polarizing beam splitter 61, a cube-shaped or planar polarizing beam splitter can be used. The second
The same is true for the polarization beam splitter 62 of.
そして、上記のようにして分割した第1の直線
偏光41vを、第1の偏光ビーム分割器61と同
様の機能を有する第2の偏光ビーム分割器62を
透過させ、かつ例えば1/4波長板のような位相子
8を透過させて円偏光41cに変換し、それを移
動物体(図示省略)に取り付けた例えば平面鏡の
ような第1の反射器10に入射させてそこで入射
時と同光路上に反射させ、かつ位相子8を再び透
過させて前記第1の直線偏光41vと偏光方向を
90度異にする(即ちこの例では偏光方向が水平方
向の)直線偏光41hに戻し、この直線偏光41
hを前記第2の偏光ビーム分割器62で反射させ
てビーム重ね合せ器20に入射させる。 Then, the first linearly polarized light 41v divided as described above is transmitted through a second polarizing beam splitter 62 having the same function as the first polarizing beam splitter 61, and for example, a 1/4 wavelength plate. It is transmitted through a phase shifter 8 such as 8, converted into circularly polarized light 41c, and is made incident on a first reflector 10, such as a plane mirror, attached to a moving object (not shown), where it is reflected on the same optical path as the time of incidence. The first linearly polarized light 41v and the polarization direction are reflected and transmitted through the phase shifter 8 again.
The linearly polarized light 41h is returned to the linearly polarized light 41h that is different by 90 degrees (that is, the polarization direction is horizontal in this example), and this linearly polarized light 41h is
h is reflected by the second polarization beam splitter 62 and incident on the beam combiner 20.
この第1の反射器10としては、上記平面鏡以
外にも、コーナキユーブプリズムのような再帰反
射器、あるいはレンズ表面等が採り得る。またビ
ーム重ね合せ器20としては、無偏光ビームスプ
リツタ(半透鏡とも呼ばれる)等が採り得る。 In addition to the above-mentioned plane mirror, the first reflector 10 may be a retroreflector such as a corner cube prism, a lens surface, or the like. Further, as the beam superimposer 20, a non-polarizing beam splitter (also called a semi-transparent mirror) or the like can be used.
一方、前記第1のビーム分割器61で分割した
第2の直線偏光42hを、例えば平面鏡のような
第2の反射器22で反射させて前記ビーム重ね合
せ器20に入射させてそこで前記直線偏光41h
と重ね合わせる。この場合は、両直線偏光41
h,42hは互いに偏光方向が同じ(この場合は
紙面に水平方向)であるから、従来のような偏光
子12を用いなくても干渉を起こす。そしてこの
重ね合わせた光44を例えば光電変換器等の検出
器14で検出する。 On the other hand, the second linearly polarized light 42h split by the first beam splitter 61 is reflected by a second reflector 22, such as a plane mirror, and is incident on the beam superimposer 20, where the linearly polarized light is 41h
Overlap with. In this case, both linearly polarized light 41
Since the polarization directions of light beams h and 42h are the same (in this case, horizontal to the plane of the paper), interference occurs even without using a polarizer 12 as in the conventional case. This superimposed light 44 is then detected by a detector 14 such as a photoelectric converter.
この実施例の場合も、従来例の場合と同様に、
反射器10がそこに入射する円偏光41cの光軸
方向(図中X方向)に移動すると、検出器14に
入射する重ね合わせた光44の周波数は=2
−(1±Δ1)となり、この±Δ1により反射器1
0の、即ちそれを取り付けた移動物体の移動方
向、移動速度および移動距離を測定することがで
きる。 In the case of this embodiment, as in the case of the conventional example,
When the reflector 10 moves in the optical axis direction (X direction in the figure) of the circularly polarized light 41c incident thereon, the frequency of the superimposed light 44 incident on the detector 14 is = 2
−( 1 ±Δ 1 ), and due to this ±Δ 1 , reflector 1
0, that is, the moving direction, moving speed, and moving distance of the moving object to which it is attached can be measured.
一方、レーザ光源2に対する戻り光について見
れば、偏光ビーム分割器61および62の消光比
が例えば従来と同様に共に400:1の場合、偏光
ビーム分割器62は反射器10側から戻つて来る
直線偏光41hの1/400だけ透過させ、偏光ビー
ム分割器61はこの透過した直線偏光41h′の更
に1/400だけ透過させることになるため、レーザ
光源2に戻る直線偏光41h″の強度は反射器10
側から戻つて来る直線偏光41hの(1/400)2に
減衰され、殆ど無視し得る程度になる。その結
果、従来例に比べてレーザ光源2の動作が安定化
し、高い周波数安定度を確保することができるの
で、測定精度が向上する。 On the other hand, regarding the return light to the laser light source 2, if the extinction ratios of the polarizing beam splitters 61 and 62 are both 400:1, for example, as in the conventional case, the polarizing beam splitter 62 will pass through the straight line returning from the reflector 10 side. Only 1/400 of the polarized light 41h is transmitted, and the polarization beam splitter 61 transmits an additional 1/400 of the linearly polarized light 41h', which returns to the laser light source 2. 10
It is attenuated to (1/400) 2 of the linearly polarized light 41h returning from the side, and becomes almost negligible. As a result, the operation of the laser light source 2 is stabilized compared to the conventional example, and high frequency stability can be ensured, resulting in improved measurement accuracy.
尚、従来例においては、検出器14に入射する
直線偏光41hあるいは42vの光量は、45度方
向の偏光子12によつて半減するためレーザ光源
2から出力された直線偏光41vあるいは42h
のそれぞれ約1/2になる。これに対してこの実施
例においても、偏光ビーム分割器を2個(即ち6
1と62)用いる等しているが、検出器14に入
射する直線偏光41hあるいは42hの光量は、
無偏光ビームスプリツタのようなビーム重ね合せ
器20で初めて半減するだけでありレーザ光源2
から出力された直線偏光41vあるいは42hの
それぞれ約1/2を確保することができ、従来例に
比べて何ら遜色はない。 In the conventional example, the amount of linearly polarized light 41h or 42v incident on the detector 14 is halved by the polarizer 12 in the 45-degree direction.
It becomes about 1/2 of each. On the other hand, in this embodiment as well, there are two polarization beam splitters (i.e., 6
1 and 62), but the amount of linearly polarized light 41h or 42h incident on the detector 14 is
The beam is only halved by the beam combiner 20, such as a non-polarized beam splitter, and the laser light source 2
Approximately 1/2 of each of the linearly polarized light 41v or 42h outputted from the optical system can be secured, which is no inferior to the conventional example.
以上のようにこの発明によれば、レーザ光源に
対する戻り光が無視し得る程度に小さくなるの
で、レーザ光源の動作が安定化し、測定精度が向
上する。
As described above, according to the present invention, since the return light to the laser light source is reduced to a negligible level, the operation of the laser light source is stabilized and measurement accuracy is improved.
第1図は、この発明の一実施例に係るレーザ干
渉装置を示す概略構成図である。第2図は、従来
のレーザ干渉装置の一例を示す概略構成図であ
る。
2……レーザ光源、41v……第1の直線偏
光、42h……第2の直線偏光、61……第1の
ビーム分割器、62……第2のビーム分割器、8
……位相子、10……第1の反射器、14……検
出器、20……ビーム重ね合せ器、22……第2
の反射器。
FIG. 1 is a schematic configuration diagram showing a laser interference device according to an embodiment of the present invention. FIG. 2 is a schematic configuration diagram showing an example of a conventional laser interference device. 2... Laser light source, 41v... First linearly polarized light, 42h... Second linearly polarized light, 61... First beam splitter, 62... Second beam splitter, 8
... Phaser, 10 ... First reflector, 14 ... Detector, 20 ... Beam superimposer, 22 ... Second
reflector.
Claims (1)
なる第1および第2の直線偏光を出力させ、これ
らを第1の偏光ビーム分割器によつてそこを透過
する第1の直線偏光とそこで反射する第2の直線
偏光とに分割し、分割した第1の直線偏光を第2
の偏光ビーム分割器を透過させ、かつ位相子を透
過させて円偏光に変換し、この円偏光を第1の移
動式の反射器によつて入射時と同光路上に反射さ
せ、かつ前記位相子を再び透過させて前記第1の
直線偏光と偏光方向を90度異にする直線偏光に戻
し、この直線偏光を前記第2の偏光ビーム分割器
で反射させてビーム重ね合せ器に入射させ、かつ
前記第1の偏光ビーム分割器で分割した第2の直
線偏光を第2の反射器で反射させて前記ビーム重
ね合せ器に入射させてそこで前記直線偏光と重ね
合わせ、そしてこの重ね合わせた光を検出器によ
つて検出するよう構成したことを特徴とするレー
ザ干渉装置。1 A laser light source outputs first and second linearly polarized lights that are orthogonal to each other and have different frequencies, and these are separated by a first polarization beam splitter into which the first linearly polarized light is transmitted and the second linearly polarized light is reflected therefrom. The first linearly polarized light is divided into the second linearly polarized light.
the polarizing beam splitter and the retarder to convert the circularly polarized light into circularly polarized light, and the circularly polarized light is reflected by a first movable reflector onto the same optical path as the incident light, and transmitting the polarized light again to return linearly polarized light having a polarization direction different from the first linearly polarized light by 90 degrees, and reflecting this linearly polarized light by the second polarization beam splitter and making it incident on a beam combiner; and the second linearly polarized light split by the first polarizing beam splitter is reflected by a second reflector and incident on the beam superimposer where it is superimposed with the linearly polarized light, and the superimposed light is A laser interference device characterized in that it is configured to be detected by a detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24318087A JPS6484103A (en) | 1987-09-28 | 1987-09-28 | Laser interference device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24318087A JPS6484103A (en) | 1987-09-28 | 1987-09-28 | Laser interference device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6484103A JPS6484103A (en) | 1989-03-29 |
JPH0511881B2 true JPH0511881B2 (en) | 1993-02-16 |
Family
ID=17100009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24318087A Granted JPS6484103A (en) | 1987-09-28 | 1987-09-28 | Laser interference device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6484103A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130033612A (en) * | 2011-09-27 | 2013-04-04 | 광주과학기술원 | Optical system and interferometer having the same |
-
1987
- 1987-09-28 JP JP24318087A patent/JPS6484103A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130033612A (en) * | 2011-09-27 | 2013-04-04 | 광주과학기술원 | Optical system and interferometer having the same |
Also Published As
Publication number | Publication date |
---|---|
JPS6484103A (en) | 1989-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7355719B2 (en) | Interferometer for measuring perpendicular translations | |
US4859066A (en) | Linear and angular displacement measuring interferometer | |
US6208424B1 (en) | Interferometric apparatus and method for measuring motion along multiple axes | |
US6897962B2 (en) | Interferometer using beam re-tracing to eliminate beam walk-off | |
US4883357A (en) | Dual high stability interferometer | |
US20190052045A1 (en) | Relative phase measurement for coherent combining of laser beams | |
US20060039007A1 (en) | Vibration-insensitive interferometer | |
JPS62293110A (en) | Angle-measuring plane mirror interferometer system | |
US4717250A (en) | Angle measuring interferometer | |
US20070188767A1 (en) | Optics system for an interferometer | |
US4807997A (en) | Angular displacement measuring interferometer | |
JPH0339605A (en) | Optical surface shape measuring instrument | |
JPH11183116A (en) | Method and device for light wave interference measurement | |
US5067813A (en) | Optical apparatus for measuring displacement of an object | |
JP3413945B2 (en) | Fringe counting displacement interferometer | |
JP2572111B2 (en) | Laser interferometer | |
JPS62233704A (en) | Differential plane-mirror interferometer system | |
SE330991B (en) | ||
JPH0511881B2 (en) | ||
EP0461773A2 (en) | Linear pitch, and yaw displacement measuring interferometer | |
JPH0540011A (en) | Gauge interferometer | |
JP4028428B2 (en) | Compact beam retrace optics for eliminating beam walk-off in interferometers | |
JP2779497B2 (en) | Interferometer | |
JP3000518B2 (en) | Polarized wavefront three-segment optical device | |
JPH05302809A (en) | Two wave length interference length measuring device |