JPH05302724A - Heating apparatus and heating method - Google Patents

Heating apparatus and heating method

Info

Publication number
JPH05302724A
JPH05302724A JP4133598A JP13359892A JPH05302724A JP H05302724 A JPH05302724 A JP H05302724A JP 4133598 A JP4133598 A JP 4133598A JP 13359892 A JP13359892 A JP 13359892A JP H05302724 A JPH05302724 A JP H05302724A
Authority
JP
Japan
Prior art keywords
heated
heating
heating device
heater
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4133598A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Sumikama
善光 炭釜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPH05302724A publication Critical patent/JPH05302724A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)

Abstract

PURPOSE:To improve the homogeneity of heating by separately individually providing a horizontal heater and a plane heater for an article to be heated, judging with a plurality of distance sensors whether the article is longitudinally long or transversely long, and adjusting an output ratio of both heaters. CONSTITUTION:Heating means 14 comprises a first heater 21 for horizontally irradiating an article 11 to be heated with microwaves, and a second heater 2 for vertically irradiating the article 11 with microwaves. Judgement means 14 controls the article 11 to be longitudinally long or transversely long on the basis of detection signals from distance sensors 31a to 31d. Further, the judgement means 14 determines the amounts of outputs from inverter circuits 42, 43 such that an output of the first heater 21 is greater upon the article 11 being judged to be longitudinally long while an output of the second heater 22 is greater upon the same being judged to be transversely long. Hereby, homogeneous heating in longitudinal and plane directions is kept.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被加熱物にマイクロ波
を照射して加熱調理する加熱装置およびその加熱方法に
関し、特に、平面方向と高さ方向の均一加熱性について
良好な加熱装置およびその加熱方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating device for irradiating an object to be heated with microwaves for heating and a heating method thereof, and more particularly to a heating device which is excellent in uniform heating in a plane direction and a height direction. It relates to the heating method.

【0002】[0002]

【従来の技術】加熱装置(電子レンジ)の従来技術とし
て、平面的な均一加熱性を確保する技術例については、
枚挙をいとまないほど沢山ある。一方、高さが大である
被加熱物について、高さ方向の均一加熱性を追及したも
のは非常に少ない。
2. Description of the Related Art As a conventional technique for a heating device (microwave oven), a technique for ensuring a flat uniform heating property is described below.
There are so many to enumerate. On the other hand, as for the object to be heated having a large height, very few have pursued the uniform heating property in the height direction.

【0003】しかし、実調理では、被加熱物が縦長であ
つたり、高さ方向にかさばるものもあり、この様な形状
の被加熱物についても均一加熱性が充分確保できる加熱
装置が当然望まれるものと考える。
However, in actual cooking, there are some objects to be heated which are vertically long and which are bulky in the height direction, and it is naturally desired to provide a heating device capable of sufficiently ensuring uniform heating even for objects having such a shape. Think of things.

【0004】この要請に鑑み、縦長の被加熱物について
均一加熱性を狙いとした従来技術としては、特開昭60
−138897号があつた。これは、図17のように、
加熱室1の側壁に高周波給電口2a,2bを上下に複数
箇所設けたものである。図17中、3はマグネトロン、
4は導波管、5は被加熱物、6は回転皿である。
In view of this demand, as a conventional technique aiming at uniform heating of a vertically long object to be heated, Japanese Patent Laid-Open No. Sho 60 has been proposed.
-138897 was issued. This is as shown in FIG.
High-frequency power supply ports 2a and 2b are provided on the side wall of the heating chamber 1 at a plurality of positions above and below. In FIG. 17, 3 is a magnetron,
Reference numeral 4 is a waveguide, 5 is an object to be heated, and 6 is a rotating dish.

【0005】[0005]

【発明が解決しようとする課題】図17に示す従来例で
は、高さのある被加熱物5についてある程度高さ方向の
均一加熱性が確保されるが、低くて平たく比較的広面積
の被加熱物5aを加熱する場合、平面方向について均一
加熱性が劣化する。
In the conventional example shown in FIG. 17, although the heated object 5 having a high height can be uniformly heated in the height direction to some extent, it is low, flat, and has a relatively large area to be heated. When the object 5a is heated, the uniform heating property deteriorates in the plane direction.

【0006】本発明は、上記課題に鑑み、高さ方向の均
一加熱性と平面方向の均一加熱性の確保を同時に行なう
ことができ、全体としての均一加熱性を向上し得る加熱
装置およびその加熱方法の提供を目的とする。
In view of the above problems, the present invention provides a heating device and a heating device capable of simultaneously ensuring uniform heating properties in the height direction and uniform heating properties in the plane direction and improving the uniform heating properties as a whole. The purpose is to provide a method.

【0007】[0007]

【課題を解決するための手段】本発明請求項1による課
題解決手段は、図1〜7の如く、被加熱物11を収納す
る加熱装置本体13と、該加熱装置本体13内の被加熱
物11を加熱する加熱手段14とを備えた加熱装置にお
いて、前記加熱手段14は、被加熱物11を垂直方向に
均一に加熱する第一加熱器21と、被加熱物11を水平
方向に均一に加熱する第二加熱器22とから構成され、
前記加熱装置本体13に、被加熱物11が縦長か横長か
を検出する形状検出手段15と、前記両加熱器21,2
2の出力を調整する制御回路16とが設けられ、該制御
回路16は、前記形状検出手段15からの信号に基づい
て、被加熱物11が縦長であると判断した際に前記第一
加熱器21の出力を大とし、被加熱物11が横長である
と判断した際に前記第二加熱器22の出力を大とするよ
う構成されたものである。
As shown in FIGS. 1 to 7, a heating means main body 13 for accommodating an object to be heated 11 and an object to be heated in the heating means body 13 are provided. In the heating device provided with the heating means 14 for heating 11, the heating means 14 uniformly heats the object 11 to be heated 11 in the horizontal direction and the first heater 21 which uniformly heats the object 11 to be heated in the vertical direction. And a second heater 22 for heating,
The heating device main body 13 has a shape detecting means 15 for detecting whether the object 11 to be heated is vertically long or horizontally long, and both the heaters 21 and 21.
A control circuit 16 for adjusting the output of the second heating device is provided, and the control circuit 16 determines, based on the signal from the shape detecting means 15, that the object 11 to be heated is vertically long. The output of the second heater 22 is set to be large when it is determined that the object to be heated 11 is horizontally long.

【0008】本発明請求項2による課題解決手段は、請
求項1記載の形状検出手段15は、複数個の距離センサ
ー31a〜31dから構成され、該距離センサー31a
〜31dは、異なる高さ位置Ha〜Hdに夫々配置され
たものである。
The problem solving means according to claim 2 of the present invention is that the shape detecting means 15 according to claim 1 comprises a plurality of distance sensors 31a to 31d.
31d are arranged at different height positions Ha to Hd, respectively.

【0009】本発明請求項3による課題解決手段は、加
熱装置本体13内の回転皿12に被加熱物11を載置加
熱する加熱装置の加熱方法において、加熱時に、前記加
熱装置本体13内の異なる高さ位置Ha〜Hdに配置し
た複数個の距離センサー31a〜31dにより、被加熱
物11の各高さ位置Ha〜Hdにおける中心軸19から
の径を検出演算し、この検出演算動作を、回転皿12を
中心軸19周りに回転させながら各回転角度位置P1,
P2,…ごとに行い、この検出演算結果に基づいて各高
さ位置Ha〜Hdごとの被加熱物11の横断面積の近似
値を演算し、この演算結果から被加熱物11が縦長か横
長かを判断し、被加熱物11が縦長であると判断した際
に、第一加熱器21により被加熱物11を垂直方向に均
一に加熱し、被加熱物11が横長であると判断した際
に、第二加熱器22により被加熱物11を水平方向に均
一に加熱するものである。
According to a third aspect of the present invention, there is provided a method for heating a heating device, wherein an object 11 to be heated is placed and heated on a rotary dish 12 in the heating device body 13, wherein the heating device body 13 is heated during heating. With a plurality of distance sensors 31a to 31d arranged at different height positions Ha to Hd, the diameter from the central axis 19 at each of the height positions Ha to Hd of the object to be heated 11 is detected and calculated, and this detection calculation operation is performed. While rotating the rotary plate 12 around the central axis 19, each rotation angle position P1,
P2, ..., and an approximate value of the cross-sectional area of the object to be heated 11 for each of the height positions Ha to Hd is calculated based on the detection calculation result, and whether the object to be heated 11 is vertically or horizontally long is calculated from the calculation result. When it is determined that the object 11 to be heated is vertically long, the first heater 21 uniformly heats the object 11 to be heated vertically, and when it is determined that the object 11 to be heated is horizontally long. The second heater 22 uniformly heats the object to be heated 11 in the horizontal direction.

【0010】本発明請求項4による課題解決手段は、図
8〜16の如く、請求項1記載の形状検出手段15は、
加熱庫13a内壁面に配された一個の距離センサー31
xで構成され、該距離センサー31xの被加熱物11に
対する測定角度は、被加熱物の任意の高さH1-1〜Hn-n
における加熱庫13a内壁面からの距離L1-1〜Ln-n
測定するよう可変とされたものである。
The problem solving means according to claim 4 of the present invention is, as shown in FIGS. 8 to 16, the shape detecting means 15 according to claim 1,
One distance sensor 31 arranged on the inner wall surface of the heating chamber 13a
consists of x, measuring angles relative to the object to be heated 11 in the distance sensor 31x is any height H 1-1 to H nn of the object to be heated
The distance L 1-1 to L nn from the inner wall surface of the heating chamber 13a is variable.

【0011】本発明請求項5による課題解決手段は、加
熱装置本体13内の回転皿12に被加熱物11を載置加
熱する加熱装置の加熱方法において、加熱時に、被加熱
物11に対する測定角度が可変とされた一個の距離セン
サー31xにより、その測定角度を変化させながら、被
加熱物の任意の高さ位置H1-1〜Hn-nにおける中心軸1
9からの径を検出演算し、この検出演算動作を、回転皿
12を中心軸19周りに回転させながら各回転角度位置
P1,P2,…ごとに行い、この検出演算結果に基づい
て任意の高さ位置H1-1〜Hn-nごとの被加熱物11の横
断面積の近似値を演算し、この演算結果から被加熱物1
1が縦長か横長かを判断し、被加熱物11が縦長である
と判断した際に、第一加熱器21により被加熱物11を
垂直方向に均一に加熱し、被加熱物11が横長であると
判断した際に、第二加熱器22により被加熱物11を水
平方向に均一に加熱するものである。
According to a fifth aspect of the present invention, in a heating method of a heating device for placing and heating an object to be heated 11 on a rotary dish 12 in a heating device body 13, a measuring angle with respect to the object to be heated 11 at the time of heating. The central axis 1 at any height position H 1-1 to H nn of the object to be heated is changed by changing the measurement angle by one distance sensor 31 x whose variable
The diameter from 9 is detected and calculated, and this detection and calculation operation is performed for each rotation angle position P1, P2, ... While rotating the rotary disc 12 around the central axis 19, and an arbitrary height is calculated based on this detection and calculation result. The approximate value of the cross-sectional area of the object to be heated 11 for each of the positions H 1-1 to H nn is calculated, and the object to be heated 1 is calculated from this calculation result.
When 1 is vertical or horizontal, and when it is determined that the object 11 to be heated is vertically long, the object 11 to be heated is uniformly heated in the vertical direction by the first heater 21, and the object 11 to be heated is horizontally long. When it is determined that there is, the second heater 22 uniformly heats the object 11 to be heated in the horizontal direction.

【0012】[0012]

【作用】上記請求項1〜3による課題解決手段におい
て、回転皿12を中心軸19周りに回転させながら、各
一定角度毎に、各距離センサー31a〜31dで離間距
離La〜Ldを検知する。これに基づいて、各高さ位置
Ha〜Hdにおける被加熱物11の横断面積の近似値を
演算する。そして、被加熱物11の体積を演算するとと
もに、被加熱物11が縦長か横長かを判断する。被加熱
物11が縦長であると判断した際には、第一加熱器21
の出力を相対的に大し、逆に被加熱物11が横長である
と判断した際には、第二加熱器22の出力を相対的に大
とする。
In the means for solving the problems according to the above-mentioned claims 1 to 3, while rotating the rotary plate 12 about the central axis 19, the distance sensors 31a to 31d detect the distances La to Ld at each constant angle. Based on this, an approximate value of the cross-sectional area of the object to be heated 11 at each of the height positions Ha to Hd is calculated. Then, the volume of the object to be heated 11 is calculated and it is determined whether the object to be heated 11 is vertically long or horizontally long. When it is determined that the object to be heated 11 is vertically long, the first heater 21
When the object 11 to be heated is determined to be horizontally long, the output of the second heater 22 is set to be relatively large.

【0013】また、請求項4,5では一個の距離センサ
ー31xで、その測定角度を変化させながら、各測定角
度毎の離間距離L1-1〜Ln-nを検知する。
[0013] In one the claims 4, 5 or distance sensors 31x, while changing the measurement angle, detects the distance L 1-1 ~L nn for each measurement angle.

【0014】そうすると、一個の距離センサー31xを
設けるだけで済む。
Then, only one distance sensor 31x needs to be provided.

【0015】[0015]

【実施例】【Example】

[第一実施例]図1は本発明の第一実施例の加熱装置に
おいて縦長の被加熱物を加熱する場合の概略図、図2は
本発明の第一実施例の加熱装置において横長の被加熱物
を加熱する場合の概略図、図3は形状検出手段を示す概
略図、図4は距離センサー単体の構造を示す概略図、図
5は制御回路を示す制御ブロツク図、図6は回転皿の回
転角度位置ごとに被加熱物の中心軸からの径を検出する
動作を示す図、図7は二つの回転角度位置に挟まれた被
加熱物の断片の面積を示す図である。
[First Embodiment] FIG. 1 is a schematic view of heating a vertically long object in the heating apparatus of the first embodiment of the present invention, and FIG. 2 is a horizontally long object in the heating apparatus of the first embodiment of the present invention. FIG. 3 is a schematic diagram showing a shape detecting means, FIG. 4 is a schematic diagram showing a structure of a distance sensor alone, FIG. 5 is a control block diagram showing a control circuit, and FIG. 6 is a rotary dish. FIG. 7 is a diagram showing the operation of detecting the diameter of the object to be heated from the central axis for each rotational angle position of FIG. 7, and FIG.

【0016】図示の如く、本実施例の加熱装置(電子レ
ンジ)は、被加熱物11に、垂直方向の平面照射による
マイクロ波と水平方向の水平照射によるマイクロ波を同
時に浴びせ、両マイクロ波の照射強度を調整することに
よつて、被加熱物11の平面的な均一加熱性及び高さ方
向の均一加熱性を同時に満足させるものである。すなわ
ち、加熱装置は、被加熱物11を載置する回転皿12が
内装された加熱装置本体13と、回転皿12上の被加熱
物11にマイクロ波を照射して加熱する加熱手段14
と、被加熱物11が縦長か横長かを検出する形状検出手
段15と、該形状検出手段15からの信号に基づいて前
記加熱手段14の出力を調整する制御回路16とが設け
られている。
As shown in the figure, in the heating device (microwave oven) of this embodiment, the object 11 to be heated is exposed to the microwaves generated by vertical plane irradiation and the horizontal direction microwaves at the same time. By adjusting the irradiation intensity, the planar uniform heating property of the object 11 to be heated and the uniform heating property in the height direction are simultaneously satisfied. That is, the heating device includes a heating device main body 13 in which a rotary dish 12 on which the article to be heated 11 is placed is installed, and heating means 14 for irradiating the article to be heated 11 on the rotary dish 12 with microwaves to heat the article.
A shape detecting means 15 for detecting whether the object 11 to be heated is vertically long or horizontally long, and a control circuit 16 for adjusting the output of the heating means 14 based on a signal from the shape detecting means 15.

【0017】前記加熱装置本体13は、図1,2の如
く、オーブン庫(加熱庫)13aと、その外側の外箱1
3bとから構成されている。
As shown in FIGS. 1 and 2, the heating device main body 13 includes an oven chamber (heating chamber) 13a and an outer box 1 outside thereof.
3b and.

【0018】前記回転皿12は、前記オーブン庫13a
の底部に配され、中心軸19周りに水平回転するようモ
ータ20により駆動される。
The rotary plate 12 is the oven chamber 13a.
Is arranged at the bottom of the motor and is driven by a motor 20 so as to rotate horizontally around the central axis 19.

【0019】前記加熱手段14は、被加熱物11に水平
にマイクロ波を照射する第一加熱器(以下、第一マグネ
トロンと称す)21と、被加熱物11に垂直にマイクロ
波を照射する第二加熱器(以下、第二マグネトロンと称
す)22とから構成されている。該両マグネトロン2
1,22は、400〜600Wの高出力特性を有し、後
述のインバータ回路42,43により電源供給される。
The heating means 14 includes a first heater (hereinafter referred to as a first magnetron) 21 for horizontally irradiating the object to be heated 11 with microwaves, and a first heater 21 for vertically irradiating the object to be heated 11 with microwaves. It is composed of two heaters (hereinafter referred to as a second magnetron) 22. Both magnetrons 2
1, 22 have high output characteristics of 400 to 600 W, and are supplied with power by inverter circuits 42 and 43 described later.

【0020】前記第一マグネトロン21は、第一導波管
25を介してオーブン庫13aの側壁面中央部の第一高
周波給電口26に連通されている。
The first magnetron 21 is communicated with a first high frequency power supply port 26 at the center of the side wall surface of the oven 13a via a first waveguide 25.

【0021】前記第二マグネトロン22は、第二導波管
27を介してオーブン庫13aの天面中央部の第二高周
波給電口28に連通されている。
The second magnetron 22 is communicated with a second high frequency power supply port 28 at the center of the top surface of the oven 13a via a second waveguide 27.

【0022】前記形状検出手段15は、図1〜3の如
く、前記オーブン庫13aの側壁で、一定間隔hづつ離
間した異なる高さ位置Ha〜Hdに夫々配置された、四
個の距離センサー31a〜31dからなる。各距離セン
サー31a〜31dは、図3の如く、各高さ位置Ha〜
Hdにおいて被加熱物11との離間距離La〜Ldを検
知するもので、図4の如く、センサーボツクス32内に
発光素子33および受光素子34を夫々有し、両素子3
3,34の前方には、光指向性を高める集光レンズ3
5,36を配置している。そして、発光素子33の発光
から、被加熱物11にて反射後、受光素子34での受光
に至るまでの時間を検知し、ここでかかつた時間に基づ
いて、距離センサー31a〜31dから被加熱物11ま
での離間距離La〜Ldを検知する。
As shown in FIGS. 1 to 3, the shape detecting means 15 includes four distance sensors 31a, which are arranged at different height positions Ha to Hd on the side wall of the oven chamber 13a at regular intervals h. ~ 31d. As shown in FIG. 3, the distance sensors 31a to 31d have height positions Ha to
The distances La to Ld from the object to be heated 11 are detected at Hd. As shown in FIG. 4, the sensor box 32 has a light emitting element 33 and a light receiving element 34, respectively.
In front of 3, 34, a condenser lens 3 for improving the light directivity
5, 36 are arranged. Then, the time from the light emission of the light emitting element 33 to the light reception by the light receiving element 34 after being reflected by the object 11 to be heated is detected, and based on the time taken here, the distance sensors 31a to 31d detect the time. The separation distances La to Ld to the heated object 11 are detected.

【0023】前記制御回路16は、図5の如く、前記各
距離センサー31a〜31dからの検知信号に基づいて
被加熱物11が縦長か横長かを判断する判断手段41
と、該判断手段41からの判断信号に基づいて各マグネ
トロン21,22を駆動制御する第一インバータ回路4
2および第二インバータ回路43とから構成されてい
る。
As shown in FIG. 5, the control circuit 16 determines whether the object 11 to be heated is vertically long or horizontally long based on the detection signals from the distance sensors 31a to 31d.
And the first inverter circuit 4 for driving and controlling the magnetrons 21, 22 based on the judgment signal from the judgment means 41.
2 and the second inverter circuit 43.

【0024】前記判断手段41は、ROM、RAM、お
よびCPUを有する一般的なマイクロコンピユータチツ
プが用いられ、ROM内のプログラムに基づいて次の手
順で動作する。
As the judging means 41, a general micro computer chip having a ROM, a RAM and a CPU is used, and it operates in the following procedure based on the program in the ROM.

【0025】回転皿12を中心軸19周りに回転させ
ながら、各回転角度位置P1,P2,…毎に、各距離セ
ンサー31a〜31dで検知した離間距離La〜Ldを
記憶する。
While rotating the rotary plate 12 about the central axis 19, the distances La to Ld detected by the distance sensors 31a to 31d are stored for each rotational angle position P1, P2, ....

【0026】受信した離間距離La〜Ldに基づい
て、その各高さ位置Ha〜Hdにおける被加熱物11の
横断面積の近似値を演算する。
Based on the received distances La to Ld, an approximate value of the cross-sectional area of the object to be heated 11 at each of the height positions Ha to Hd is calculated.

【0027】各高さ位置Ha〜Hdにおける被加熱物
11の横断面積の近似値から、被加熱物11の体積を演
算するとともに、被加熱物11が縦長か横長かを判断す
る。
The volume of the object 11 to be heated is calculated from the approximate value of the cross-sectional area of the object 11 to be heated at each of the height positions Ha to Hd, and it is determined whether the object 11 to be heated is vertically long or horizontally long.

【0028】被加熱物11の体積から、全体的な総出
力量を概算するとともに、被加熱物11が縦長であると
判断した際には、第一インバータ回路42の出力が相対
的に大となり、逆に被加熱物11が横長であると判断し
た際には、第二マグネトロン22の出力が相対的に大と
なるよう、各インバータ回路42,43の出力量を決定
する。
The total output amount is roughly estimated from the volume of the object to be heated 11, and when it is judged that the object to be heated 11 is vertically long, the output of the first inverter circuit 42 becomes relatively large, Conversely, when it is determined that the object to be heated 11 is horizontally long, the output amounts of the inverter circuits 42 and 43 are determined so that the output of the second magnetron 22 becomes relatively large.

【0029】前記各インバータ回路42,43は、商用
電源を整流し非平滑の直流電源を作る整流回路と、高圧
トランスや共振コンデンサを有する共振型スイツチング
回路とから構成された一般的なもので、前記判断手段4
1により決定された出力量に基づいて駆動する。
The inverter circuits 42 and 43 are generally composed of a rectifier circuit that rectifies a commercial power source to produce an unsmoothed DC power source, and a resonance type switching circuit having a high voltage transformer and a resonance capacitor. The determination means 4
It drives based on the output amount determined by 1.

【0030】次に、上記構成の加熱装置の動作を詳述す
る。
Next, the operation of the heating device having the above structure will be described in detail.

【0031】(高さ検出工程)電源がオンされると、ま
ず、図4の如く、各距離センサー31a〜31dの発光
素子33を発光させ、集光レンズ35で集光しながら被
加熱物11に照射する。ここで反射した光を集光レンズ
36を通して受光素子34で受光する。そして、発光素
子33の発光から受光素子34での受光までの時間を検
知し、ここでかかつた時間に基づいて、距離センサー3
1a〜31dから被加熱物11までの離間距離La〜L
dを検知する。これは、各高さ位置Ha〜Hdにおいて
夫々測定しておく。
(Height Detection Step) When the power is turned on, first, as shown in FIG. 4, the light emitting element 33 of each of the distance sensors 31a to 31d emits light, and the condensing lens 35 condenses the object 11 to be heated. To irradiate. The light reflected here is received by the light receiving element 34 through the condenser lens 36. Then, the time from the light emission of the light emitting element 33 to the light reception of the light receiving element 34 is detected, and the distance sensor 3 is detected on the basis of the elapsed time.
Separation distances La to L from 1a to 31d to the object to be heated 11
Detect d. This is measured at each of the height positions Ha to Hd.

【0032】ここで、図3中の最上段の高さ位置Hdの
ように、距離センサー31dの検出値Ldが加熱装置本
体13のオーブン巾Lwと同寸法になる場合は、距離セ
ンサー31dの発光素子33からの光は、被加熱物11
に当たらずに加熱装置本体13の室壁13aに当たつて
いることを示すものであるから、被加熱物11が高さH
dの高さ(=4h)よりも低いことを意味し、ここで距
離センサー31cの検出値LcがLwより小であれば、
被加熱物11の高さを近似的にHcの高さ(=3h)で
あると判断する。
Here, when the detection value Ld of the distance sensor 31d has the same dimension as the oven width Lw of the heating device main body 13 as in the height position Hd at the uppermost stage in FIG. 3, the distance sensor 31d emits light. The light from the element 33 is the object to be heated 11
Since it means that the object 11 to be heated hits the chamber wall 13a of the heating device body 13 without hitting the
This means that the height is lower than the height of d (= 4h), and if the detection value Lc of the distance sensor 31c is smaller than Lw,
It is determined that the height of the object to be heated 11 is approximately the height of Hc (= 3h).

【0033】同様に、距離センサー31cの検出値Lc
がオーブン巾Lwと等しければ、被加熱物11の高さを
Hbの高さ(=2h)と判断し、図2の如く、距離セン
サー31bの検出値Lcがオーブン巾Lwと等しけれ
ば、被加熱物11の高さをHaの高さ(=h)と判断す
る。
Similarly, the detection value Lc of the distance sensor 31c
Is equal to the oven width Lw, the height of the object 11 to be heated is determined to be the height of Hb (= 2h), and if the detection value Lc of the distance sensor 31b is equal to the oven width Lw as shown in FIG. The height of the object 11 is determined to be the height of Ha (= h).

【0034】(横断面積検出工程)上述のように測定し
た離間距離La〜Ldと、オーブン巾Lwとから、
(1)式により、被加熱物11の外周と中心軸19との
離間距離(径)LDa〜LDdを求める。
(Cross-sectional area detecting step) From the distances La to Ld measured as described above and the oven width Lw,
The distances (diameters) LDa to LDd between the outer circumference of the object to be heated 11 and the central axis 19 are calculated by the equation (1).

【0035】 LDa=Lw/2−La LDb=Lw/2−Lb LDc=Lw/2−Lc LDd=Lw/2−Ld …(1) 次に、図6の如く、回転皿12を中心軸19周りに一定
速度で回転させる。回転皿12の回転がθ進むごとに各
距離センサー31a〜31dの発光素子33を点滅させ
る。そして、各回転角度位置P1,P2,…ごとに、各
高さ位置Ha〜Hdにおける被加熱物11の径LDa〜
LDdを(1)式に基づいて演算記憶する。
LDa = Lw / 2-La LDb = Lw / 2-Lb LDc = Lw / 2-Lc LDd = Lw / 2-Ld (1) Next, as shown in FIG. Rotate around at a constant speed. The light emitting element 33 of each of the distance sensors 31a to 31d blinks each time the rotation of the rotary plate 12 advances by θ. Then, for each of the rotation angle positions P1, P2, ..., The diameter LDa of the object to be heated 11 at each of the height positions Ha to Hd.
LDd is calculated and stored based on the equation (1).

【0036】ここで、図7の如く、ある回転角度位置P
1と中心軸19とを結ぶ長さLD1の線分をR1、その
隣の回転角度位置P2と中心軸19とを結ぶ長さLD2
の線分をR2とすると、この両線分R1、R2で挟まれ
た被加熱物11の断片の面積D1は、近似的に D1≒π{(LD1+LD2)/2}2×(θ/360°) …(2) となる。
Here, as shown in FIG. 7, a certain rotation angle position P
R1 is a line segment having a length LD1 connecting 1 to the central axis 19 and length LD2 is a line connecting the central axis 19 to the rotation angle position P2 adjacent to the line segment.
Is R2, the area D1 of the fragment of the object to be heated 11 sandwiched between the two line segments R1 and R2 is approximately D1≈π {(LD1 + LD2) / 2} 2 × (θ / 360 ° )… (2)

【0037】これと同様にして、回転角度位置P2以降
の被加熱物11の断片の面積D2,D3,…をも求め
る。
Similarly, the areas D2, D3, ... Of the fragments of the article 11 to be heated after the rotational angle position P2 are also obtained.

【0038】そして、最終的に被加熱物11の横断面積
Dを次式により計算する。
Finally, the cross-sectional area D of the object to be heated 11 is calculated by the following equation.

【0039】D=D1+D2+… 上記の演算を、全高さ位置Ha〜Hdにおいて行つてお
く。
D = D1 + D2 + ... The above calculation is performed at all height positions Ha to Hd.

【0040】(体積検出工程)以上の結果を基に、各高
さ位置Ha〜Hd間の体積を求める。ここで、図3を例
にとつて説明すると、被加熱物11のHo〜Ha間の体
積をVa、Ha〜Hb間の体積をVb、Hb〜Hc間の
体積をVcとすると、各体積Va〜Vcは次式により求
めることができる。
(Volume Detection Step) Based on the above results, the volume between the height positions Ha to Hd is obtained. Here, taking FIG. 3 as an example, when the volume between Ho and Ha of the object to be heated 11 is Va, the volume between Ha and Hb is Vb, and the volume between Hb and Hc is Vc, each volume Va is ~ Vc can be obtained by the following equation.

【0041】 Va≒Da×h Vb≒Db×(2h−h) Vc≒Dc×(3h−2h) …(3) ここで、Da,Db,Dcは各高さ位置Ha〜Hdにお
ける被加熱物11の横断面積の近似値である。なお、被
加熱物11の体積は、V1〜V3の他にも、Hc〜Hd
間の体積Vdがあり、また、各近似値Va〜Vcと実際
の体積との誤差V2も存在する。したがつて、被加熱物
11の体積の算出に当たつては、これらV2やVdの値
をVαとしてあらかじめ経験則により定数として記憶さ
せておくのが望ましい。すなわち、上述のように計算し
た近似値Va〜Vcとあいまつて、次式のように合計し
て被加熱物11の体積の近似値Vを求める(ただし、図
3の例では、Vd=0となる)。
Va≈Da × h Vb≈Db × (2h−h) Vc≈Dc × (3h−2h) (3) where Da, Db, and Dc are objects to be heated at the respective height positions Ha to Hd. 11 is an approximate value of the cross-sectional area of 11. The volume of the object to be heated 11 is Hc to Hd in addition to V1 to V3.
There is a volume Vd between them, and there is also an error V 2 between each approximate value Va to Vc and the actual volume. Therefore, when calculating the volume of the object to be heated 11, it is desirable to store these values of V 2 and Vd as Vα in advance as a constant based on an empirical rule. That is, the approximate value V of the volume of the article to be heated 11 is obtained by summing the approximate values Va to Vc calculated as described above as in the following equation (however, in the example of FIG. 3, Vd = 0 Become).

【0042】 V=Va+Vb+Vc+Vd+Vα …(4) (出力調整工程)上記のように算出された被加熱物11
の体積近似値Vより、第一マグネトロン21および第二
マグネトロン22の総出力量を決定する。
V = Va + Vb + Vc + Vd + Vα (4) (Output adjusting step) The object to be heated 11 calculated as described above.
The total output amount of the first magnetron 21 and the second magnetron 22 is determined from the volume approximate value V of.

【0043】また、これと同時に高さ検出工程で検出し
た被加熱物11の高さと、横断面積検出工程で検出した
各高さ位置Ha〜Hdでの横断面積Da〜Dcとから、
被加熱物11の縦方向と横方向の長さ比率を求め、第一
マグネトロン21と第二マグネトロン22の相対的な出
力比を決定する。
At the same time, from the height of the object 11 to be heated detected in the height detecting step and the cross-sectional areas Da to Dc at the height positions Ha to Hd detected in the cross-sectional area detecting step,
The length ratio of the object 11 to be heated in the vertical direction and the horizontal direction is obtained, and the relative output ratio of the first magnetron 21 and the second magnetron 22 is determined.

【0044】そして、総出力量と出力比から、第一マグ
ネトロン21と第二マグネトロン22の各出力量を算出
する。算出された結果に基づいて、両インバータ回路4
2,43の両出力調整を行ない、第一マグネトロン21
および第二マグネトロン22を駆動制御すればよい。
Then, the respective output amounts of the first magnetron 21 and the second magnetron 22 are calculated from the total output amount and the output ratio. Based on the calculated result, both inverter circuits 4
The output of both 2, 43 is adjusted, and the first magnetron 21
The drive of the second magnetron 22 may be controlled.

【0045】そうすると、図1のように被加熱物11が
高く縦長の場合は、第一マグネトロン21からのマイク
ロ波照射は強くなり、第二マグネトロン22からのマイ
クロ波照射は弱くなつて、大面積となる被加熱物11の
側面を重点的に効率良く加熱できる。
Then, as shown in FIG. 1, when the object to be heated 11 is high and vertically long, the microwave irradiation from the first magnetron 21 becomes strong, and the microwave irradiation from the second magnetron 22 becomes weak, resulting in a large area. Thus, the side surface of the object 11 to be heated can be heated intensively and efficiently.

【0046】一方、図2のように被加熱物11が低く平
たい場合は、第一マグネトロン21からのマイクロ波照
射は弱くなり、第二マグネトロン22からのマイクロ波
照射は強くなつて、大面積となる被加熱物11の平面を
重点的に効率良く加熱できる。
On the other hand, when the object to be heated 11 is low and flat as shown in FIG. 2, the microwave irradiation from the first magnetron 21 becomes weak and the microwave irradiation from the second magnetron 22 becomes strong, resulting in a large area. It is possible to efficiently heat the flat surface of the object 11 to be heated.

【0047】なお、このとき、例えばグラタン容器の形
状や、熱燗用徳利の高さ形状等は、ユーザー側で予め分
かっているので、これら実調理の範囲内で、形状検出手
段15によつて被加熱物11の種類も判断でき、この判
断に従つて加熱時間および出力調整することも可能とな
る。すなわち、制御回路16内に数種類の調理パターン
を記憶する記憶手段を設けておけば、ユーザーが実調理
に使用する数種類のパターンを記憶させ、いわゆる「お
まかせキー」としてワンタツチで調理することも可能と
なる。この場合、回転皿12に重量センサーを設け、形
状および重量の組み合わせによつてパターン記憶させて
もよい。
At this time, for example, the shape of the gratin container, the height shape of the hot sake bottle, etc. are known in advance by the user, so that the shape detecting means 15 can detect the shape within the range of actual cooking. The type of the heated object 11 can be determined, and the heating time and output can be adjusted according to this determination. That is, if a storage means for storing several kinds of cooking patterns is provided in the control circuit 16, it is possible to store several kinds of patterns used by the user for actual cooking, and to cook in a one-touch manner as a so-called "automatic key". Become. In this case, the rotating dish 12 may be provided with a weight sensor, and the pattern may be stored according to the combination of the shape and the weight.

【0048】また、本実施例は四個の距離センサー31
a〜31dを使用する場合について述べているが、実際
はもっとセンサーの数を増やす場合も考えられ、センサ
ーの数をn個にした場合も上述した方法で目標を達成す
るものとする。
Further, in this embodiment, four distance sensors 31 are used.
Although the case of using a to 31d has been described, it is possible to actually increase the number of sensors, and even when the number of sensors is set to n, the target is achieved by the method described above.

【0049】以上のような方法により、縦方向と平面方
向の両方について均一加熱性を良好で理想に近いものに
できる。
By the method as described above, the uniform heating property in both the vertical direction and the plane direction can be made good and close to ideal.

【0050】[第二実施例]図8は本発明の第二実施例
の加熱装置において縦長の被加熱物を加熱する場合の概
略図、図9は本発明の第二実施例の加熱装置において横
長の被加熱物を加熱する場合の概略図、図10は形状検
出手段を示す概略図、図11は形状検出手段の形状検出
角度を示す図、図12は形状検出動作を示すもので、
(A)は平面視断面図、(B)は側面視断面図、図13
は制御回路を示す制御ブロツク図、図14は回転皿の回
転に伴つて検出動作位置が移動する様子を示す図、図1
5は回転皿の回転角度位置ごとに被加熱物の中心軸から
の径を検出する動作を示す図、図16は二つの回転角度
位置に挟まれた被加熱物の断片の面積を示す図である。
[Second Embodiment] FIG. 8 is a schematic view of heating a vertically long object in the heating apparatus of the second embodiment of the present invention, and FIG. 9 is a heating apparatus of the second embodiment of the present invention. FIG. 10 is a schematic view showing a shape detection means, FIG. 11 is a view showing a shape detection angle of the shape detection means, and FIG. 12 is a shape detection operation.
13A is a sectional view in plan view, FIG. 13B is a sectional view in side view, and FIG.
1 is a control block diagram showing the control circuit, FIG. 14 is a diagram showing a state in which the detection operation position moves in accordance with the rotation of the rotary plate, FIG.
5 is a diagram showing the operation of detecting the diameter from the central axis of the object to be heated for each rotational angle position of the rotary dish, and FIG. 16 is a diagram showing the area of the fragment of the object to be heated sandwiched between the two rotational angle positions. is there.

【0051】本実施例の加熱装置は、図8〜16の如
く、形状検出手段15として一個の距離センサーで31
xで第一実施例と同じ目的を実現させ、部品点数削減を
図るものである。
In the heating device of this embodiment, as shown in FIGS. 8 to 16, one distance sensor 31 is used as the shape detecting means 15.
The purpose of x is to realize the same purpose as in the first embodiment and to reduce the number of parts.

【0052】前記距離センサー31xは、図8〜12の
如く、オーブン庫(加熱庫)13a内の側壁に、集光レ
ンズ35,36の側面視中心軸51a周りに回転可動式
に取り付けられており、例えばステッピングモータ51
(図13参照)により測定角度が予め決められたある角
度づつ変化する。該ステッピングモーター51の角度調
整のための駆動は制御回路16内の角度調整手段52に
て制御される。したがって、任意の高さ位置での測定が
可能となり、制御方法によっては、誤差のかなり少ない
測定を実現できる。該距離センサー31xは、図12に
示すように、第一実施例と同様の構造を有しており、発
光素子33から出た光が被加熱物11にて反射後受光素
子34に入射されるまでの時間を検知し、ここでかかっ
た時間に基づいて、距離センサー31xから被加熱物1
1までの離間距離L1-1〜Ln-nを検知する。
As shown in FIGS. 8 to 12, the distance sensor 31x is rotatably mounted on the side wall of the oven (heating cabinet) 13a around the central axis 51a of the condenser lenses 35 and 36 in a side view. , For example, stepping motor 51
(See FIG. 13) changes the measurement angle by a predetermined angle. The drive for adjusting the angle of the stepping motor 51 is controlled by the angle adjusting means 52 in the control circuit 16. Therefore, it is possible to perform measurement at an arbitrary height position, and depending on the control method, it is possible to realize measurement with a considerably small error. As shown in FIG. 12, the distance sensor 31x has the same structure as that of the first embodiment, and the light emitted from the light emitting element 33 is reflected by the object 11 to be heated and then enters the light receiving element 34. Until the object 1 to be heated is detected from the distance sensor 31x based on the time taken here.
Detecting a distance L 1-1 ~L nn to 1.

【0053】また、本実施例の制御回路16は、図13
の如く、基本的には第一実施例と類似の構成とされてい
るが、単一の距離センサー31xの測定角度を変化させ
るだけで、被加熱物11の異なる高さ位置についての離
間距離を測定しようとするため、その制御動作は第一実
施例と異なり、次の手順で行われる。
Further, the control circuit 16 of this embodiment is similar to that of FIG.
As described above, the configuration is basically similar to that of the first embodiment, but by changing the measurement angle of the single distance sensor 31x, the separation distances at different height positions of the object 11 to be heated can be set. Since the measurement is to be performed, the control operation is different from the first embodiment and is performed in the following procedure.

【0054】図14〜16の如く、回転皿12上の被
加熱物11を中心軸19周りに回転させながら、各回転
角度位置P1-1,P1-2,…,P1-n,P2-1,…P2-n
…,Pn-n毎に、距離センサー31xで検知した離間距
離L1-1〜Ln-nを記憶する。
As shown in FIGS. 14 to 16, while rotating the object to be heated 11 on the rotary dish 12 about the central axis 19, the rotational angular positions P 1-1 , P 1-2 , ..., P 1-n , P 2-1 , ... P 2-n ,
..., for each P nn, stores the distance L 1-1 ~L nn detected by the distance sensor 31x.

【0055】この際、被加熱物11に対する距離センサ
ー31xの測定角度を、軸51a周りに回動可変させる
ことにより、各高さ位置H1-1〜Hn-nにおいて夫々測定
しておく。そうすれば、被加熱物11を一回転させるだ
けで、形状検出動作が完了する。
[0055] Measurement angle of this time, the distance sensor 31x to the article to be heated 11, by rotating the variable around the axis 51a, keep each measured at each height position H 1-1 to H nn. Then, the shape detection operation is completed only by rotating the object to be heated 11 once.

【0056】この場合、被加熱物11が回転すること
で、検出位置が回転方向にずれるため、各高さ間の回転
位置が位相し、その軌跡が図14のように斜め方向に例
えば弓なりに変化することになる。しかし、後述のよう
に、最終的には各高さ位置における断面積を合計してし
まうので、これらの位相を考慮しなくても演算結果に影
響はない。
In this case, since the detection position shifts in the rotation direction as the object to be heated 11 rotates, the rotation positions between the heights are in phase with each other and the locus thereof becomes a bow in an oblique direction as shown in FIG. It will change. However, as will be described later, since the cross-sectional areas at each height position are finally summed up, there is no influence on the calculation result without considering these phases.

【0057】また、図11の如く、距離センサー31x
の正味の検知距離をk1-1〜kn-n、距離センサー31x
の被加熱物11に対する測定角度をφ1〜φnとすると、
被加熱物11の任意の高さH1-1〜Hn-nにおける加熱庫
13a内壁面からの距離L1-1〜Ln-nは、厳密には、 となることから、これらを考慮して離間距離L1-1〜L
n-nを記憶する。
Further, as shown in FIG. 11, the distance sensor 31x
The net detection distance of k 1-1 to k nn , distance sensor 31x
If the measurement angle of the object 11 to the object to be heated is φ 1 to φ n ,
Distance L 1-1 ~L nn from the heating chamber 13a in the wall at any height H 1-1 to H nn of the heated object 11, strictly, Therefore, taking these into consideration, the separation distance L 1-1 to L
Remember nn .

【0058】図14〜16の如く、受信した離間距離
1-1〜Ln-nとそれに相応する各回転角度θ1-1〜θn-n
から、測定ライン毎のL1-1〜L1-nに対するθ1-1〜θ
1-nないしLn-1〜Ln-nに対するθn-1〜θn-nに対し
て、各測定ライン間の離間角度δ1-(1)〜δ1-(n)…δ
n-(1)〜δn-(n)も演算するものとする。
As shown in FIGS. 14 to 16, the received separation distances L 1-1 to L nn and the corresponding rotation angles θ 1-1 to θ nn.
From θ 1-1 to θ for L 1-1 to L 1-n for each measurement line
Against 1-n through L n-1 ~L nn for θ n-1nn, spaced angles [delta] 1-(1) between the measuring lines ~δ 1- (n) ... δ
It is assumed that n- (1) to δn- (n) are also calculated.

【0059】次に、任意演算高さh1-1〜hn-1におけ
る断面積を求める。まず、図16の如く、h0-1〜h1-1
〜h2-1でかこまれる円弧内の面積を近似値的にA1-1
し、各任意演算高さh1-1〜hn-1での被加熱物11の回
転中心軸19からの距離をD1-1〜Dn-1、各点h1-1
0-1,h2-1で挟まれた角をζ(1)-(1)とすれば、 A1-1≒{(D1-1+D2-1)/2}×ζ(1)-(1)…(5) となる。
Next, determine the cross-sectional area at any operational height h 1-1 ~h n-1. First, as shown in FIG. 16, h 0-1 to h 1-1
Approximately the area in the arc surrounded by h 2-1 is set to A 1-1 , and the arbitrary calculated heights h 1-1 to h n-1 from the rotation center axis 19 of the object to be heated 11 The distance is D 1-1 to D n-1 , each point h 1-1 ,
If the angle between h 0-1 and h 2-1 is ζ (1)-(1) , A 1-1 ≈ {(D 1-1 + D 2-1 ) / 2} × ζ (1 )-(1) … (5)

【0060】ここで、測定値L1-1,L1-2からd1-1
1-2を演算し、またL2-1,L2-2からd2-1,d2-2
演算する。そして、D1-1,D2-1について、 D1-1≒d1-1+(d1-1−d1-2)×Δh/H1-12-1≒d2-1+(d2-1−d2-2)×Δh/H2-1 で近似値演算する。ここで、Δhは各高さ位置H1-1
2-1の間の任意の離間距離である。
Here, the measured values L 1-1 , L 1-2 to d 1-1 ,
calculates the d 1-2, also L 2-1, d 2-1, it calculates a d 2-2 from L 2-2. Then, regarding D 1-1 and D 2-1 , D 1-1 ≈d 1-1 + (d 1-1 −d 1-2 ) × Δh / H 1-1 D 2-1 ≈d 2-1 + (d 2-1 -d 2-2) approximated value calculated by × Δh / H 2-1. Where Δh is each height position H 1-1 ,
It is an arbitrary separation distance between H 2-1 .

【0061】なお、ζ(1)-(1)は次の(6)(7)
(8)式から近似値的に演算出来る。
Note that ζ (1)-(1) is the following (6) (7)
An approximate value can be calculated from equation (8).

【0062】 ζ(1)-(1)=θ1-1+δ1-(2)−{α1-1+(θ2-1−α2-1)} …(6) =θ1-1+δ1-(2)−α1-1+α2-1−θ2−1 α1−1≒(θ1-1/H1-1)×Δh …(7) α2-1≒(θ2-1/H2-1)×Δh …(8) なお、第1測定点P1-1〜P1-nの回転皿からの高さH0
は0に近付けるものとし、近似値的にH0=0とする。
Ζ (1)-(1) = θ 1-1 + δ 1- (2) -{α 1-1 + (θ 2-1 −α 2-1 )} (6) = θ 1-1 + Δ 1- (2) −α 1-1 + α 2-1 −θ 2-1 α 1-1 ≈ (θ 1-1 / H 1-1 ) × Δh (7) α 2-1 ≈ (θ 2 −1 / H 2-1 ) × Δh (8) It should be noted that the height H 0 of the first measurement points P 1-1 to P 1-n from the rotary pan is 0.
Is close to 0, and H 0 = 0 as an approximate value.

【0063】従って、h1-1の高さの面積A1-nは、 A1-n={(D1-1+D2-1)/2}×ζ(1)-(1) +{(D2-1+D3-1)/2}×ζ(1)-(2) + … +[{Dn-1+D(n+1)-1}/2]×ζ(1)-(n) …(9) で近似値的に演算できる。Therefore, the area A 1-n at the height of h 1-1 is A 1-n = {(D 1-1 + D 2-1 ) / 2} × ζ (1)-(1) + { (D 2-1 + D 3-1 ) / 2} × ζ (1)-(2) +… + [{D n-1 + D (n + 1) -1 } / 2] × ζ (1)-( n) ... (9) can be calculated as an approximate value.

【0064】次に、Δhの高さh1-1、Δh×2の高さ
1-2、〜Δh×nの高さh1-nの各高さにおける断面積
をA1-n,A2-n,A3-n,…,An-nとすると、これらも
(9)式と同等の式で近似値的に求めることができる。
Next, the cross-sectional area at each of the height h 1-1 of Δh, the height h 1-2 of Δh × 2, and the height h 1-n of Δh × n is A 1-n , If A 2−n , A 3−n , ..., A nn , these can also be obtained as approximate values by an equation equivalent to the equation (9).

【0065】ここで、図8中の最上の高さの測定点P
1-nよりも高い測定角度のときは、被加熱物11に距離
センサー31xの発光素子33からの光は、被加熱物1
1に当たらず加熱装置本体11の天面内部に当たり、被
加熱物11までの距離が加熱装置本体11の開口寸法L
wの半分よりも大となる。そしてこのような大寸法に検
出されたときは、被加熱物11の形状がその位置で存在
しないシーケンスとする。
Here, the measurement point P of the highest height in FIG.
When the measurement angle is higher than 1-n, the light from the light emitting element 33 of the distance sensor 31x is transmitted to the object to be heated 11 by the object 1 to be heated.
It hits the inside of the top surface of the heating device body 11 without hitting 1, and the distance to the object to be heated 11 is the opening dimension L of the heating device body 11.
It is larger than half of w. Then, when such a large size is detected, the sequence is such that the shape of the object to be heated 11 does not exist at that position.

【0066】このように演算することにより、図14,
15の如く、回転角度毎、各測定ライン毎にP1-1,P
1-2,…,P1-nないしPn-1,Pn-2,…,Pn-nの位置
における被加熱物11の中心軸19から被加熱物11の
表面までの距離d1-1,d1-2,…,d1-nおよびdn-1
n-2,…,dn-nを測定演算することができる。
By calculating in this way, FIG.
15, P 1-1 , P for each rotation angle and each measurement line
The distance d 1-1 from the central axis 19 of the heated object 11 to the surface of the heated object 11 at the positions of 1-2 , ..., P 1-n to P n-1 , P n-2 , ..., P nn. , D 1-2 , ..., d 1-n and d n-1 ,
It is possible to measure and calculate d n-2 , ..., D nn .

【0067】次に、(9)式から求めた各高さh1-1
1-2,…,h1-nにおける近似値断面積A1-n〜An-n
ら、被加熱物11の容積Vを近似的に求める。
Next, each height h 1-1 , obtained from the equation (9),
h 1-2, ..., from the approximate value cross-sectional area A 1-n ~A nn in h 1-n, approximately determine the volume V of the heated object 11.

【0068】 V=Δh(A1-1+A1-2+…+A1-n) …(10) ここで、nを大に測定間隔を密にし、すればするほど、
測定結果は正確になることはいうまでもない。
V = Δh (A 1-1 + A 1-2 + ... + A 1-n ) (10) Here, the measurement interval is set to a large value for n, and
It goes without saying that the measurement results will be accurate.

【0069】上記近似値の断面積A1-n〜An-nから、
被加熱物11が縦長か横長かを判断する。
From the cross-sectional areas A 1-n to A nn of the above approximate values,
It is determined whether the object to be heated 11 is vertically long or horizontally long.

【0070】以後第一実施例と同様に、上記判断結果
に基づいて各インバータ回路42,43の出力量を決定
する。
Thereafter, similarly to the first embodiment, the output amount of each inverter circuit 42, 43 is determined based on the above judgment result.

【0071】なお、本発明は、上記実施例に限定される
ものではなく、本発明の範囲内で上記実施例に多くの修
正および変更を加え得ることは勿論である。
The present invention is not limited to the above embodiment, and it goes without saying that many modifications and changes can be made to the above embodiment within the scope of the present invention.

【0072】例えば、上記実施例では、マイクロ波を照
射加熱する電子レンジについて記述したが、加熱器2
1,22としてガスや電熱コイル等の輻射加熱用の熱源
を用いてもよい。
For example, in the above-mentioned embodiment, the microwave oven for radiating and heating the microwave is described.
A heat source for radiant heating such as gas or an electric heating coil may be used as 1, 22.

【0073】また、第一実施例では、形状検出時に回転
皿12を回転させたが、これに代わり、オーブン庫13
aのある面に距離センサーを散点状に多数配置すれば、
被加熱物11をシルエツト状に把握できる。さらに、こ
れら距離センサーをオーブン庫13aの側壁の二面以上
に配すれば、被加熱物11を回転皿12の中央に載置し
ない場合にも、回転皿12を回転せずにその形状が精度
よく把握できる。
Further, in the first embodiment, the rotary plate 12 was rotated at the time of shape detection, but instead of this, the oven chamber 13
If many distance sensors are arranged on the surface with a,
The object to be heated 11 can be grasped in a sillette shape. Furthermore, by disposing these distance sensors on two or more surfaces of the side wall of the oven chamber 13a, even if the object to be heated 11 is not placed in the center of the rotating dish 12, the shape of the rotating dish 12 can be accurately adjusted without rotating. I can grasp it well.

【0074】さらに、第二実施例では、一個の距離セン
サー31xの測定角度を変化させて被加熱物11の各高
さ位置H1-1〜Hn-nにおける中心軸19からの径を検出
演算し、この検出演算動作を、回転皿12を中心軸19
周りに回転させながら各回転角度位置P1,P2,…ご
とに行っているため、被加熱物11の一回の回転で形状
検出を完了できるが、各複数回高さ位置H1-1〜Hn-n
ついて被加熱物11を1回1回回転させて検出を行って
もよい。
[0074] Further, in the second embodiment, it detects operation of the diameter from the central axis 19 in one of the height H 1-1 to H nn of the heated object 11 the measurement angle is varied by the distance sensor 31x , This detection calculation operation is performed by using the rotary plate 12 as the central axis 19
Since each rotational angle position while rotating P1, P2, performed every ... it is around, can complete the shape detection in a single rotation of the object to be heated 11, the more times the height position H 1-1 to H For nn , the object to be heated 11 may be rotated once for detection.

【0075】[0075]

【発明の効果】以上の説明から明らかな通り、本発明請
求項1〜3によると、被加熱物を水平加熱する第一加熱
器と、平面加熱する第二加熱器とを別個に設け、加熱時
に、複数の距離センサーで、被加熱物が縦長であるか横
長であるかを検知判断し、これに基づいて両加熱器の加
熱出力比を調整加熱するので、被加熱物が高く縦長の場
合は、第一加熱器からの水平加熱は強くなり、被加熱物
が低く平たい場合は、第二加熱器からの平面加熱は強く
なる。すなわち、縦方向と平面方向の両方について、均
一加熱性を常に良好で理想に近いものにできる。
As is apparent from the above description, according to claims 1 to 3 of the present invention, a first heater for horizontally heating an object to be heated and a second heater for planar heating are separately provided and heated. Sometimes, multiple distance sensors detect whether the object to be heated is vertically long or horizontally long, and based on this, the heating output ratio of both heaters is adjusted and heated, so when the object to be heated is tall and vertically long. The horizontal heating from the first heater becomes strong, and the flat heating from the second heater becomes strong when the object to be heated is low and flat. That is, the uniform heating property in both the vertical direction and the plane direction can be always good and close to ideal.

【0076】また、請求項4,5によると、各測定角度
毎の離間距離を検知する距離センサーが一個で済むの
で、部品点数を軽減でき、しかも、距離センサーの角度
調整の設定により、被加熱物の任意の高さ位置での測定
が可能となり、誤差のかなり少ない測定を実現できると
いつた優れた効果がある。
Further, according to claims 4 and 5, since only one distance sensor for detecting the separation distance for each measurement angle is required, the number of parts can be reduced, and moreover, the distance sensor can be set by adjusting the angle of the distance sensor. It becomes possible to measure an object at an arbitrary height position, and it is very effective if a measurement with a considerably small error can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例の加熱装置において縦長の
被加熱物を加熱する場合の概略図
FIG. 1 is a schematic view of heating a vertically long object in a heating device according to a first embodiment of the present invention.

【図2】本発明の第一実施例の加熱装置において横長の
被加熱物を加熱する場合の概略図
FIG. 2 is a schematic view of heating a horizontally long object in the heating device according to the first embodiment of the present invention.

【図3】形状検出手段を示す概略図FIG. 3 is a schematic view showing a shape detecting means.

【図4】距離センサー単体の構造を示す概略図FIG. 4 is a schematic diagram showing the structure of a distance sensor alone.

【図5】制御回路を示す制御ブロツク図FIG. 5 is a control block diagram showing a control circuit.

【図6】回転皿の回転角度位置ごとに被加熱物の中心軸
からの径を検出する動作を示す図
FIG. 6 is a diagram showing an operation of detecting the diameter of the object to be heated from the central axis for each rotation angle position of the rotating dish.

【図7】二つの回転角度位置に挟まれた被加熱物の断片
の面積を示す図
FIG. 7 is a diagram showing an area of a fragment of an object to be heated which is sandwiched between two rotation angle positions.

【図8】本発明の第二実施例の加熱装置において縦長の
被加熱物を加熱する場合の概略図
FIG. 8 is a schematic view of heating a vertically long object in the heating device according to the second embodiment of the present invention.

【図9】本発明の第二実施例の加熱装置において横長の
被加熱物を加熱する場合の概略図
FIG. 9 is a schematic view of heating a horizontally long object in the heating device according to the second embodiment of the present invention.

【図10】形状検出手段を示す概略図FIG. 10 is a schematic view showing a shape detecting means.

【図11】形状検出角度を示す図FIG. 11 is a diagram showing a shape detection angle.

【図12】形状検出動作を示すもので、(A)は平面視
断面図、(B)は側面視断面図
12A and 12B show a shape detecting operation, FIG. 12A is a sectional view in plan view, and FIG. 12B is a sectional view in side view.

【図13】制御回路を示す制御ブロツク図FIG. 13 is a control block diagram showing a control circuit.

【図14】回転皿の回転に伴つて検出動作位置が移動す
る様子を示す図
FIG. 14 is a diagram showing a state in which the detection operation position moves as the rotary plate rotates.

【図15】回転皿の回転角度位置ごとに被加熱物の中心
軸からの径を検出する動作を示す図
FIG. 15 is a diagram showing an operation of detecting the diameter of the object to be heated from the central axis for each rotation angle position of the rotating dish.

【図16】二つの回転角度位置に挟まれた被加熱物の断
片の面積を示す図
FIG. 16 is a diagram showing an area of a fragment of an object to be heated which is sandwiched between two rotation angle positions.

【図17】従来の加熱装置の断面図FIG. 17 is a sectional view of a conventional heating device.

【符号の説明】[Explanation of symbols]

11 被加熱物 13 加熱装置本体 13a 加熱庫 14 加熱手段 15 形状検出手段 16 制御回路 21 第一加熱器 22 第二加熱器 31x 距離センサー 11 Heated Object 13 Heating Device Main Body 13a Heating Cabinet 14 Heating Means 15 Shape Detection Means 16 Control Circuit 21 First Heater 22 Second Heater 31x Distance Sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被加熱物を収納する加熱装置本体と、該
加熱装置本体内の被加熱物を加熱する加熱手段とを備え
た加熱装置において、 前記加熱手段は、 被加熱物を垂直方向に均一に加熱する第一加熱器と、 被加熱物を水平方向に均一に加熱する第二加熱器とから
構成され、 前記加熱装置本体に、 被加熱物が縦長か横長かを検出する形状検出手段と、 前記両加熱器の出力を調整する制御回路とが設けられ、 該制御回路は、前記形状検出手段からの信号に基づい
て、被加熱物が縦長であると判断した際に前記第一加熱
器の出力を大とし、被加熱物が横長であると判断した際
に前記第二加熱器の出力を大とするよう構成されたこと
を特徴とする加熱装置。
1. A heating device comprising: a heating device main body for accommodating an object to be heated; and heating means for heating the object to be heated in the heating device main body, wherein the heating means is arranged to vertically move the object to be heated. A shape detecting means for detecting whether the object to be heated is vertically or horizontally long, which is composed of a first heater for uniformly heating and a second heater for uniformly heating the object to be heated in the horizontal direction. And a control circuit for adjusting the outputs of the both heaters, the control circuit, based on a signal from the shape detection means, when the object to be heated is determined to be vertically long, the first heating A heating device configured to increase the output of the second heater when the output of the heater is increased and the object to be heated is determined to be horizontally long.
【請求項2】 請求項1記載の形状検出手段は、複数個
の距離センサーから構成され、該距離センサーは、異な
る高さ位置に夫々配置されたことを特徴とする加熱装
置。
2. The heating device according to claim 1, wherein the shape detecting means is composed of a plurality of distance sensors, and the distance sensors are respectively arranged at different height positions.
【請求項3】 加熱装置本体内の回転皿に被加熱物を載
置加熱する加熱装置の加熱方法において、 加熱時に、前記加熱装置本体内の異なる高さ位置に配置
した複数個の距離センサーにより、被加熱物の各高さ位
置における中心軸からの径を検出演算し、 この検出演算動作を、回転皿を中心軸周りに回転させな
がら各回転角度位置ごとに行い、 この検出演算結果に基づいて各高さ位置ごとの被加熱物
の横断面積の近似値を演算し、 この演算結果から被加熱物が縦長か横長かを判断し、 被加熱物が縦長であると判断した際に、第一加熱器によ
り被加熱物を垂直方向に均一に加熱し、 被加熱物が横長であると判断した際に、第二加熱器によ
り被加熱物を水平方向に均一に加熱することを特徴とす
る加熱装置の加熱方法。
3. A heating method for a heating device for placing and heating an object to be heated on a rotating dish in the heating device body, comprising: a plurality of distance sensors arranged at different height positions in the heating device body during heating. , The diameter from the center axis at each height position of the object to be heated is detected and calculated, and this detection calculation operation is performed for each rotation angle position while rotating the rotating dish around the center axis, and based on this detection calculation result The approximate value of the cross-sectional area of the heated object at each height position is calculated, and it is determined from this calculation result whether the heated object is vertically or horizontally long.When it is determined that the heated object is vertically long, One heating device uniformly heats the object to be heated in the vertical direction, and when it is determined that the object to be heated is horizontally long, the second heating device heats the object to be heated uniformly in the horizontal direction. Heating method of heating device.
【請求項4】 請求項1記載の形状検出手段は、加熱庫
内壁面に配された一個の距離センサーで構成され、該距
離センサーの被加熱物に対する測定角度は、被加熱物の
任意の高さにおける加熱庫内壁面からの距離を測定する
よう可変とされたことを特徴とする加熱装置。
4. The shape detecting means according to claim 1 is composed of one distance sensor arranged on the inner wall surface of the heating chamber, and the measurement angle of the distance sensor with respect to the object to be heated is an arbitrary height of the object to be heated. The heating device is variable so as to measure the distance from the inner wall surface of the heating chamber.
【請求項5】 加熱装置本体内の回転皿に被加熱物を載
置加熱する加熱装置の加熱方法において、 加熱時に、被加熱物に対する測定角度が可変とされた一
個の距離センサーにより、その測定角度を変化させなが
ら、被加熱物の任意の高さ位置における中心軸からの径
を検出演算し、 この検出演算動作を、回転皿を中心軸周りに回転させな
がら各回転角度位置ごとに行い、 この検出演算結果に基づいて任意の高さ位置ごとの被加
熱物の横断面積の近似値を演算し、 この演算結果から被加熱物が縦長か横長かを判断し、 被加熱物が縦長であると判断した際に、第一加熱器によ
り被加熱物を垂直方向に均一に加熱し、 被加熱物が横長であると判断した際に、第二加熱器によ
り被加熱物を水平方向に均一に加熱することを特徴とす
る加熱装置の加熱方法。
5. A heating method for a heating device in which an object to be heated is placed and heated on a rotary plate in a main body of the heating device, wherein at the time of heating, measurement is performed by one distance sensor whose measuring angle to the object to be heated is variable While changing the angle, the diameter from the central axis at any height position of the object to be heated is detected and calculated, and this detection and calculation operation is performed for each rotational angle position while rotating the rotating dish around the central axis. An approximate value of the cross-sectional area of the heated object for each arbitrary height position is calculated based on this detection calculation result, and it is determined from this calculation result whether the heated object is vertically long or horizontally long. When it is determined that the first heating device uniformly heats the object to be heated in the vertical direction, and when it is determined that the object to be heated is horizontally long, the second heater uniformly distributes the object to be heated in the horizontal direction. Heating of a heating device characterized by heating Method.
JP4133598A 1992-02-28 1992-05-26 Heating apparatus and heating method Pending JPH05302724A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4-42898 1992-02-28
JP4289892 1992-02-28

Publications (1)

Publication Number Publication Date
JPH05302724A true JPH05302724A (en) 1993-11-16

Family

ID=12648852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4133598A Pending JPH05302724A (en) 1992-02-28 1992-05-26 Heating apparatus and heating method

Country Status (1)

Country Link
JP (1) JPH05302724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199005A1 (en) * 2014-06-23 2015-12-30 四国計測工業株式会社 Microwave emission device
WO2023075213A1 (en) * 2021-10-28 2023-05-04 엘지전자 주식회사 Cooking appliance and method for controlling cooking appliance
WO2023075276A1 (en) * 2021-10-28 2023-05-04 엘지전자 주식회사 Cooking apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199005A1 (en) * 2014-06-23 2015-12-30 四国計測工業株式会社 Microwave emission device
WO2023075213A1 (en) * 2021-10-28 2023-05-04 엘지전자 주식회사 Cooking appliance and method for controlling cooking appliance
WO2023075276A1 (en) * 2021-10-28 2023-05-04 엘지전자 주식회사 Cooking apparatus

Similar Documents

Publication Publication Date Title
US5347108A (en) Microwave oven having a function for matching impedance
US6563097B2 (en) Microwave oven with food search and localized heating
JP4979280B2 (en) Microwave heating device
US20020158065A1 (en) Microwave oven with temperature-dependent automatic stop
KR20140028638A (en) Temperature measuring device and microwave oven having the same
CN102711301A (en) Induction heating cooker
JPH05302724A (en) Heating apparatus and heating method
JP3931091B2 (en) High frequency heating device
JP2004253149A (en) High-frequency cooker
JP5076625B2 (en) Microwave heating device
JPH10196967A (en) Heating cooking range
US5440105A (en) Method for controlling the position of a cooking vessel in a cooking appliance
JP5076626B2 (en) Microwave heating device
JP2004241220A (en) Induction heating cooking device
JP2003106532A (en) High frequency heating device
JPH06163155A (en) High frequency heating device
JP2017198400A (en) High-frequency heating cooker
JP3901350B2 (en) microwave
JP7002487B2 (en) Cooker
JP2861713B2 (en) High frequency heating equipment
JP2003130361A (en) Heating cooker
JP2008215772A (en) Microwave heating device
JP2008282693A (en) Microwave heating apparatus
JP3402309B2 (en) High frequency heating equipment
JP2008292088A (en) Microwave heating device and program

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507