JPH05301230A - Method for heating solid tire having double-layered structure - Google Patents
Method for heating solid tire having double-layered structureInfo
- Publication number
- JPH05301230A JPH05301230A JP4106737A JP10673792A JPH05301230A JP H05301230 A JPH05301230 A JP H05301230A JP 4106737 A JP4106737 A JP 4106737A JP 10673792 A JP10673792 A JP 10673792A JP H05301230 A JPH05301230 A JP H05301230A
- Authority
- JP
- Japan
- Prior art keywords
- microwave
- layer
- solid tire
- tire
- reflecting member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007787 solid Substances 0.000 title claims abstract description 37
- 238000010438 heat treatment Methods 0.000 title claims description 15
- 238000000034 method Methods 0.000 title claims description 12
- 230000001678 irradiating effect Effects 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 abstract description 5
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 238000004073 vulcanization Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/0005—Pretreatment of tyres or parts thereof, e.g. preheating, irradiation, precuring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0855—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tyre Moulding (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、損失係数が各層ごとに
異なる複層構造ソリッドタイヤのマイクロ波加熱方法の
改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a microwave heating method for a solid tire having a multi-layer structure having a different loss coefficient for each layer.
【0002】[0002]
【従来の技術】従来、例えばフォークリフト等の特殊車
両に使用されるタイヤとして、特性の異なるゴム層を円
周方向に重ねてなる複層構造ソリッドタイヤが知られて
いる。この複層ソリッドタイヤのような肉厚の厚いタイ
ヤを加硫する際、室温のタイヤを加硫すると、表面から
の熱伝導方式では、最も昇温しにくい中心部が最適加硫
状態に達した時には、外表部は過加硫状態になってしま
う問題があった。このため、加硫操作前に、比較的低温
の加温室に長時間貯蔵し、タイヤ内の温度を平均的に上
昇させる予熱操作が採用されている。2. Description of the Related Art Conventionally, as a tire used for a special vehicle such as a forklift truck, there has been known a solid tire having a multi-layer structure in which rubber layers having different characteristics are laminated in a circumferential direction. When vulcanizing a thick-walled tire such as this multi-layer solid tire, when vulcanizing the tire at room temperature, in the heat conduction method from the surface, the central part where temperature rise is most difficult reaches the optimum vulcanized state. At times, there was a problem that the outer surface part was over-vulcanized. Therefore, before the vulcanization operation, a preheating operation is employed in which the tire is stored in a relatively low temperature greenhouse for a long time and the temperature inside the tire is raised on average.
【0003】通常、この予熱操作には長時間を要し、加
温室の貯蔵スペースは膨大なものとなっていた。このた
め、加温室の熱容量は大きくなり、外気への熱放散も多
大なものとなり、結果として加熱効率は低いレベルにと
どまらざるを得ない問題があった。この問題を解決する
ため、例えば特公昭57ー42501号公報において、
タイヤの予熱時間を短縮すべく、マイクロ波加熱を利用
する方法が開示されている。Usually, this preheating operation requires a long time, and the storage space of the greenhouse is enormous. Therefore, the heat capacity of the greenhouse is large, and the heat dissipation to the outside air is also large, resulting in the problem that the heating efficiency has to remain at a low level. In order to solve this problem, for example, in Japanese Patent Publication No. 57-42501,
A method utilizing microwave heating has been disclosed in order to reduce the preheating time of the tire.
【0004】[0004]
【発明が解決しようとする課題】通常のマイクロ波加熱
による予熱操作は、複層構造のソリッドタイヤでしかも
各層の損失係数が異なる場合は、損失係数は発生する熱
量に比例するため、予備加熱時にマイクロ波のパワーが
高損失係数の層に集中し、ソリッドタイヤ全体が均一に
昇温しにくく、最適な予備加熱温度が得られないという
問題が生じていた。また、損失係数の異なる複層構造の
ソリッドタイヤの各層を別々に加熱した後に成形し、複
層構造のソリッドタイヤを構成することも考えられる
が、タイヤ成形時に予熱をしない他層への伝熱によって
予熱効果が低下するとともに、複層のゴムを同時に予熱
しようとすると、その数に対応したマイクロ波加熱装置
が必要となる問題もあった。The normal preheating operation by microwave heating is a solid tire having a multi-layer structure, and when the loss coefficient of each layer is different, the loss coefficient is proportional to the amount of heat generated. The microwave power is concentrated in the layer having a high loss coefficient, and it is difficult to uniformly raise the temperature of the entire solid tire, which causes a problem that an optimum preheating temperature cannot be obtained. It is also possible to separately heat each layer of a solid tire having a multi-layer structure with different loss factors and then form a solid tire having a multi-layer structure, but heat transfer to other layers that does not preheat during tire forming However, there is a problem that the preheating effect is deteriorated, and if the multi-layered rubber is to be preheated at the same time, a microwave heating device corresponding to the number is required.
【0005】本発明の目的は上述した課題を解消して、
損失係数が各層ごとに異なる複層構造ソリッドタイヤで
あっても均一な予備加熱をすることのできる複層構造ソ
リッドタイヤのマイクロ波加熱方法を提供しようとする
ものである。The object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a microwave heating method for a solid tire having a multi-layer structure, which enables uniform preheating even for a solid tire having a multi-layer structure having a different loss coefficient for each layer.
【0006】[0006]
【課題を解決するための手段】本発明の複層構造ソリッ
ドタイヤのマイクロ波加熱方法は、損失係数が各層ごと
に異なる複層構造ソリッドタイヤのマイクロ波加熱方法
において、マイクロ波の集中しやすい高損失係数を有す
る層を、マイクロ波反射部材で覆った状態で、マイクロ
波を照射することを特徴とするものである。A microwave heating method for a solid tire having a multi-layer structure according to the present invention is a microwave heating method for a solid tire having a multi-layer structure having a different loss coefficient for each layer. It is characterized in that a layer having a loss coefficient is covered with a microwave reflecting member and is irradiated with microwaves.
【0007】[0007]
【作用】上述した構成において、マイクロ波のパワーの
集中しやすい高損失係数の層にマイクロ波を反射するマ
イクロ波反射部材例えば金属板を置き、マイクロ波のこ
の層への集中をなくすことにより、高損失係数の層のみ
が加熱されることなく高損失係数の層と他層との温度を
ほぼ同じとすることができ、複層構造ソリッドタイヤを
均一に加熱することができる。なお、マイクロ波反射部
材で高損失係数の層を覆う位置については、たとえ一部
であってもその効果があることはいうまでもないが、マ
イクロ波反射部材を複層構造ソリッドタイヤの接地面と
なる最外層の高損失係数の層の外周全体に設けると、マ
イクロ波の照射される面のうち大きな割合の部分を簡単
に覆うことができるため好ましい。In the above structure, by placing a microwave reflecting member, such as a metal plate, for reflecting microwaves on a layer having a high loss coefficient where microwave power is easily concentrated, and by eliminating the concentration of microwaves on this layer, It is possible to make the temperatures of the high loss coefficient layer and other layers substantially the same without heating only the high loss coefficient layer, and it is possible to uniformly heat the multi-layer structure solid tire. Regarding the position of covering the layer of high loss coefficient with the microwave reflecting member, needless to say, even if it is a part, it is effective, but the microwave reflecting member is used as the ground contact surface of the multilayer solid tire. It is preferable to provide it on the entire outer periphery of the outermost layer having a high loss coefficient, since a large proportion of the surface irradiated with microwaves can be easily covered.
【0008】[0008]
【実施例】図1は本発明の複層構造ソリッドタイヤのマ
イクロ波加熱方法を実施する状態の一例を示す図であ
る。図1において、1はマイクロ波を発生するためのマ
イクロ波発生装置、2はマイクロ波発生装置1から発生
したマイクロ波を伝達するための導波管、3は予備加熱
を行う室を形成するアプリケータ、4はアプリケータ3
内に設けた好ましくはマイクロ波透過材であるポリプロ
ピレンからなる回転型の支持台、5は支持台4上に載置
した予備加熱すべき未加硫の複層構造ソリッドタイヤ、
6は複層構造ソリッドタイヤ5の接地面をなす外周面に
設けた円筒形の金属板からなるマイクロ波反射部材、7
はアプリケータ3内の電界を攪拌して均一にするための
スターラ(回転翼反射板)である。FIG. 1 is a diagram showing an example of a state in which the microwave heating method for a solid tire having a multilayer structure of the present invention is carried out. In FIG. 1, 1 is a microwave generator for generating microwaves, 2 is a waveguide for transmitting microwaves generated from the microwave generator 1, and 3 is an application forming a chamber for preheating. Applicator 3
A rotary type pedestal made of polypropylene, which is preferably a microwave transmitting material, provided therein, 5 is an unvulcanized multi-layered solid tire placed on the pedestal 4 to be preheated,
Reference numeral 6 denotes a microwave reflecting member made of a cylindrical metal plate provided on the outer peripheral surface forming the ground contact surface of the multilayer solid tire 5.
Is a stirrer (rotary blade reflector) for stirring and uniforming the electric field in the applicator 3.
【0009】図1に示した状態で、マイクロ波発生装置
1で発生したマイクロ波を導波管2を介してアプリケー
タ3内に照射することにより、回転する支持台4上に載
置した複層構造ソリッドタイヤ5の予備加熱を行うこと
ができる。このとき、本発明では、マイクロ波反射部材
6を設けているため、このマイクロ波反射部材6と対抗
する複層構造ソリッドタイヤ5の外周面には直線マイク
ロ波は照射されない。そのため、この部分を高損失係数
の層とすることにより、高損失係数の層に照射されるマ
イクロ波を他層と比べて少なくでき、その結果均一な複
層構造ソリッドタイヤ5の予備加熱を行うことができ
る。In the state shown in FIG. 1, the microwave generated by the microwave generator 1 is applied to the inside of the applicator 3 through the waveguide 2 so that the compound placed on the rotating support base 4 is moved. Preheating of the layered solid tire 5 can be performed. At this time, in the present invention, since the microwave reflecting member 6 is provided, the outer peripheral surface of the solid tire 5 having a multilayer structure which opposes the microwave reflecting member 6 is not irradiated with the linear microwave. Therefore, by forming this portion as a layer having a high loss coefficient, the microwave radiated to the layer having a high loss coefficient can be reduced as compared with other layers, and as a result, uniform preheating of the multilayer solid tire 5 is performed. be able to.
【0010】図2は図1で示した状態の複層構造ソリッ
ドタイヤ5とマイクロ波反射部材6との関係を詳細に示
した図であり、図2(a)はその斜視図を、図2(b)
は図2(a)中A−A線に沿った断面を示す図である。
本実施例では、複層構造ソリッドタイヤ5を最外周層か
ら3層構造の未加硫のゴム層5ー1、5ー2、5ー3と
から構成し、最外周層5ー1を他の層5ー2、5ー3よ
りも高損失係数の層としている。また、各層5ー1〜5
ー3の具体例としてフォークリフト用タイヤの例を示す
と、ゴム層5ー1を耐摩耗性に優れたトップゴム、ゴム
層5ー2を凹凸を吸収するミドルゴム、ゴム層5ー3を
特殊短繊維入りのベースゴムから構成している。FIG. 2 is a diagram showing in detail the relationship between the solid tire 5 having a multi-layer structure and the microwave reflecting member 6 in the state shown in FIG. 1, and FIG. 2 (a) is a perspective view thereof. (B)
FIG. 3 is a diagram showing a cross section taken along line AA in FIG.
In the present embodiment, the solid tire 5 having a multi-layer structure is composed of the outermost peripheral layer and unvulcanized rubber layers 5-1, 5-2, 5-3 having a three-layer structure, and the outermost peripheral layer 5-1 is the other layer. The layer having a higher loss coefficient than the layers 5-2 and 5-3. Also, each layer 5-1 to 5
As an example of a tire for a forklift truck as a specific example of No. 3, a rubber layer 5-1 is a top rubber having excellent wear resistance, a rubber layer 5-2 is a middle rubber that absorbs unevenness, and a rubber layer 5-3 is a special short. It is composed of fiber-containing base rubber.
【0011】図3は本発明で使用するマイクロ波反射部
材6の一例を示す図で、図3(a)は最外層のタイヤ接
地面に面してマイクロ波反射部材6を置くときに使用す
る円筒型の金属板6ー1を、図3(b)は高損失係数の
層の側面にマイクロ波反射部材6を置くときに使用する
ドーナツ型の金属板6ー2をそれぞれ示している。マイ
クロ波反射部材6の形状は、基本的に、タイヤ構成各層
の重量と損失係数の比率によって、高損失係数の層の遮
蔽すべき面積が決定されるものであり、所用面積に応じ
てその形状、面積を設定するものである。従って、マイ
クロ波反射部材6の形状は、図3に示す形状に限定され
るものではなく、目的に応じて任意の形状を採ることが
できるとともに、その材質についてもマイクロ波を反射
するものであれば金属に限るものでないことはいうまで
もない。FIG. 3 is a view showing an example of the microwave reflecting member 6 used in the present invention, and FIG. 3 (a) is used when the microwave reflecting member 6 is placed facing the tire ground contact surface of the outermost layer. 3B shows a cylindrical metal plate 6-1 and FIG. 3B shows a donut-shaped metal plate 6-1 used when the microwave reflecting member 6 is placed on the side surface of the layer having a high loss coefficient. The shape of the microwave reflecting member 6 basically determines the area to be shielded of the layer having a high loss coefficient by the ratio of the weight of each layer constituting the tire and the loss coefficient, and the shape thereof depends on the required area. , To set the area. Therefore, the shape of the microwave reflecting member 6 is not limited to the shape shown in FIG. 3, and any shape can be adopted according to the purpose, and the material of the microwave reflecting member 6 can also reflect microwaves. It goes without saying that it is not limited to metals.
【0012】以下、実際に図1に示す状態で最外層が高
損失係数の層である3層構造のソリッドタイヤの加硫前
予熱を行った例について説明する。まず、マイクロ波反
射部材6としての金属板を置かずにタイヤにマイクロ波
を10分間照射したところ、以下の表1に比較例として
示すように、高損失係数の外層に著しい温度上昇が認め
られたにもかかわらず、中層、内層はほとんど昇温しな
いという結果を得た。一方、タイヤ外層の外周に円筒型
の金属板6ー1を置き、高損失係数の外層へのマイクロ
波のパワー集中をなくしたところ、表1の実施例1に示
すように、10分間のマイクロ波照射で外層の昇温が抑
制され、中層および内層と外層との温度がかなり均等化
できるという結果を得た。さらに、円筒型の金属板6ー
1の上下両側にドーナツ型の金属板6ー2を置いて、さ
らに高損失係数の層を覆ったところ、表1の実施例2に
示すように、同じく10分間のマイクロ波照射で中層お
よび内層と外層との昇温差がさらになくなり、ほぼ均一
な昇温ができるという結果を得た。なお、表1におい
て、温度を測定した位置は、図2(b)における数字で
示した位置と対応している。An example in which preheating before vulcanization of a solid tire having a three-layer structure in which the outermost layer is a layer having a high loss factor in the state shown in FIG. 1 will be described below. First, when a tire was irradiated with microwaves for 10 minutes without placing a metal plate as the microwave reflecting member 6, a remarkable temperature rise was recognized in the outer layer having a high loss coefficient, as shown as a comparative example in Table 1 below. Despite this, the result was that the middle and inner layers hardly heated. On the other hand, when a cylindrical metal plate 6-1 was placed on the outer periphery of the tire outer layer to eliminate the concentration of microwave power to the outer layer having a high loss coefficient, as shown in Example 1 in Table 1, the microwave for 10 minutes was used. The results showed that the temperature rise of the outer layer was suppressed by the wave irradiation, and the temperatures of the inner layer and the inner layer were fairly equalized. Further, when a doughnut-shaped metal plate 6-2 was placed on the upper and lower sides of the cylindrical metal plate 6-1 to cover the layer having a higher loss coefficient, as shown in Example 2 of Table 1, the same 10 It was obtained that the temperature difference between the inner layer and the inner layer and the outer layer was further eliminated by the microwave irradiation for a minute, and the temperature could be raised almost uniformly. In Table 1, the position where the temperature was measured corresponds to the position indicated by the number in FIG. 2 (b).
【0013】[0013]
【表1】 [Table 1]
【0014】本発明は上述した実施例にのみ限定される
ものではなく、幾多の変形、変更が可能である。例え
ば、上述した実施例では、本発明を実施するための装置
の例を一例しか示さなかったが、未加硫のタイヤにマイ
クロ波を照射できる構成であればどのような構成であっ
ても良いとともに、タイヤの例として3層構造の複層構
造タイヤの例しか示さなかったが、3層以外の構造のも
のでも本発明を好適に適用できることは明かである。The present invention is not limited to the above-mentioned embodiments, but various modifications and changes can be made. For example, in the above-mentioned embodiments, only one example of the apparatus for carrying out the present invention is shown, but any structure may be used as long as it can irradiate the unvulcanized tire with microwaves. At the same time, only an example of a multi-layer tire having a three-layer structure has been shown as an example of a tire, but it is clear that the present invention can be suitably applied to a tire having a structure other than three layers.
【0015】[0015]
【発明の効果】以上の説明から明らかなように、本発明
によれば、複層構造ソリッドタイヤの高損失係数の層を
マイクロは反射部材で覆っているため、例えば1時間の
マイクロは照射で、加温室での長時間貯蔵では得られな
い予熱温度まで均一に予熱することが可能になり、以下
の効果を得ることができる。 (1) 長時間の貯蔵のための加温室が不要となり、大幅な
省スペース、省エネルギーとなる。 (2) 予熱時の生産性を大幅に向上でき、エネルギー効率
も大幅に向上できる。 (3) 予熱温度を高くできる分、本加硫の時間を大幅に短
縮でき、加硫時の生産性を大幅に向上できるとともに、
エネルギー効率も大幅に向上できる。 (4) 本加硫の時間を短縮できるので、従来加硫が最も遅
れるタイヤ中心部と比較してタイヤ表面が過加硫状態で
あった点を解消して、より均一な加硫度を得ることがで
きる。As is apparent from the above description, according to the present invention, since the micro layer of the multi-layer structure solid tire having the high loss coefficient is covered with the reflecting member, for example, the micro area for one hour can be irradiated. As a result, it becomes possible to uniformly preheat to a preheating temperature that cannot be obtained by long-term storage in a greenhouse, and the following effects can be obtained. (1) A greenhouse is not needed for long-term storage, resulting in significant space and energy savings. (2) The productivity at the time of preheating can be significantly improved, and the energy efficiency can be significantly improved. (3) Since the preheating temperature can be increased, the time for main vulcanization can be greatly shortened, and the productivity during vulcanization can be greatly improved.
Energy efficiency can also be greatly improved. (4) Since the time for main vulcanization can be shortened, the point where the tire surface was over-vulcanized compared to the center of the tire where conventional vulcanization is most delayed is eliminated, and a more uniform degree of vulcanization is obtained. be able to.
【図1】本発明の複層構造ソリッドタイヤのマイクロ波
加熱方法を実施する状態の一例を示す図である。FIG. 1 is a diagram showing an example of a state in which a microwave heating method for a multi-layer structure solid tire of the present invention is carried out.
【図2】図1で示した複層構造ソリッドタイヤとマイク
ロ波反射部材との関係を詳細に示す図である。FIG. 2 is a diagram showing in detail the relationship between the multi-layer structure solid tire shown in FIG. 1 and a microwave reflecting member.
【図3】本発明で使用するマイクロ波反射部材の一例を
示す図である。FIG. 3 is a diagram showing an example of a microwave reflecting member used in the present invention.
【符号の説明】 1 マイクロ波発生装置 2 導波管 3 アプリケータ 4 支持台 5 複層構造ソリッドタイヤ 6 マイクロ波反射部材 7 スターラ[Explanation of reference symbols] 1 microwave generator 2 waveguide 3 applicator 4 support 5 multi-layered solid tire 6 microwave reflection member 7 stirrer
Claims (2)
リッドタイヤのマイクロ波加熱方法において、マイクロ
波の集中しやすい高損失係数を有する層を、マイクロ波
反射部材で覆った状態で、マイクロ波を照射することを
特徴とする複層構造ソリッドタイヤの加熱方法。1. A microwave heating method for a solid tire having a multi-layer structure having a different loss coefficient for each layer, wherein a layer having a high loss coefficient in which microwaves are easily concentrated is covered with a microwave reflecting member. A method for heating a solid tire having a multi-layer structure, which comprises irradiating the solid tire.
リッドタイヤの接地面である最外層の高損失係数の層の
外周全体に設けた請求項1記載の複層構造ソリッドタイ
ヤの加熱方法。2. The method for heating a solid tire having a multilayer structure according to claim 1, wherein the microwave reflecting member is provided on the entire outer periphery of the outermost layer having a high loss coefficient, which is the ground contact surface of the solid tire having a multilayer structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4106737A JPH05301230A (en) | 1992-04-24 | 1992-04-24 | Method for heating solid tire having double-layered structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4106737A JPH05301230A (en) | 1992-04-24 | 1992-04-24 | Method for heating solid tire having double-layered structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05301230A true JPH05301230A (en) | 1993-11-16 |
Family
ID=14441242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4106737A Pending JPH05301230A (en) | 1992-04-24 | 1992-04-24 | Method for heating solid tire having double-layered structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05301230A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7101464B1 (en) * | 1997-05-09 | 2006-09-05 | The Tire Chief, Inc. | Microwave pyrolysis apparatus for waste tires |
-
1992
- 1992-04-24 JP JP4106737A patent/JPH05301230A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7101464B1 (en) * | 1997-05-09 | 2006-09-05 | The Tire Chief, Inc. | Microwave pyrolysis apparatus for waste tires |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1298241C (en) | Microwave container and method of use | |
US5986248A (en) | Food container for microwave heating or cooking | |
JPS62106225A (en) | Microwave vessel | |
JPH05301230A (en) | Method for heating solid tire having double-layered structure | |
JP4002914B2 (en) | Combined cooker | |
RU2001111005A (en) | THICK FILM HEATER AND LIQUID HEATING DEVICE | |
JPS587599Y2 (en) | density range | |
JP3243741B2 (en) | Electromagnetic induction heating method and apparatus for laminate | |
JPH05301232A (en) | Method for heating rubber article having double layered structure by microwave | |
JP2965948B2 (en) | Electromagnetic induction heating method and apparatus for laminate | |
JPH1055881A (en) | Induction heating roller device | |
JPH05301231A (en) | Method for heating rubber article having double-layered structure by microwave | |
FR2649576A1 (en) | Induction heating hotplate | |
JP3059907B2 (en) | microwave | |
JPH0452213A (en) | Vacuum furnace | |
JPH06344510A (en) | Vulcanization molding of thick-walled unvulcanized rubber composite | |
JPH0812792B2 (en) | High frequency heating equipment | |
JP2007042333A (en) | High frequency heating device | |
JPH11190376A (en) | Manufacture of laminated rubber bearing | |
KR20240041026A (en) | Apparatus for heating laminated core of motor | |
JP3108313B2 (en) | microwave | |
JPH04345788A (en) | High frequency heating device | |
JPH03168527A (en) | Microwave heating cooking oven | |
JP2019126418A (en) | rice cooker | |
JPH02226688A (en) | Uniform heating method for microwave oven |