JPH05297428A - Wavelength conversion method - Google Patents
Wavelength conversion methodInfo
- Publication number
- JPH05297428A JPH05297428A JP3062799A JP6279991A JPH05297428A JP H05297428 A JPH05297428 A JP H05297428A JP 3062799 A JP3062799 A JP 3062799A JP 6279991 A JP6279991 A JP 6279991A JP H05297428 A JPH05297428 A JP H05297428A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- wavelength
- wave
- wavelength conversion
- harmonic wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、コヒ−レント光を利用
する光情報処理分野、光応用計測分野、光通信分野に使
用する波長変換方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion method used in the fields of optical information processing using coherent light, optical applied measurement, and optical communication.
【0002】[0002]
【従来の技術】光情報処理分野、光応用計測分野、光通
信分野ではファイバーロスの少ない波長1.5μm帯で
高精度に波長が安定した標準レーザ光源が必要とされて
いる。この標準レーザ光源を実現するために波長変換を
用いたシステムが用いられている。2. Description of the Related Art In the fields of optical information processing, optical applied measurement, and optical communication, there is a need for a standard laser light source with a highly stable wavelength in the 1.5 μm wavelength band with less fiber loss. To realize this standard laser light source, a system using wavelength conversion is used.
【0003】1.5μm帯用波長変換方法としては図9
に示すような光波長変換素子が用いられてきた。以下
従来の波長変換素子について述べる。LiNbO3から
なる基板1に作製された光導波路2の入射部10に基本
波P1を入射する。高調波を効率よく発生させるには基
本波と高調波の速度を等しくする必要がある。一般的に
誘電体では光の波長が短くなるに従って屈折率が大きく
なり結果として基本波と高調波の速度のズレが生じる。
このため従来では光導波路2の厚さを制御して、光導波
路2から基板1内に高調波P2を斜めに放射させ実効的
に速度を合わせていた。FIG. 9 shows a wavelength conversion method for the 1.5 μm band.
The light wavelength conversion element as shown in FIG. The conventional wavelength conversion element will be described below. The fundamental wave P1 is incident on the incident portion 10 of the optical waveguide 2 formed on the substrate 1 made of LiNbO 3 . In order to generate harmonics efficiently, it is necessary to make the speeds of the fundamental wave and harmonics equal. Generally, in a dielectric material, the refractive index increases as the wavelength of light decreases, resulting in a difference in the speed of the fundamental wave and the harmonic wave.
Therefore, conventionally, the thickness of the optical waveguide 2 is controlled so that the harmonic P2 is obliquely radiated from the optical waveguide 2 into the substrate 1 to effectively match the speed.
【0004】図10は従来の波長変換素子で光導波路を
伝搬する基本波を同一の光導波路を伝搬する高調波に変
換するものである。1はLiNbO3基板、2はチタン
を拡散することにより形成した光導波路である。入射部
10より入射した基本波P1(波長1.05μm)は光
導波路2の非線形光学効果で光導波路2を伝搬する高調
波P2に変換され出射部11より出射する。FIG. 10 shows a conventional wavelength conversion element for converting a fundamental wave propagating through an optical waveguide into a harmonic wave propagating through the same optical waveguide. Reference numeral 1 is a LiNbO 3 substrate, and 2 is an optical waveguide formed by diffusing titanium. The fundamental wave P1 (wavelength 1.05 μm) incident from the incident portion 10 is converted into a harmonic wave P2 propagating in the optical waveguide 2 by the nonlinear optical effect of the optical waveguide 2 and emitted from the emitting portion 11.
【0005】この波長変換素子は基本波P1と高調波P
2の偏光方向を互いに垂直にすることにより基板の複屈
折利用して速度の整合をとっている。本素子においては
高調波P2が光導波路を伝搬するために高効率な変換が
可能でる。また出射部11から点光源として外部へ出射
するため凸レンズにより簡単に平行光に変換できる。This wavelength conversion element has a fundamental wave P1 and a harmonic wave P1.
By making the two polarization directions perpendicular to each other, the birefringence of the substrate is utilized to match the speed. In this element, since the higher harmonic wave P2 propagates through the optical waveguide, highly efficient conversion is possible. Further, since the light is emitted from the emitting unit 11 to the outside as a point light source, it can be easily converted into parallel light by a convex lens.
【0006】[0006]
【発明が解決しようとする課題】しかしながら標準レー
ザ光源にSHGを適用する場合十分な特性を得るために
はP2の出力として1μW以上が必要であるが図9 で
示す従来の波長変換方法はこの波長領域では不十分であ
り、高出力化が課題であった。また高調波は実用上平行
光線に変換する必要がありるが、従来の波長変換素子に
よって変換された高調波は複雑な光学レンズが必要であ
り、単純なレンズによる平行光線化も課題であった。However, when SHG is applied to the standard laser light source, the output of P2 must be 1 μW or more in order to obtain sufficient characteristics. However, the conventional wavelength conversion method shown in FIG. In the area, it was not enough, and high output was a problem. In addition, the harmonics need to be converted into parallel rays for practical purposes, but the harmonics converted by the conventional wavelength conversion element require a complicated optical lens, and making parallel rays with a simple lens was also an issue. ..
【0007】図10で示す波長変換素子を用いた波長変
換素子では上記課題は存在しないが、波長分散のため波
長1.5μmから1.6μmの基本波の波長変換はでき
なかった。Although the above-mentioned problem does not exist in the wavelength conversion element using the wavelength conversion element shown in FIG. 10, wavelength conversion of the fundamental wave having a wavelength of 1.5 μm to 1.6 μm cannot be performed due to wavelength dispersion.
【0008】[0008]
【課題を解決するための手段】波長1.5μm以上1.
6μm以下の基本波を高調波に変換する波長変換素子を
LiNbO3結晶のZ面表面に形成された非線形光学効
果を有するプロトン交換光導波路で作製する。この時プ
ロトン交換光導波路の厚さ及び幅が基本波の伝搬定数と
高調波の伝搬定数が等しくなるように選択する。[Means for Solving the Problems] Wavelength of 1.5 μm or more
A wavelength conversion element for converting a fundamental wave of 6 μm or less into a harmonic is manufactured by a proton exchange optical waveguide having a nonlinear optical effect formed on the Z-plane surface of a LiNbO 3 crystal. At this time, the thickness and width of the proton exchange optical waveguide are selected so that the propagation constant of the fundamental wave and the propagation constant of the harmonic wave become equal.
【0009】[0009]
【作用】基本波の伝搬定数と高調波の伝搬定数が等しい
ため光導波路内で基本波から高調波への変換が効率良く
行われる。また高調波は光導波路内部を伝搬するため平
行光線に変換しやすい形で取り出すことができる。[Function] Since the propagation constant of the fundamental wave is equal to that of the harmonic wave, the fundamental wave can be efficiently converted into the harmonic wave in the optical waveguide. Further, since the harmonic wave propagates inside the optical waveguide, it can be extracted in a form that can be easily converted into parallel rays.
【0010】[0010]
【実施例】図1は第一の発明の実施例1の波長変換装置
の斜視図である。以下この図面をもとに本発明の波長変
換装置について説明する。1 is a perspective view of a wavelength conversion device according to a first embodiment of the first invention. The wavelength conversion device of the present invention will be described below with reference to this drawing.
【0011】1はLiNbO3からなる基板でZ軸に垂
直な平面(Z面)を表面として持つものである。2は基
板1にピロリン酸によるプロトン交換層からなる光導波
路である。プロトン交換層の非線形光学効果は基板に比
べ小さいが内部を伝搬する光は同時に基板にも存在する
ため結果として光導波路は非線形光学効果を持つことと
なる。なお光導波路2の端部には入射部10、出射部1
1が設けられている。A substrate 1 made of LiNbO 3 has a plane (Z plane) perpendicular to the Z axis as its surface. Reference numeral 2 is an optical waveguide comprising a substrate 1 and a proton exchange layer formed of pyrophosphoric acid. Although the nonlinear optical effect of the proton exchange layer is smaller than that of the substrate, the light propagating inside also exists in the substrate at the same time, and as a result, the optical waveguide has the nonlinear optical effect. It should be noted that at the end of the optical waveguide 2, an entrance portion 10 and an exit portion 1 are provided.
1 is provided.
【0012】以下第一の実施例の波長変換方法について
説明する。基本波P1(波長1.56μm)は入射部1
0から光導波路2を伝搬する。光導波路2を伝搬する基
本波P1は光導波路2の非線形光学効果により波長の半
分の高調波P2(波長0.78μm)に変換される。従
来の波長変換装置では光導波路2における基本波P1の
実効屈折率と高調波P2の実効屈折率が異なるため高調
波P2は光導波路2から基板1に斜めに放射していた。
ところが、本発明では基本波P1と高調波P2の実効屈
折率を等しくなるように光導波路の幅および厚さを決定
している。The wavelength conversion method of the first embodiment will be described below. The fundamental wave P1 (wavelength 1.56 μm) is incident on the incident portion 1
Propagate from 0 to the optical waveguide 2. The fundamental wave P1 propagating through the optical waveguide 2 is converted into a harmonic P2 (wavelength 0.78 μm) that is half the wavelength due to the nonlinear optical effect of the optical waveguide 2. In the conventional wavelength conversion device, since the effective refractive index of the fundamental wave P1 and the effective refractive index of the higher harmonic wave P2 in the optical waveguide 2 are different, the higher harmonic wave P2 is emitted obliquely from the optical waveguide 2 to the substrate 1.
However, in the present invention, the width and thickness of the optical waveguide are determined so that the effective refractive indices of the fundamental wave P1 and the harmonic wave P2 are equal.
【0013】図2はLiNbO3およびプロトン交換層
の波長分散を表している。ns wは基板の基本波の屈折率
をnf wはプロトン交換層の基本波の屈折率を表してい
る。n s 2wは基板の高調波の屈折率をnf 2wはプロトン交
換層の高調波の屈折率を表している。一般に光導波路2
を伝搬する光の実効屈折率は光導波路の厚さに対応して
基板1の屈折率と光導波路2の屈折率の間で変化する。
したがって図より目的とする波長1.5μmから1.6
μmの範囲では基本波と高調波の屈折率が等しくなりう
ることがわかる。このため光導波路2の厚さを最適化す
ることによりこれを実現する。FIG. 2 shows LiNbO.3And proton exchange layer
Represents the wavelength dispersion of. ns wIs the refractive index of the fundamental wave of the substrate
Nf wRepresents the refractive index of the fundamental wave of the proton exchange layer
It n s 2wIs the refractive index of the harmonics of the substrate nf 2wIs proton exchange
The refractive index of the higher harmonic wave of the replacement layer is shown. Generally optical waveguide 2
The effective refractive index of light propagating in
It changes between the refractive index of the substrate 1 and the refractive index of the optical waveguide 2.
Therefore, from the figure, the target wavelength of 1.5 μm to 1.6
In the range of μm, the refractive indices of the fundamental wave and the harmonics become equal
Understand that Therefore, the thickness of the optical waveguide 2 is optimized.
This is achieved by doing so.
【0014】図3は基本波P1の波長が1.56μmの
光導波路の厚さと実効屈折率の関係を表す図である。n
1が基本波P1に対する0次モードの実効屈折率を、n
2が高調波P2の二次モードの実効屈折率である。図3
より厚さ1.3μmで基本波P1と高調波P2の実効屈
折率が等しくなる。FIG. 3 is a diagram showing the relationship between the thickness of the optical waveguide having the wavelength of the fundamental wave P1 of 1.56 μm and the effective refractive index. n
1 is the effective refractive index of the 0th mode for the fundamental wave P1,
2 is the effective refractive index of the secondary mode of the harmonic P2. Figure 3
When the thickness is 1.3 μm, the effective refractive indices of the fundamental wave P1 and the higher harmonic wave P2 become equal.
【0015】このようにして基本波P1と高調波P2の
実効屈折率が等しくした場合、高調波P2は導波路2内
に留まりP1と同速度で伝搬し効率の良い波長変換が行
われる。光導波路2内に留まり伝搬する高調波P2は出
射部11から波長変換素子外へ出射する。なおここでP
2の0次および1次モードを使用しなかったのは、これ
らの実効屈折率が基本波P1の0次モードに等しくなる
点が存在しなかったためである。When the effective refractive indices of the fundamental wave P1 and the higher harmonic wave P2 are equalized in this way, the higher harmonic wave P2 stays in the waveguide 2 and propagates at the same speed as P1 for efficient wavelength conversion. The harmonic wave P2 that stays and propagates in the optical waveguide 2 is emitted from the emission unit 11 to the outside of the wavelength conversion element. Here, P
The 0th-order mode and the 1st-order mode of 2 were not used because there was no point where their effective refractive indices were equal to the 0th-order mode of the fundamental wave P1.
【0016】光導波路2の出射部11から出射した高調
波P2は出射部11を中心として発散する光となる。こ
のような一点から発散する光は単純な凸レンズで簡単に
平行光にできる。The harmonic wave P2 emitted from the emitting portion 11 of the optical waveguide 2 becomes light that diverges around the emitting portion 11. The light diverging from such one point can be easily converted into parallel light with a simple convex lens.
【0017】次にこの光波長変換素子の製造方法につい
て図4を使って説明する。まずLiNbO3基板1に光
導波路2を作製するためのマスク20を作製する(図4
(a))。マスク20はTaの薄膜(300A)からな
り光導波路を形成する部分にはストライプ窓(幅1μ
m)が形成されている。作製にはスパッタによるTa膜
作製とフォトプロセス、ドライエッチングプロセスを用
いる。Next, a method of manufacturing this optical wavelength conversion element will be described with reference to FIG. First, a mask 20 for producing the optical waveguide 2 is produced on the LiNbO 3 substrate 1 (FIG. 4).
(A)). The mask 20 is made of a Ta thin film (300 A) and has a stripe window (width 1 μm) in the portion where the optical waveguide is formed.
m) is formed. A Ta film is formed by sputtering, a photo process, and a dry etching process are used for the formation.
【0018】このマスクを作製後これをピロ隣酸中で2
30℃、50分間熱処理する。このとき基板1のストラ
イプ窓部分がプロトン交換され、幅3μm厚さ1.3μ
mの光導波路2が形成される(図4(b))。After this mask was prepared, it was placed in pyrophosphoric acid for 2 minutes.
Heat treatment is performed at 30 ° C. for 50 minutes. At this time, the stripe window portion of the substrate 1 is proton-exchanged, and the width is 3 μm and the thickness is 1.3 μm.
m optical waveguides 2 are formed (FIG. 4B).
【0019】最後にマスク20を除去(図4(c))し
た後基板を端面研磨し入射部10および出射部11を形
成する(図4(d))。Finally, after removing the mask 20 (FIG. 4C), the end face of the substrate is polished to form the entrance portion 10 and the exit portion 11 (FIG. 4D).
【0020】このようにして図1に示される光波長変換
素子が製造できる。この素子の長さは6mmである。図
1で基本波P1として半導体レーザ光(波長1.56μ
m)を入射部3より導波させたところ、波長0.78μ
mの高調波P2が出射部11より取り出された。基本波
10mWの入力で2.4μWの高調波を得た。高調波の
近視野像は図5に示すような2次モードのであり点光源
であることを示している。この高調波は凸レンズにより
簡単に平行光に変換することができた。In this way, the optical wavelength conversion device shown in FIG. 1 can be manufactured. The length of this element is 6 mm. In FIG. 1, a semiconductor laser beam (wavelength: 1.56 μ)
m) was guided from the incident section 3, the wavelength was 0.78 μm.
A harmonic wave P2 of m was taken out from the emitting portion 11. A harmonic of 2.4 μW was obtained with an input of 10 mW of fundamental wave. The near-field image of the higher harmonic wave is of the secondary mode as shown in FIG. 5 and indicates that it is a point light source. This harmonic could be easily converted into parallel light by a convex lens.
【0021】基本波の波長が1.5μmから1.6μm
の範囲の任意の波長変換素子を実現するためには光導波
路の厚さを最適化する必要がある。 図6は基本波P1
の波長に対する最適光導波路厚さを示すものである。波
長1.5μmから波長1.6μmの範囲を変換するため
には光導波路の深さが1.2μmから1.4μmの範囲
でなけれはならない。The wavelength of the fundamental wave is 1.5 μm to 1.6 μm
It is necessary to optimize the thickness of the optical waveguide in order to realize an arbitrary wavelength conversion element in the range. 6 shows the fundamental wave P1
It shows the optimum optical waveguide thickness for the wavelength of. In order to convert the wavelength range of 1.5 μm to 1.6 μm, the depth of the optical waveguide must be in the range of 1.2 μm to 1.4 μm.
【0022】高調波P2の出力は光導波路の幅に依存し
所望の出力を得るためには光導波路の幅が重要となる。
図7は光導波路幅と高調波P2の関係を示すもので、光
導波路の厚さは図6の最適値の1.3μm、基本波P1
の波長が1.56μmの場合のものである。基本波P1
が10mWのとき1μW以上の高調波P2を得るために
は光導波路幅が2μm以上7μm以下の範囲である必要
がある。The output of the harmonic P2 depends on the width of the optical waveguide, and the width of the optical waveguide is important for obtaining a desired output.
FIG. 7 shows the relationship between the width of the optical waveguide and the harmonic wave P2. The thickness of the optical waveguide is 1.3 μm, which is the optimum value of FIG. 6, and the fundamental wave P1.
When the wavelength is 1.56 μm. Fundamental wave P1
Is 10 mW, in order to obtain a harmonic wave P2 of 1 μW or more, the optical waveguide width needs to be in the range of 2 μm or more and 7 μm or less.
【0023】次に、本波長変換方法の第2の実施例につ
いて図8を用いて説明する。21は温度調整用ク−ラ−
内蔵の半導体レ−ザ、22、23、24はレンズ、25
は第一実施例で用いたSHG素子、26はルビジウム原
子もしくはセシウム原子蒸気を封入したセル、27はS
iからなる光検出器、28はLD制御回路、29は同期
検波器、30は参照信号発振器である。半導体レ−ザ2
1の発振波長は摂氏25度において1.56μmであ
る。半導体レ−ザ21の注入電流は微小変調をLD制御
回路13によって印加され、半導体レ−ザ21の発振波
長を僅かに変化させる。その際、半導体レ−ザ21は
0.1度の温度精度で制御されている。Next, a second embodiment of this wavelength conversion method will be described with reference to FIG. 21 is a temperature adjusting cooler
Built-in semiconductor lasers 22, 23, 24 are lenses, 25
Is the SHG element used in the first embodiment, 26 is a cell filled with vapor of rubidium atom or cesium atom, and 27 is S
i is a photodetector, 28 is an LD control circuit, 29 is a synchronous detector, and 30 is a reference signal oscillator. Semiconductor laser 2
The oscillation wavelength of 1 is 1.56 μm at 25 degrees Celsius. A small modulation is applied to the injection current of the semiconductor laser 21 by the LD control circuit 13 to slightly change the oscillation wavelength of the semiconductor laser 21. At that time, the semiconductor laser 21 is controlled with a temperature accuracy of 0.1 degree.
【0024】この半導体レーザ1からの基本光P1をレ
ンズ22、23によりSHG素子25に入射させる。こ
のとき基本光P1はSHG素子25により波長変換され
波長780nmの高調波P2へと変換される。この変換
された高調波はレンズ24により平行光線に変換され、
セル26を透過し光検出器により検出される。The basic light P1 from the semiconductor laser 1 is made incident on the SHG element 25 by the lenses 22 and 23. At this time, the fundamental light P1 is wavelength-converted by the SHG element 25 and converted into a harmonic wave P2 having a wavelength of 780 nm. The converted harmonics are converted into parallel rays by the lens 24,
The light passes through the cell 26 and is detected by the photodetector.
【0025】セル26を透過し光検出器27で受光され
た信号を同期検波器29で検出し微分処理する。その微
分成分がゼロとなるときが透過光強度が最小となる。そ
の前後で符号が変わるのでこれを制御信号として、吸収
線の中心に高調波P2の波長を安定化させることが可能
となる。高調波P2の波長はSHG素子25により基本
波P1の波長を半分の波長に変換したものであるため、
高調波P2が安定化されることは基本波P1が安定化さ
れることと等価である。以上により本発明を用いること
により波長1.56μmの安定化した光源が実現でき
る。The signal transmitted through the cell 26 and received by the photodetector 27 is detected by the synchronous detector 29 and differentiated. The intensity of the transmitted light becomes the minimum when the differential component becomes zero. Since the sign changes before and after that, it becomes possible to stabilize the wavelength of the harmonic P2 at the center of the absorption line by using this as a control signal. Since the wavelength of the harmonic P2 is obtained by converting the wavelength of the fundamental wave P1 into a half wavelength by the SHG element 25,
Stabilization of the harmonic P2 is equivalent to stabilization of the fundamental wave P1. As described above, by using the present invention, a stabilized light source having a wavelength of 1.56 μm can be realized.
【0026】[0026]
【発明の効果】以上のように本発明によると変換効率の
良い、かつ高調波の平行光線化の容易な波長変換方法を
実現でき、波長基準レーザ等の応用に有効である。As described above, according to the present invention, it is possible to realize a wavelength conversion method with high conversion efficiency and easy parallelization of harmonics, which is effective for applications such as wavelength reference lasers.
【図1】第1の実施例の波長変換素子の斜視図である。FIG. 1 is a perspective view of a wavelength conversion element according to a first embodiment.
【図2】LiNbO3およびプロトン交換層の波長分散
を表す図である。FIG. 2 is a diagram showing wavelength dispersion of LiNbO 3 and a proton exchange layer.
【図3】光導波路の厚さと実効屈折率の関係を表す図で
ある。FIG. 3 is a diagram showing the relationship between the thickness of an optical waveguide and the effective refractive index.
【図4】波長変換素子の製造方法を表す図であるFIG. 4 is a diagram illustrating a method of manufacturing a wavelength conversion element.
【図5】高調波の近視野像を表わす図である。FIG. 5 is a diagram showing a near-field image of a harmonic wave.
【図6】基本波P1の波長に対する最適光導波路厚さを
表す図であるFIG. 6 is a diagram showing an optimum optical waveguide thickness with respect to a wavelength of a fundamental wave P1.
【図7】図7は光導波路幅と高調波P2の関係を表す図
である。FIG. 7 is a diagram showing a relationship between an optical waveguide width and a harmonic wave P2.
【図8】本発明の第2の実施例を表わす波長安定化光源
の構成図である。FIG. 8 is a configuration diagram of a wavelength stabilized light source that represents a second embodiment of the present invention.
【図9】従来の波長変換方法を表す図である。FIG. 9 is a diagram showing a conventional wavelength conversion method.
【図10】従来の導波路−導波路型波長変換素子の斜視
図である。FIG. 10 is a perspective view of a conventional waveguide-waveguide type wavelength conversion element.
1 LiNbO3基板 2 光導波路 10 入射部 11 出射部 20 マスク P1 基本波 P2 高調波 21 温度調整用ク−ラ−内蔵の半導体レ−ザ 22 レンズ 23 レンズ 24 レンズ 25 SHG素子 26 セル 27 光検出器 28 LD制御回路 29 同期検波器 30 参照信号発振器1 LiNbO 3 Substrate 2 Optical Waveguide 10 Incident Part 11 Emitting Part 20 Mask P1 Fundamental Wave P2 Harmonic 21 Semiconductor Laser 22 Lens 23 Lens 24 Lens 25 SHG Element 26 Cell 27 Photo Detector 28 LD control circuit 29 Synchronous detector 30 Reference signal oscillator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷内 哲夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tetsuo Taniuchi 1006 Kadoma, Kadoma-shi, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (2)
本波を波長変換素子を用いて第二次高調波に変換する波
長変換方法で、前期波長変換素子がZ軸に垂直な面を持
つLiNbO3結晶と、前記LiNbO3結晶の前期Z軸
に垂直な面に形成されたプロトン交換光導波路を有し、
前記プロトン交換光導波路の厚さ及び幅が前記基本波の
伝搬定数と前記第二次高調波の伝搬定数が等しくなるよ
うに選択されることを特徴とする波長変換方法。1. A wavelength conversion method for converting a fundamental wave having a wavelength of 1.5 μm or more and 1.6 μm or less into a second harmonic by using a wavelength conversion element, wherein the wavelength conversion element has a surface perpendicular to the Z axis. A LiNbO 3 crystal and a proton exchange optical waveguide formed on a plane perpendicular to the Z axis of the LiNbO 3 crystal,
The wavelength conversion method, wherein the thickness and the width of the proton exchange optical waveguide are selected so that the propagation constant of the fundamental wave and the propagation constant of the second harmonic wave are equal to each other.
以下であり、前記プロトン交換光導波路の厚さが1.2
μm以上1.4μm以下、幅が2μm以上7μm以下で
あることを特徴とする請求項1記載の波長変換方法。2. The fundamental wave has a wavelength of 1.5 μm or more and 1.6 μm.
And the thickness of the proton exchange optical waveguide is 1.2 or less.
The wavelength conversion method according to claim 1, wherein the wavelength conversion method is μm or more and 1.4 μm or less and the width is 2 μm or more and 7 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3062799A JPH05297428A (en) | 1991-03-27 | 1991-03-27 | Wavelength conversion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3062799A JPH05297428A (en) | 1991-03-27 | 1991-03-27 | Wavelength conversion method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05297428A true JPH05297428A (en) | 1993-11-12 |
Family
ID=13210758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3062799A Pending JPH05297428A (en) | 1991-03-27 | 1991-03-27 | Wavelength conversion method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05297428A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1305185C (en) * | 1995-06-02 | 2007-03-14 | 松下电器产业株式会社 | Optical element, laser light source, laser device and method for mfg. optical element |
US7769061B2 (en) | 2006-09-29 | 2010-08-03 | Seiko Epson Corporation | Laser light source device, illumination apparatus, monitor, and projector |
-
1991
- 1991-03-27 JP JP3062799A patent/JPH05297428A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1305185C (en) * | 1995-06-02 | 2007-03-14 | 松下电器产业株式会社 | Optical element, laser light source, laser device and method for mfg. optical element |
US7769061B2 (en) | 2006-09-29 | 2010-08-03 | Seiko Epson Corporation | Laser light source device, illumination apparatus, monitor, and projector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5515471A (en) | Frequency doubler and short wave laser source using the same and optical data processing apparatus using the short wave laser source | |
JP2685969B2 (en) | Second harmonic generator | |
US4925263A (en) | Proton-exchanged waveguides for sum-frequency generation | |
US5109462A (en) | Light wavelength converter | |
JP3129028B2 (en) | Short wavelength laser light source | |
JP2525879B2 (en) | Fiber-type optical wavelength conversion element | |
US5007694A (en) | Light wavelength converter | |
US6785457B2 (en) | Optical waveguide device and coherent light source and optical apparatus using the same | |
JP3156444B2 (en) | Short wavelength laser light source and method of manufacturing the same | |
JP2725302B2 (en) | Waveguide type wavelength conversion element | |
JPH05297428A (en) | Wavelength conversion method | |
JP2676743B2 (en) | Waveguide type wavelength conversion element | |
JP2658381B2 (en) | Waveguide type wavelength conversion element | |
JP2963196B2 (en) | Optical waveguide and method of manufacturing optical waveguide | |
JPH0566440A (en) | Laser light source | |
JPH05323405A (en) | Wavelength conversion element and laser beam source | |
JPH0728112A (en) | Second harmonic generating light source of waveguide path type | |
JPH03191332A (en) | Production of optical waveguide and optical wavelength converting element | |
JP2666540B2 (en) | Waveguide type wavelength conversion element | |
JPH07287266A (en) | Optical coupling with optical wave guide type second harmonic generating element | |
JPH05249520A (en) | Optical second higher harmonic generator | |
JP2004020571A (en) | Wavelength transformation device | |
JPH0667234A (en) | Waveguide internal resonance type shg light source | |
JPH07270839A (en) | Optical waveguide type second harmonic wave generating element | |
JPH0331828A (en) | Wavelength converting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080820 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081217 |