JPH05294780A - Production of silicon single crystal - Google Patents

Production of silicon single crystal

Info

Publication number
JPH05294780A
JPH05294780A JP12806292A JP12806292A JPH05294780A JP H05294780 A JPH05294780 A JP H05294780A JP 12806292 A JP12806292 A JP 12806292A JP 12806292 A JP12806292 A JP 12806292A JP H05294780 A JPH05294780 A JP H05294780A
Authority
JP
Japan
Prior art keywords
silicon
single crystal
nitrogen
raw material
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12806292A
Other languages
Japanese (ja)
Other versions
JP2785585B2 (en
Inventor
Toshio Hisaichi
俊雄 久一
Tsumoru Masui
積 桝井
Eiichi Iino
栄一 飯野
Izumi Fusegawa
泉 布施川
Masaki Kimura
雅規 木村
Hirotoshi Yamagishi
浩利 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14975535&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05294780(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP4128062A priority Critical patent/JP2785585B2/en
Publication of JPH05294780A publication Critical patent/JPH05294780A/en
Application granted granted Critical
Publication of JP2785585B2 publication Critical patent/JP2785585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide a production method for a single crystal possible to effectively suppress the generation of etch pit by a drastically simple means. CONSTITUTION:In the production method for the silicon single crystal by CZ method, nitrogen is added into the raw material silicon by pulling up a single crystal after adding a FZ silicon crystal controlled in nitrogen conc. to the raw material silicon or by executing the melting process of a polycrystal in a nitrogen atmosphere or nitrogen is added into the raw material silicon by mixing a wafer, the surface of which silicon nitride film is formed, with the raw material silicon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチョクラルスキー(C
Z)法によりシリコン単結晶を製造する方法に関し、特
に、単結晶に発生するエッチピットの発生を抑制するこ
とのできるシリコン単結晶製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to Czochralski (C
The present invention relates to a method for producing a silicon single crystal by the Z) method, and particularly to a method for producing a silicon single crystal capable of suppressing the generation of etch pits generated in the single crystal.

【0002】[0002]

【従来の技術】シリコンウェーハに発生するエッチピッ
トはデバイスの電気的特性とりわけ酸化膜耐圧を低下さ
せることが知られている。かかるエッチピットの発生を
防止する方法は、すでに幾つか提案されている。
2. Description of the Related Art It is known that etch pits generated in a silicon wafer lower the electrical characteristics of the device, particularly the oxide film breakdown voltage. Several methods for preventing the generation of such etch pits have already been proposed.

【0003】それらの方法の一つとして、エッチピット
の原因となる単結晶成長プロセス中の結晶欠陥の導入を
抑制すべく、単結晶の引上げ速度を従来よりも低速(約
0.4mm/min)で行う方法がある。
As one of these methods, in order to suppress the introduction of crystal defects during the single crystal growth process that causes etch pits, the pulling speed of the single crystal is slower than before (about 0.4 mm / min). There is a way to do it.

【0004】他の方法としては、シリコンウエーハ内部
に格子間酸素等を析出させてゲッタリング源として、欠
陥を取り込む技術がある。
As another method, there is a technique of precipitating interstitial oxygen or the like inside the silicon wafer to take in defects as a gettering source.

【0005】[0005]

【発明が解決しようとする課題】しかし、単結晶の引上
げ速度を従来よりも低速で行う前者の方法は、生産性の
著しい低下を招き実用的でなく、また、シリコンウエー
ハ内部にゲッタリング源として欠陥を取り込む後者の方
法は、1000℃以上の熱処理工程を必要とし、生産工
程が複雑化して好ましくない。
However, the former method, in which the pulling speed of the single crystal is slower than the conventional method, is not practical because it causes a remarkable decrease in productivity, and is not practical as a gettering source inside the silicon wafer. The latter method of taking in defects is not preferable because it requires a heat treatment step at 1000 ° C. or higher, which complicates the production process.

【0006】本発明は上記問題点を解決するものであ
り、極めて簡単な手段でエッチピットの発生を効果的に
抑制することのできるシリコン単結晶製造方法を提供す
ることを目的としている。
The present invention solves the above problems, and an object of the present invention is to provide a method for producing a silicon single crystal capable of effectively suppressing the generation of etch pits by an extremely simple means.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に請求項1に係る本発明のシリコン単結晶製造方法で
は、CZ法によるシリコン単結晶の製造工程において、
窒素濃度を管理したFZシリコン結晶を原料シリコンに
添加して単結晶引き上げを行うことを特徴としている。
In order to achieve the above object, in the method for producing a silicon single crystal of the present invention according to claim 1, in the step of producing a silicon single crystal by the CZ method,
A feature of the present invention is that a FZ silicon crystal whose nitrogen concentration is controlled is added to raw material silicon to pull a single crystal.

【0008】また、請求項2に係る本発明のシリコン単
結晶製造方法では、CZ法によるシリコン単結晶の製造
工程において、多結晶シリコンの溶融工程を窒素雰囲気
中で行うことにより原料シリコンに窒素を添加するよう
にしている。
Further, in the method for producing a silicon single crystal of the present invention according to claim 2, in the step of producing a silicon single crystal by the CZ method, the melting step of polycrystalline silicon is performed in a nitrogen atmosphere so that nitrogen is added to the raw material silicon. I am trying to add it.

【0009】さらに、請求項3に係る本発明のシリコン
単結晶製造方法では、CZ法によるシリコン単結晶の製
造工程において、表面に窒化珪素膜を形成したウエーハ
を原料シリコンに混入することにより原料シリコンに窒
素を添加するようにしている。
Further, in the method for producing a silicon single crystal of the present invention according to the third aspect, in the step of producing a silicon single crystal by the CZ method, by mixing a wafer having a silicon nitride film formed on its surface with the raw material silicon, Nitrogen is added to.

【0010】[0010]

【作用】上記手段からなる本発明のうち請求項1に係る
ものにおいては、原料シリコン中に添加した窒素が点欠
陥の一種である空孔と相互に作用又は結合してクラスタ
ーの生成を抑制する。従って、空孔が関与したクラスタ
ーからなると考えられているエッチピットの発生が抑制
される。
According to the first aspect of the present invention comprising the above means, the nitrogen added to the raw material silicon inhibits the formation of clusters by interacting or binding with vacancies, which are a type of point defect. .. Therefore, the generation of etch pits, which are considered to be composed of clusters in which holes are involved, is suppressed.

【0011】そして、本発明のうち請求項2に係るもの
においては、多結晶シリコンの溶融工程を窒素雰囲気中
で行うことにより溶融シリコン中に窒素を混入する。こ
の溶融シリコン中から単結晶を引上げることにより単結
晶中に窒素原子が容易に導入される。
In the second aspect of the present invention, nitrogen is mixed into the molten silicon by performing the polycrystalline silicon melting step in a nitrogen atmosphere. By pulling the single crystal from the molten silicon, nitrogen atoms are easily introduced into the single crystal.

【0012】また、本発明のうち請求項3に係るものに
おいては、原料シリコンに窒化珪素膜を形成したウエー
ハを混入して溶融シリコン中に窒素を混入する。この溶
融シリコン中から単結晶を引上げることにより単結晶中
に窒素原子が容易に導入される。
Further, according to the third aspect of the present invention, the raw silicon is mixed with the wafer having the silicon nitride film formed thereon to mix nitrogen into the molten silicon. By pulling the single crystal from the molten silicon, nitrogen atoms are easily introduced into the single crystal.

【0013】通常のアルゴンガス中のFZ結晶の工程に
おいて、その初期に窒素(N2)ガスを適当量、アルゴ
ンガス雰囲気中に混入させることによって、FZ結晶全
長に亘って均一に窒素をドープしたものが容易に得られ
る。窒素濃度としては1×1014〜1×1016個/cm
3のものが調整される。前記窒素ガスの混入量は、その
流量および時間で決めるが、得られるFZ単結晶棒中の
窒素濃度は目標値の±10%に管理することができ、か
かる管理されたFZ結晶の適当量をCZ法原料シリコン
に添加することによって、定量的に引上げ単結晶用シリ
コン融液中の窒素濃度を制御できる。しかし、かかるシ
リコン融液中の窒素濃度制御は他の方法でも可能であ
る。
In the usual process of FZ crystal in argon gas, nitrogen (N 2 ) gas was mixed in an appropriate amount in the atmosphere of argon gas at the initial stage to uniformly dope nitrogen throughout the entire length of the FZ crystal. Things are easily obtained. The nitrogen concentration is 1 × 10 14 to 1 × 10 16 pieces / cm
Three things are adjusted. The amount of the nitrogen gas mixed is determined by the flow rate and time, but the nitrogen concentration in the obtained FZ single crystal ingot can be controlled to ± 10% of the target value, and an appropriate amount of the controlled FZ crystal can be controlled. By adding CZ method raw material silicon, it is possible to quantitatively control the nitrogen concentration in the pulled single crystal silicon melt. However, the nitrogen concentration in the silicon melt can be controlled by other methods.

【0014】[0014]

【実施例】以下、本発明のシリコン単結晶製造方法のい
くつかの実施例を説明する。
EXAMPLES Some examples of the method for producing a silicon single crystal according to the present invention will be described below.

【0015】まず、第1の実施例について説明する。こ
の実施例は、窒素をドープして製造したFZ結晶を窒素
添加用原料として用いることにより、CZ結晶に窒素の
導入を行うものである。つまり、窒素をドープして製造
したFZ結晶を小塊に砕き、これを石英るつぼ内であら
かじめ溶融させて形成したシリコン融液中に所定量添加
し、次いで種結晶を浸し、石英るつぼと種結晶を同方向
あるいは逆方向に回転させつつ当該種結晶を引き上げて
CZ結晶に窒素の導入を行うものであるが、本実施例で
は、引上げ速度を1mm/minにし、ボロンドーパン
トを加え、石英るつぼと種結晶とを逆方向に回転させ
た。
First, the first embodiment will be described. In this example, nitrogen is introduced into a CZ crystal by using an FZ crystal produced by doping nitrogen as a raw material for nitrogen addition. That is, a FZ crystal produced by doping with nitrogen is crushed into small pieces, which are added in a predetermined amount to a silicon melt formed by pre-melting in a quartz crucible, and then a seed crystal is dipped to form a quartz crucible and a seed crystal. The seed crystal is pulled up while introducing nitrogen into the CZ crystal while rotating in the same direction or in the opposite direction. In this example, the pulling rate was set to 1 mm / min, a boron dopant was added, and a quartz crucible was added. The seed crystal was rotated in the opposite direction.

【0016】なお、通常1×1014〜1×1016個/c
3程度の窒素濃度となるように製造管理されたFZ結
晶を原料として用いるが、この実施例ではFZ結晶の窒
素濃度が1×1016個/cm3程度になっているものを
用いた。
Normally, 1 × 10 14 to 1 × 10 16 pieces / c
An FZ crystal whose production was controlled to have a nitrogen concentration of about m 3 was used as a raw material. In this example, an FZ crystal having a nitrogen concentration of about 1 × 10 16 / cm 3 was used.

【0017】シリコン単結晶中に導入される窒素原子の
濃度を試算すると次の通りである。本実施例により上述
の原料を45kg準備して6インチ[100]結晶の引
上げを行った。この場合、固体原料のバルク中に含まれ
ていた窒素原子は原料の溶融にともない一部は蒸発する
が、大部分はメルト中に残留し、偏析現象を経てCZ単
結晶中に取り込まれると考えられる。従って、原料中の
窒素濃度(1×101 6)と窒素の偏析係数(7×1
-4)とから1×1016×7×10-4=7×1012個/
cm3程度の窒素原子がCZ単結晶中に含まれる。
A trial calculation of the concentration of nitrogen atoms introduced into the silicon single crystal is as follows. According to the present example, 45 kg of the above-mentioned raw material was prepared and a 6 inch [100] crystal was pulled. In this case, some of the nitrogen atoms contained in the bulk of the solid raw material evaporate as the raw material melts, but most of them remain in the melt and are considered to be taken into the CZ single crystal through the segregation phenomenon. Be done. Accordingly, the nitrogen concentration in the feed (1 × 10 1 6) and nitrogen segregation coefficient (7 × 1
0 -4 ) and 1 x 10 16 x 7 x 10 -4 = 7 x 10 12 pcs /
A nitrogen atom of about cm 3 is contained in the CZ single crystal.

【0018】以上説明した条件に従い実際にCZ法によ
りシリコン単結晶の引上げをおこなったところ、従来1
500個/cm3程度の密度で発生していたエッチピッ
トが約700個/cm3以下にまで減少することが確認
された。
When a silicon single crystal was actually pulled up by the CZ method according to the conditions described above, the conventional method 1
It was confirmed that the number of etch pits generated at a density of about 500 / cm 3 was reduced to about 700 / cm 3 or less.

【0019】次に、第2の実施例について説明する。こ
の実施例は多結晶シリコンの溶融工程を窒素雰囲気中で
行うことにより原料シリコン中に窒素を添加するもので
ある。つまり、原料シリコン(多結晶シリコン)の溶融
工程の初期段階でアルゴンガス中に小量の窒素ガスを混
入してそれを原料シリコンに向けて流すことにより、多
結晶シリコン表面に一旦窒化珪素膜が生成し、しかる後
に窒化珪素膜が融液シリコン中に溶解する。本実施例で
は、2リットル/min の窒素ガスをアルゴンガス中
に混入して溶融初期の10分間流した使用した。
Next, a second embodiment will be described. In this example, the melting step of polycrystalline silicon is performed in a nitrogen atmosphere to add nitrogen to the raw material silicon. In other words, by mixing a small amount of nitrogen gas in argon gas and flowing it toward the raw material silicon in the initial stage of the melting step of the raw material silicon (polycrystalline silicon), a silicon nitride film is once formed on the surface of the polycrystalline silicon. The silicon nitride film is generated, and then the silicon nitride film is dissolved in the melted silicon. In this embodiment, 2 l / min of nitrogen gas was mixed in argon gas and allowed to flow for 10 minutes in the initial stage of melting.

【0020】この場合には、引き上げられたCZ単結晶
中には4×1014個/cm3の密度で窒素原子が含まれる
ことになる。次に、この点について詳しく説明する。
[0020] In this case, it will include a nitrogen atom at a density of 4 × 10 14 atoms / cm 3 during the pulled CZ single crystal. Next, this point will be described in detail.

【0021】FZ結晶にあっては、窒素の添加を行って
いるが、4インチの窒素ドープFZ結晶のコーン形成時
に、N2ガスを400cc/min、40分間(計16
リットル)流すことにより、4×1015個/cm3のN原
子がドープされることが実験的に確かめられている。
Nitrogen was added to the FZ crystal, but N 2 gas was added at 400 cc / min for 40 minutes (a total of 16 times) when forming a 4-inch nitrogen-doped FZ crystal cone.
It has been experimentally confirmed that 4 × 10 15 atoms / cm 3 of N atoms are doped by the flow.

【0022】これを参考に、CZ単結晶中の窒素濃度を
試算する。
With reference to this, the nitrogen concentration in the CZ single crystal is trial calculated.

【0023】CZ法の成長は自然凝固の一形態なので、
成長方向の不純物分布Csは次式で表される。 Cs=kC0(1−l)k-1 ここで、kは偏析係数であって窒素の偏析係数は7×1
-4と小さい。なお、C0は初期不純物濃度であり、l
は固化率である。よって、固化率を90パーセントでC
Z残湯中の窒素濃度はスタート時の肩の部分とテールの
部分とを比較すれば、テールの部分では1桁濃縮される
ことになる。
Since the growth of the CZ method is a form of spontaneous solidification,
The impurity distribution Cs in the growth direction is expressed by the following equation. Cs = kC 0 (1-l) k-1 where k is the segregation coefficient and the nitrogen segregation coefficient is 7 × 1.
It is as small as 0 -4 . Note that C 0 is the initial impurity concentration, and l
Is the solidification rate. Therefore, the solidification rate is 90% and C
The nitrogen concentration in the Z residual hot water is concentrated by one digit in the tail portion when comparing the shoulder portion and the tail portion at the start.

【0024】したがって、CZシリコンメルト量を45
kgとし、先ほどのFZ結晶の4インチメルト体積を1
55cm3とした場合、テールの部分で4×1015個/c
m3のN原子をドープするのに必要なN2ガス流量は、 (16/155)×(45000/2.33)×(1/10)=199.4 となる。なお、ここで、2.33はシリコンの比重であ
る。その結果、2リットル/min の窒素ガスをアル
ゴンガス中に混入して溶融初期の10分間流すとすれ
ば、テールの部分で4×1014個/cm3のN原子のドー
プが行えることになる。
Therefore, the CZ silicon melt amount is set to 45
kg, and the 4 inch melt volume of the FZ crystal is 1
When it is set to 55 cm 3 , the tail part is 4 × 10 15 pieces / c
N 2 gas flow rate required to dope the N atom of m 3 becomes (16/155) × (45000 / 2.33 ) × (1/10) = 199.4. Here, 2.33 is the specific gravity of silicon. As a result, if 2 liter / min of nitrogen gas is mixed in argon gas and flowed for 10 minutes in the initial stage of melting, 4 × 10 14 / cm 3 of N atoms can be doped in the tail portion. ..

【0025】以上説明した条件に従い実際にCZ法によ
りシリコン単結晶の引上げをおこなったところ、セコエ
ッチピットが約300個/cm3以下にまで減少すること
が確認された。
When the silicon single crystal was actually pulled up by the CZ method according to the conditions described above, it was confirmed that the Secco etch pits were reduced to about 300 pits / cm 3 or less.

【0026】次に、第3の実施例について説明する。こ
の実施例は表面に窒化珪素膜を形成したウエーハを原料
シリコンに混入することにより窒素の添加を行うもので
ある。つまり、CVD法により5インチ径のシリコンウ
エーハ片面に窒化珪素膜を成長させ、これをCZ法の原
料の多結晶シリコン原料50kgに対して20枚混入し
た。ここで使用したウエーハ表面には片面当たり厚さ
0.5μmの窒化珪素膜が生成しており、ウエーハ一枚
の重量は約30.4gである。なお、CVD法で成長し
た窒化珪素膜はアモルファス状になっており正確な構造
は不明だが、その大半はSi34であると考えられる。
Next, a third embodiment will be described. In this embodiment, nitrogen is added by mixing a wafer having a silicon nitride film formed on its surface with raw material silicon. That is, a silicon nitride film was grown on one side of a silicon wafer having a diameter of 5 inches by the CVD method, and 20 silicon nitride films were mixed with 50 kg of the polycrystalline silicon material as the raw material for the CZ method. A silicon nitride film having a thickness of 0.5 μm is formed on one surface of the wafer used here, and the weight of one wafer is about 30.4 g. The silicon nitride film grown by the CVD method is amorphous and its exact structure is unknown, but most of it is considered to be Si 3 N 4 .

【0027】続いて、本実施例によりシリコン単結晶中
に導入される窒素原子の濃度を試算すると次の通りであ
る。すなわち、ウエーハ表面の窒化珪素を全てSi34
として計算すると、窒化珪素の体積はウエーハの表面積
(122.7cm2)と窒化珪素膜の厚さ(0.5μ
m)とから2.45×10-1cm3であり、Si34分子
は3.35×1021個含まれ、従ってN原子の数は1.
34×1022個となる。このウエーハを多結晶シリコン
原料50kg当たり20枚混入した場合の融液シリコン中
の窒素濃度は、1.34×1022÷(5×104÷2.
33)=6.24×1017個/cm3となる。ここで窒素
の偏析係数は7×10-4であるから、引上げ後のCZ単
結晶中の窒素濃度は6.24×1017×7×10-4
4.73×1014個/cm3である。
Subsequently, the trial calculation of the concentration of nitrogen atoms introduced into the silicon single crystal according to this embodiment is as follows. That is, the silicon nitride on the surface of the wafer is entirely converted into Si 3 N 4
When calculated as, the volume of silicon nitride is the surface area of the wafer (122.7 cm 2 ) and the thickness of the silicon nitride film (0.5 μm).
m) and 2.45 × 10 −1 cm 3 and 3.35 × 10 21 Si 3 N 4 molecules are contained, so the number of N atoms is 1.
It becomes 34 × 10 22 pieces. When 20 wafers were mixed per 50 kg of polycrystalline silicon raw material, the nitrogen concentration in the melted silicon was 1.34 × 10 22 ÷ (5 × 10 4 ÷ 2.
33) = 6.24 × 10 17 pieces / cm 3 . Here, since the segregation coefficient of nitrogen is 7 × 10 −4 , the nitrogen concentration in the CZ single crystal after being pulled is 6.24 × 10 17 × 7 × 10 −4 =
It is 4.73 × 10 14 pieces / cm 3 .

【0028】以上説明した条件に従い実際にCZ法によ
りシリコン単結晶の引上げをおこなったところ、セコエ
ッチピットが約300個/cm3以下にまで減少すること
が確認された。
When the silicon single crystal was actually pulled up by the CZ method according to the conditions described above, it was confirmed that the Secco etch pits were reduced to about 300 / cm 3 or less.

【0029】[0029]

【発明の効果】以上のように本発明によれば、原料シリ
コンに窒素を添加して単結晶引き上げを行うという、極
めて簡単な方法でシリコン単結晶内部に発生するエッチ
ピットの発生を効果的に抑制することのできる効果があ
る。
As described above, according to the present invention, it is possible to effectively generate the etch pits generated in the silicon single crystal by a very simple method of adding nitrogen to the raw material silicon and pulling the single crystal. There is an effect that can be suppressed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 布施川 泉 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社半導体研究所内 (72)発明者 木村 雅規 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社半導体研究所内 (72)発明者 山岸 浩利 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社半導体研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Izumi Fusegawa Izumi Fusegawa 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Semiconductor Co., Ltd. Semiconductor Research Laboratory (72) Masanori Kimura 2-chome, Isobe, Annaka-shi, Gunma 13-1 Shinetsu Semiconductor Co., Ltd. Semiconductor Research Laboratory (72) Inventor Hirotoshi Yamagishi 2-13-1, Isobe, Naka, Gunma Prefecture Shinetsu Semiconductor Co., Ltd. Semiconductor Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】CZ法によるシリコン単結晶の製造工程に
おいて、窒素濃度を管理したFZシリコン結晶を原料シ
リコンに添加して単結晶引き上げを行うことを特徴とす
るシリコン単結晶の製造方法。
1. A method for producing a silicon single crystal, wherein in the step of producing a silicon single crystal by the CZ method, an FZ silicon crystal whose nitrogen concentration is controlled is added to raw material silicon to pull up the single crystal.
【請求項2】CZ法によるシリコン単結晶の製造工程に
おいて、多結晶シリコンの溶融工程を窒素雰囲気中で行
うことにより原料シリコンに窒素を添加することを特徴
とするシリコン単結晶の製造方法。
2. A method for producing a silicon single crystal, characterized in that, in the step of producing a silicon single crystal by the CZ method, the step of melting polycrystalline silicon is performed in a nitrogen atmosphere to add nitrogen to the raw material silicon.
【請求項3】CZ法によるシリコン単結晶の製造工程に
おいて、表面に窒化珪素膜を形成したウエーハを原料シ
リコンに混入することにより原料シリコンに窒素を添加
することを特徴とするシリコン単結晶の製造方法。
3. A process for producing a silicon single crystal by the CZ method, wherein a wafer having a silicon nitride film formed on its surface is mixed with the raw material silicon to add nitrogen to the raw material silicon. Method.
JP4128062A 1992-04-21 1992-04-21 Method for producing silicon single crystal Expired - Lifetime JP2785585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4128062A JP2785585B2 (en) 1992-04-21 1992-04-21 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4128062A JP2785585B2 (en) 1992-04-21 1992-04-21 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JPH05294780A true JPH05294780A (en) 1993-11-09
JP2785585B2 JP2785585B2 (en) 1998-08-13

Family

ID=14975535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4128062A Expired - Lifetime JP2785585B2 (en) 1992-04-21 1992-04-21 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP2785585B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0942078A1 (en) * 1998-03-09 1999-09-15 Shin-Etsu Handotai Company Limited Method for producing silicon single crystal wafer and silicon single crystal wafer
EP0942077A1 (en) * 1998-03-09 1999-09-15 Shin-Etsu Handotai Company Limited A method for producing a silicon single crystal wafer and a silicon single crystal wafer
EP0965662A1 (en) * 1998-06-18 1999-12-22 Shin-Etsu Handotai Company Limited Method for producing low defect silicon single crystal doped with nitrogen
EP0971053A1 (en) * 1998-06-02 2000-01-12 Shin-Etsu Handotai Company Limited Method for producing silicon single crystal wafer for particle monitoring and silicon single crystal wafer for particle monitoring
US6059875A (en) * 1999-01-11 2000-05-09 Seh America, Inc. Method of effecting nitrogen doping in Czochralski grown silicon crystal
DE19936838A1 (en) * 1999-08-05 2001-02-15 Wacker Siltronic Halbleitermat Production of a single crystal doped with nitrogen comprises using a dopant in powdered form containing nitride-bound silicon
WO2001061081A1 (en) * 2000-02-14 2001-08-23 Memc Electronic Materials, Inc. Process for producing a silicon melt
US6365461B1 (en) 1999-10-07 2002-04-02 Sumitomo Metal Industries, Ltd. Method of manufacturing epitaxial wafer
US6468881B1 (en) 1997-12-26 2002-10-22 Sumitomo Metal Industries, Ltd. Method for producing a single crystal silicon
US6548886B1 (en) 1998-05-01 2003-04-15 Wacker Nsce Corporation Silicon semiconductor wafer and method for producing the same
US6641888B2 (en) 1999-03-26 2003-11-04 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer.
WO2004005591A1 (en) * 2001-10-23 2004-01-15 Memc Electronic Materials, Inc. Process for producing a silicon melt
US6843848B2 (en) 2000-03-24 2005-01-18 Siltronic Ag Semiconductor wafer made from silicon and method for producing the semiconductor wafer
US6878451B2 (en) 1999-07-28 2005-04-12 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer
KR100592965B1 (en) * 1998-06-02 2006-06-23 신에쯔 한도타이 가부시키가이샤 Method for producing soi substrate
KR100622622B1 (en) * 1998-05-22 2006-09-11 신에쯔 한도타이 가부시키가이샤 A method for producing an epitaxial silicon single crystal wafer and the epitaxial silicon single crystal wafer
JP2006315950A (en) * 1996-09-12 2006-11-24 Siltronic Ag Method for manufacturing silicon semiconductor wafer having low defect density
US7909930B2 (en) 2004-05-10 2011-03-22 Shin-Etsu Handotai Co., Ltd. Method for producing a silicon single crystal and a silicon single crystal
KR20190104383A (en) * 2017-02-15 2019-09-09 실트로닉 아게 Method and plant for single crystal pulling by FZ method
KR20220140520A (en) 2020-02-18 2022-10-18 신에쯔 한도타이 가부시키가이샤 Method for manufacturing silicon single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717497A (en) * 1980-06-30 1982-01-29 Shin Etsu Handotai Co Ltd Manufacture of silicon single crystal
JPS60251190A (en) * 1984-05-25 1985-12-11 Shin Etsu Handotai Co Ltd Preparation of silicon single crystal
JPS6117495A (en) * 1984-05-03 1986-01-25 テキサス インスツルメンツ インコ−ポレイテツド Formation of silicon single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717497A (en) * 1980-06-30 1982-01-29 Shin Etsu Handotai Co Ltd Manufacture of silicon single crystal
JPS6117495A (en) * 1984-05-03 1986-01-25 テキサス インスツルメンツ インコ−ポレイテツド Formation of silicon single crystal
JPS60251190A (en) * 1984-05-25 1985-12-11 Shin Etsu Handotai Co Ltd Preparation of silicon single crystal

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042576A (en) * 1996-09-12 2011-03-03 Siltronic Ag Method of manufacturing silicon semiconductor wafer having low defect density
JP2006315950A (en) * 1996-09-12 2006-11-24 Siltronic Ag Method for manufacturing silicon semiconductor wafer having low defect density
US6468881B1 (en) 1997-12-26 2002-10-22 Sumitomo Metal Industries, Ltd. Method for producing a single crystal silicon
US6191009B1 (en) 1998-03-09 2001-02-20 Shin-Etsu Handotai Co., Ltd. Method for producing silicon single crystal wafer and silicon single crystal wafer
EP0942077A1 (en) * 1998-03-09 1999-09-15 Shin-Etsu Handotai Company Limited A method for producing a silicon single crystal wafer and a silicon single crystal wafer
EP0942078A1 (en) * 1998-03-09 1999-09-15 Shin-Etsu Handotai Company Limited Method for producing silicon single crystal wafer and silicon single crystal wafer
US6139625A (en) * 1998-03-09 2000-10-31 Shin-Etsu Handotai Co., Ltd. Method for producing a silicon single crystal wafer and a silicon single crystal wafer
US6548886B1 (en) 1998-05-01 2003-04-15 Wacker Nsce Corporation Silicon semiconductor wafer and method for producing the same
KR100622622B1 (en) * 1998-05-22 2006-09-11 신에쯔 한도타이 가부시키가이샤 A method for producing an epitaxial silicon single crystal wafer and the epitaxial silicon single crystal wafer
US6291874B1 (en) 1998-06-02 2001-09-18 Shin-Etsu Handotai Co., Ltd. Method for producing silicon single crystal wafer for particle monitoring and silicon single crystal wafer for particle monitoring
EP0971053A1 (en) * 1998-06-02 2000-01-12 Shin-Etsu Handotai Company Limited Method for producing silicon single crystal wafer for particle monitoring and silicon single crystal wafer for particle monitoring
KR100592965B1 (en) * 1998-06-02 2006-06-23 신에쯔 한도타이 가부시키가이샤 Method for producing soi substrate
EP0965662A1 (en) * 1998-06-18 1999-12-22 Shin-Etsu Handotai Company Limited Method for producing low defect silicon single crystal doped with nitrogen
US6197109B1 (en) 1998-06-18 2001-03-06 Shin-Etsu Handotai Co., Ltd. Method for producing low defect silicon single crystal doped with nitrogen
US6059875A (en) * 1999-01-11 2000-05-09 Seh America, Inc. Method of effecting nitrogen doping in Czochralski grown silicon crystal
US6641888B2 (en) 1999-03-26 2003-11-04 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer.
US6878451B2 (en) 1999-07-28 2005-04-12 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer
DE19936838A1 (en) * 1999-08-05 2001-02-15 Wacker Siltronic Halbleitermat Production of a single crystal doped with nitrogen comprises using a dopant in powdered form containing nitride-bound silicon
US6365461B1 (en) 1999-10-07 2002-04-02 Sumitomo Metal Industries, Ltd. Method of manufacturing epitaxial wafer
US6749683B2 (en) 2000-02-14 2004-06-15 Memc Electronic Materials, Inc. Process for producing a silicon melt
US6652645B2 (en) 2000-02-14 2003-11-25 Memc Electronic Materials, Inc. Process for preparing a silicon melt
US6344083B1 (en) 2000-02-14 2002-02-05 Memc Electronic Materials, Inc. Process for producing a silicon melt
WO2001061081A1 (en) * 2000-02-14 2001-08-23 Memc Electronic Materials, Inc. Process for producing a silicon melt
US6843848B2 (en) 2000-03-24 2005-01-18 Siltronic Ag Semiconductor wafer made from silicon and method for producing the semiconductor wafer
WO2004005591A1 (en) * 2001-10-23 2004-01-15 Memc Electronic Materials, Inc. Process for producing a silicon melt
US7909930B2 (en) 2004-05-10 2011-03-22 Shin-Etsu Handotai Co., Ltd. Method for producing a silicon single crystal and a silicon single crystal
KR20190104383A (en) * 2017-02-15 2019-09-09 실트로닉 아게 Method and plant for single crystal pulling by FZ method
KR20220140520A (en) 2020-02-18 2022-10-18 신에쯔 한도타이 가부시키가이샤 Method for manufacturing silicon single crystal
DE112020006111T5 (en) 2020-02-18 2022-11-03 Shin-Etsu Handotai Co., Ltd. Process for producing a silicon single crystal

Also Published As

Publication number Publication date
JP2785585B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
JP2785585B2 (en) Method for producing silicon single crystal
TW546422B (en) Method of producing silicon wafer and silicon wafer
CN101054721B (en) Silicon single crystal wafer for IGBT and method for manufacturing silicon single crystal wafer for IGBT
TWI302952B (en) Silicon wafer, method for manufacturing the same, and method for growing silicon single crystal
US4040895A (en) Control of oxygen in silicon crystals
JPWO2007013189A1 (en) Silicon wafer and manufacturing method thereof
JPH11189495A (en) Silicon single crystal and its production
JP2005001992A (en) Method for manufacturing single crystal
SG189506A1 (en) Method of manufacturing silicon single crystal, silicon single crystal, and wafer
JP2705867B2 (en) Silicon rod manufacturing method
JP3552278B2 (en) Method for producing silicon single crystal
CN107532325A (en) Silicon epitaxial wafer and its manufacture method
JP2001068477A (en) Epitaxial silicon wafer
US4722764A (en) Method for the manufacture of dislocation-free monocrystalline silicon rods
JP5635985B2 (en) Method for removing non-metallic impurities from metallic silicon
JPS62502793A (en) Single crystal silicon ingot drawn continuously
KR101540571B1 (en) Additives for manufacturing a single crystalline silicon ingot, and method for manufacturing the ingot using the additives
TW201623703A (en) Method of fabrication of an ingot of n-type single-crystal silicon with a controlled concentration of oxygen-based thermal donors
JP2002198375A (en) Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby
WO2004065666A1 (en) Process for producing p doped silicon single crystal and p doped n type silicon single crystal wafe
JPH1192283A (en) Silicon wafer and its production
JP4273793B2 (en) Single crystal manufacturing method
JP3840683B2 (en) Single crystal pulling method
JPS62501497A (en) Single crystal silicon ingot drawn continuously
WO2004065667A1 (en) Process for producing single crystal