JPH05293908A - Production of fiber reinforced thermoplastic resin pipe - Google Patents

Production of fiber reinforced thermoplastic resin pipe

Info

Publication number
JPH05293908A
JPH05293908A JP4099549A JP9954992A JPH05293908A JP H05293908 A JPH05293908 A JP H05293908A JP 4099549 A JP4099549 A JP 4099549A JP 9954992 A JP9954992 A JP 9954992A JP H05293908 A JPH05293908 A JP H05293908A
Authority
JP
Japan
Prior art keywords
core
thermoplastic resin
prepreg
molecular weight
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4099549A
Other languages
Japanese (ja)
Inventor
Hiroshi Hirakawa
弘 平川
Hajime Sato
元 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP4099549A priority Critical patent/JPH05293908A/en
Publication of JPH05293908A publication Critical patent/JPH05293908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To efficiently produce a fiber reinforced thermoplastic resin pipe from the prepreg of thermoplastic resin whose softening point or melting point is regulated to the range of specified temperature. CONSTITUTION:A method for producing a fiber reinforced thermoplastic resin pipe is constituted as follows. Prepreg is constituted of a matrix formed of thermoplastic resin whose softening point or melting point is regulated to 160-300 deg.C and contains reinforcing fiber. The prepreg is interposed between a heat expansional core formed of polyethylene having ultra-high molecular weight and an external mold arranged in the outside of the core. Then the prepreg and the core are heated to soften or melt thermoplastic resin and also to expand the core. Thereafter the core and prepreg are cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軟化点もしくは融点が
160 ℃〜300 ℃の熱可塑性樹脂からなる繊維補強熱可塑
性樹脂パイプの有利な製造方法に関する。
The present invention has a softening point or a melting point.
The present invention relates to an advantageous method for producing a fiber-reinforced thermoplastic pipe made of a thermoplastic resin at 160 ° C to 300 ° C.

【0002】[0002]

【従来の技術】一般に、熱可塑性樹脂をマトリックスと
する連続繊維強化複合材料 (プリプレグ) は、靱性、耐
熱性、耐環境性がエポキシ樹脂等の熱硬化性樹脂をマト
リックスとする複合材料に比して格段に優れている。こ
のため近年、熱可塑性樹脂をマトリックスとするプリプ
レグで繊維補強熱可塑性樹脂パイプをつくり、このパイ
プを例えば自転車の構造部材、ゴルフシャフトや釣竿な
どのスポーツレジャー分野、航空・宇宙分野の構造部材
等として用いる試みがなされるようになった。
2. Description of the Related Art Generally, a continuous fiber reinforced composite material (prepreg) having a thermoplastic resin as a matrix is superior in toughness, heat resistance and environment resistance to a composite material having a thermosetting resin such as an epoxy resin as a matrix. And is remarkably excellent. For this reason, in recent years, fiber-reinforced thermoplastic resin pipes have been made with prepregs that use a thermoplastic resin as a matrix, and these pipes are used as structural members of bicycle structural members, sports / leisure fields such as golf shafts and fishing rods, and aerospace fields. Attempts have been made to use it.

【0003】従来、この繊維補強熱可塑性樹脂パイプ
は、例えば、いわゆる内圧成形法によってつくられる。
内圧成形法は、シート状のプリプレグを渦巻状に巻回し
て筒状のプリフォームとし、これを円筒状外型内に挿入
し、つぎにこのプリフォームの中空部に熱膨張性の棒状
の中子を挿入した後、プリフォームを構成する熱可塑性
樹脂の可塑化温度以上の温度にプリフォームおよび中子
を加熱してプリフォームの中空部内で中子を熱膨張さ
せ、熱可塑性樹脂を軟化又は溶融させると共に中子の熱
膨張による押圧力でプリフォームを型締めし、ついで円
筒状外型と共にプリフォームおよび中子を冷却し、中子
をプリフォームの中空部から引き抜くと共に円筒状外型
を除去することによりパイプを得ることからなる成形方
法である。
Conventionally, this fiber-reinforced thermoplastic resin pipe is produced, for example, by a so-called internal pressure molding method.
In the internal pressure molding method, a sheet-shaped prepreg is spirally wound to form a cylindrical preform, which is then inserted into a cylindrical outer die, and then the hollow portion of the preform is filled with a heat-expandable rod-shaped medium. After inserting the core, the preform and the core are heated to a temperature equal to or higher than the plasticizing temperature of the thermoplastic resin forming the preform to thermally expand the core in the hollow portion of the preform to soften the thermoplastic resin or The preform is clamped by the pressing force caused by the thermal expansion of the core while melting, and then the preform and the core are cooled together with the cylindrical outer mold, and the core is pulled out from the hollow part of the preform and the cylindrical outer mold is formed. It is a molding method comprising obtaining a pipe by removing it.

【0004】この内圧成形法において、プリプレグのマ
トリックス樹脂が成形温度300 ℃超のポリエーテルエー
テルケトン (PEEK) に代表されるようないわゆる超エン
ジニアリングプラスチックスの場合には、300 ℃超の温
度で大きく熱膨張するポリテトラフルオロエチレン (PT
FE、商品名テフロン) などのフッ素系樹脂のマンドレル
を熱膨張性の中子として用いている。また、プリプレグ
のマトリックス樹脂が成形温度200 ℃未満の熱可塑性樹
脂の場合には、伸縮性のあるゴム製チューブを中子とし
て、加熱に際して内部に熱水等を圧入して用いている。
しかし、プリプレグのマトリックス樹脂が軟化点もしく
は融点が160 ℃〜300 ℃の熱可塑性樹脂の場合には、16
0 ℃〜300 ℃の温度下に大きく熱膨張する適当な中子が
ないために、満足的に内圧成形法を行うことができなか
った。
In this internal pressure molding method, in the case of so-called super engineering plastics in which the matrix resin of the prepreg is typified by polyether ether ketone (PEEK) having a molding temperature of over 300 ° C., a large temperature above 300 ° C. Thermally expanding polytetrafluoroethylene (PT
Fluorine-based resin mandrels such as FE and Teflon (trade name) are used as heat-expandable cores. Further, when the matrix resin of the prepreg is a thermoplastic resin having a molding temperature of less than 200 ° C., a stretchable rubber tube is used as a core, and hot water or the like is press-fitted therein for heating.
However, if the matrix resin of the prepreg is a thermoplastic resin having a softening point or melting point of 160 ° C to 300 ° C,
The internal pressure molding method could not be satisfactorily performed because there is no suitable core that greatly expands thermally at a temperature of 0 ° C to 300 ° C.

【0005】[0005]

【発明が解決しようとする課題】本発明は、軟化点もし
くは融点が160 ℃〜300 ℃の熱可塑性樹脂のプリプレグ
からの効率のよい繊維補強熱可塑性樹脂パイプの製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for efficiently producing a fiber-reinforced thermoplastic resin pipe from a prepreg of a thermoplastic resin having a softening point or melting point of 160 ° C. to 300 ° C. To do.

【0006】[0006]

【課題を解決するための手段】本発明の繊維補強熱可塑
性樹脂パイプの製造方法は、軟化点もしくは融点が160
℃〜300 ℃の熱可塑性樹脂をマトリックスとしかつ補強
繊維を含有するプリプレグを、超高分子量ポリエチレン
からなる熱膨張性の中子と該中子の外側に配された外型
との間に介在させ、ついで該プリプレグおよび該中子を
加熱して前記熱可塑性樹脂を軟化もしくは溶融させると
共に該中子を膨張させた後、該中子および該プリプレグ
を冷却することからなることを特徴とする。
The method for producing a fiber reinforced thermoplastic resin pipe according to the present invention has a softening point or a melting point of 160.
A prepreg containing a thermoplastic resin of ℃ ~ 300 ℃ as a matrix and containing reinforcing fibers is interposed between a heat-expandable core made of ultra-high molecular weight polyethylene and an outer mold arranged outside the core. Next, after heating the prepreg and the core to soften or melt the thermoplastic resin and expand the core, the core and the prepreg are cooled.

【0007】このように本発明では、超高分子量ポリエ
チレンからなる熱膨張性の中子を用いるために、この中
子は150 ℃〜300 ℃付近の温度で熱膨張が大であるの
で、軟化点もしくは融点が160 ℃〜300 ℃の熱可塑性樹
脂のプリプレグから効率よく繊維補強熱可塑性樹脂パイ
プを製造することが可能となる。以下、本発明の構成に
つき詳しく説明する。
As described above, according to the present invention, since the heat-expandable core made of ultra-high molecular weight polyethylene is used, the core has a large thermal expansion at a temperature of around 150 ° C. to 300 ° C. Alternatively, it becomes possible to efficiently produce a fiber-reinforced thermoplastic resin pipe from a prepreg of a thermoplastic resin having a melting point of 160 ° C to 300 ° C. Hereinafter, the configuration of the present invention will be described in detail.

【0008】本発明で使用する軟化点もしくは融点が16
0 ℃〜300 ℃の熱可塑性樹脂をマトリックスとしかつ補
強繊維を含有するプリプレグは、具体的には、複数本の
連続繊維を引き揃えて一方向に帯状に配列した一般にト
ウと呼ばれる繊維束にマトリックスの軟化点もしくは融
点が160 ℃〜300 ℃の熱可塑性樹脂を含浸させたもの
(一方向引き揃えのプリプレグ (UDプリプレグ) ) など
である。室温においてタック性や可塑性がないばかりで
なく、剛性が高い。シート状又は短冊状 (スリットテー
プ) をしている。このプリプレグを構成する繊維束に用
いる補強繊維としては、例えば、炭素繊維、ガラス繊
維、アラミド繊維(芳香族ポリアミド繊維)、炭化珪素
繊維、ボロン繊維、アルミナ繊維等の耐熱性を備えた強
度の大きい連続繊維である。
The softening point or melting point used in the present invention is 16
A prepreg containing a thermoplastic resin of 0 ° C to 300 ° C as a matrix and containing reinforcing fibers is specifically a matrix of fiber bundles generally called tow in which a plurality of continuous fibers are aligned and arranged in a band in one direction. Impregnated with a thermoplastic resin having a softening point or melting point of 160 ° C to 300 ° C
(One-way aligned prepreg (UD prepreg)) etc. Not only does it have no tackiness or plasticity at room temperature, but it also has high rigidity. It has a sheet or strip shape (slit tape). The reinforcing fiber used for the fiber bundle constituting this prepreg is, for example, carbon fiber, glass fiber, aramid fiber (aromatic polyamide fiber), silicon carbide fiber, boron fiber, alumina fiber or the like having heat resistance and high strength. It is a continuous fiber.

【0009】また、軟化点もしくは融点が160 ℃〜300
℃の熱可塑性樹脂、すなわち結晶性樹脂については融
点、非結晶性樹脂については軟化点が160 ℃〜300 ℃で
あるマトリックスの熱可塑性樹脂としては、例えば、ポ
リカーボネート(PC) 、ポリアミド(PA)、ポリプロピレ
ン(PP)、ポリエステル(PE)、これらのポリマーアロイな
どのいわゆるエンジニアリングプラスチックスである。
The softening point or melting point is 160 ° C to 300 ° C.
The thermoplastic resin of the matrix, that is, the melting point for the crystalline resin, the softening point for the amorphous resin is 160 ℃ ~ 300 ℃ for the matrix thermoplastic resin, for example, polycarbonate (PC), polyamide (PA), They are so-called engineering plastics such as polypropylene (PP), polyester (PE), and polymer alloys of these.

【0010】本発明における熱膨張性の中子は中実のマ
ンドレル、中空のマンドレルのいずれの形態のものでも
よい。この中子を構成する超高分子量ポリエチレンは、
融点が150 ℃±20℃の範囲にあって、200 ℃〜300 ℃付
近の温度下に非流動性を示すに足る分子量ならびに分子
量分布をもつものであり、分子量が100 万以上、好まし
くは250 万以上のものである。分子量250 万程度のもの
がマンドレルの形状に押出成形が容易であるので好まし
い。
The heat-expandable core of the present invention may be in the form of a solid mandrel or a hollow mandrel. The ultra high molecular weight polyethylene that constitutes this core is
It has a melting point in the range of 150 ° C ± 20 ° C, and has a molecular weight and molecular weight distribution sufficient to exhibit non-fluidity at temperatures in the vicinity of 200 ° C to 300 ° C. The molecular weight is 1 million or more, preferably 2.5 million. That is all. Those having a molecular weight of about 2.5 million are preferable because they can be easily extruded into a mandrel shape.

【0011】この超高分子量ポリエチレンでは、直径1
4.2 mm の超高分子量ポリエチレンの中実のマンドレル
について温度と半径方向の熱膨張との関係を示した図1
から判るように、150 ℃〜300 ℃付近の温度下に8〜10
%の熱膨張(線膨張率)が生じる。すなわち、図1か
ら、超高分子量ポリエチレンは約150 ℃付近で急激な熱
膨張を示し、300 ℃付近まで熱膨張し、トータルで約10
%伸びることが判る。
In this ultra high molecular weight polyethylene, the diameter is 1
Figure 1 shows the relationship between temperature and radial thermal expansion for a solid mandrel of 4.2 mm ultra high molecular weight polyethylene.
As can be seen from the figure, 8-10 at a temperature around 150 ℃ -300 ℃.
% Thermal expansion (coefficient of linear expansion) occurs. That is, from FIG. 1, ultrahigh molecular weight polyethylene shows a rapid thermal expansion at about 150 ° C. and expands to about 300 ° C. for a total of about 10 ° C.
You can see that it grows by%.

【0012】また、成形時の加熱温度は、マトリックス
の熱可塑性樹脂の軟化点もしくは融点よりも30℃〜50℃
高温に設定するのがよく、軟化点もしくは融点が160 ℃
〜300 ℃の熱可塑性樹脂をマトリックスとする場合に20
0 ℃〜330 ℃に設定するのがよい。本発明では、この超
高分子量ポリエチレンで中子を構成するが、中子が超高
分子量ポリエチレンだけでつくられている場合、すなわ
ち中子が超高分子量ポリエチレンのマンドレルである場
合には、使用中にその端部が酸化されて劣化することが
ある。特に、300 ℃付近の空気雰囲気中では酸化を伴う
熱分解が生じるので、中子の端部の露出部分が使用後に
黒く焼けてしまう。したがって、超高分子量ポリエチレ
ンのマンドレルを中子として使用する場合には、使用後
において、必要に応じて再生処理を行うことになる。こ
の再生処理は、端部に熱分解が生じた場合にはその端部
を切除し、また、端部が酸化劣化した場合には、例え
ば、そのマンドレルを窒素ガス雰囲気下に250 ℃〜300
℃のオーブン中で実質的に負荷を与えずに30〜120 分間
保持し(全体が均一な温度になるまで)、ついで−2℃
〜−10℃/分の冷却速度で徐冷することによればよい。
The heating temperature at the time of molding is 30 ° C. to 50 ° C. higher than the softening point or melting point of the thermoplastic resin of the matrix.
It is best to set it to a high temperature, with a softening point or melting point of 160 ° C.
20 when using a thermoplastic resin at ~ 300 ° C as the matrix
It is recommended to set the temperature between 0 ° C and 330 ° C. In the present invention, the core is composed of this ultra high molecular weight polyethylene, but when the core is made of only ultra high molecular weight polyethylene, that is, when the core is a mandrel of ultra high molecular weight polyethylene, it is in use. In some cases, the end of the metal may be oxidized and deteriorated. In particular, thermal decomposition accompanied by oxidation occurs in an air atmosphere near 300 ° C, so that the exposed portion of the end of the core burns black after use. Therefore, when a mandrel of ultra-high molecular weight polyethylene is used as a core, after the use, a regeneration treatment is carried out if necessary. In this regeneration treatment, when thermal decomposition occurs at the end, the end is cut off, and when the end is oxidized and deteriorated, for example, the mandrel is heated at 250 ° C to 300 ° C under a nitrogen gas atmosphere.
Hold in an oven at 0 ° C for virtually no load for 30-120 minutes (until a uniform temperature is reached), then -2 ° C
It may be carried out by gradually cooling at a cooling rate of -10 ° C / min.

【0013】このような再生処理を行うのを避けるため
に、表面にフッ素系樹脂層を設けた超高分子量ポリエチ
レンのマンドレルを中子として用いてもよい。フッ素系
樹脂層の存在により酸素との接触が断たれるので超高分
子量ポリエチレンの酸化を防止することができる。な
お、表面にフッ素系樹脂層を設けるには、超高分子量ポ
リエチレンのマンドレルにフッ素系樹脂チューブを被せ
ることによればよい。この場合のフッ素系樹脂として
は、例えば、PTFE、ポリ弗化アルコキシエチレン樹脂
(PFA)、弗化エチレンプロピレンエーテル共重合体樹脂
(FEP)などが用いられる。
In order to avoid such a regeneration treatment, a mandrel of ultra-high molecular weight polyethylene having a fluororesin layer on its surface may be used as a core. Due to the presence of the fluorine-based resin layer, the contact with oxygen is cut off, so that the oxidation of the ultra high molecular weight polyethylene can be prevented. The fluororesin layer may be provided on the surface by covering the mandrel of ultrahigh molecular weight polyethylene with a fluororesin tube. Examples of the fluorine-based resin in this case include PTFE and polyfluorinated alkoxyethylene resin.
(PFA), Fluorinated ethylene propylene ether copolymer resin
(FEP) or the like is used.

【0014】繊維補強熱可塑性樹脂パイプの製造は、内
圧成形法によって行われる。すなわち、まず、軟化点も
しくは融点が160 ℃〜300 ℃の熱可塑性樹脂をマトリッ
クスとしかつ補強繊維を含有するプリプレグを図2に示
すような円筒状外型1に横断面が中空形状となるように
装填する。この場合、短冊状のプリプレグで編組した筒
状のプリフォームを円筒状外型1内に挿入すればよい。
また、シート状のプリプレグを渦巻状に巻回して筒状の
プリフォームとし、これを円筒状外型1内に挿入しても
よい。円筒状外型1は、成形時の加工温度に耐え得る耐
熱性に優れたものであって、例えば銅パイプ等の金属パ
イプである。
The fiber-reinforced thermoplastic resin pipe is manufactured by an internal pressure molding method. That is, first, a prepreg containing a thermoplastic resin having a softening point or a melting point of 160 ° C. to 300 ° C. as a matrix and containing reinforcing fibers was formed into a cylindrical outer mold 1 as shown in FIG. Load it. In this case, a cylindrical preform braided with strip-shaped prepregs may be inserted into the cylindrical outer mold 1.
Alternatively, a sheet-shaped prepreg may be spirally wound to form a cylindrical preform, which may be inserted into the cylindrical outer mold 1. The cylindrical outer mold 1 has excellent heat resistance capable of withstanding the processing temperature at the time of molding, and is, for example, a metal pipe such as a copper pipe.

【0015】つぎに、図3に示すようにプリフォーム2
の中空部に超高分子量ポリエチレンからなる熱膨張性の
棒状の中子3を挿入する。このようにして、軟化点もし
くは融点が160 ℃〜300 ℃の熱可塑性樹脂をマトリック
スとしかつ補強繊維を含有するプリプレグを、熱膨張性
の中子3とこの中子3の外側に配された円筒状外型1と
の間に介在させる。
Next, as shown in FIG. 3, the preform 2
A heat-expandable rod-shaped core 3 made of ultra-high molecular weight polyethylene is inserted into the hollow part of FIG. In this way, a prepreg containing a thermoplastic resin having a softening point or melting point of 160 ° C. to 300 ° C. as a matrix and containing reinforcing fibers is provided with a heat-expandable core 3 and a cylinder arranged outside the core 3. It is interposed between the outer mold 1.

【0016】ついで、プリフォーム2および中子3を加
熱してプリフォーム2の中空部内で中子3を熱膨張さ
せ、熱可塑性樹脂を軟化又は溶融させると共に中子3の
熱膨張による押圧力でプリフォーム2を型締めする。こ
の場合の加熱は、例えば、全体を加熱炉内に入れること
により行われる。この後、円筒状外型1と共にプリフォ
ーム2および中子3を冷却し、中子3をプリフォーム2
の中空部から引き抜くと共に円筒状外型1を除去するこ
とにより、図4に示すようなパイプ4を得ることができ
る。
Then, the preform 2 and the core 3 are heated to thermally expand the core 3 in the hollow portion of the preform 2 to soften or melt the thermoplastic resin and to press the core 3 by thermal expansion. Clamp the preform 2. The heating in this case is performed, for example, by putting the whole into a heating furnace. After that, the preform 2 and the core 3 are cooled together with the cylindrical outer mold 1, and the core 3 is preformed with the preform 2.
The pipe 4 as shown in FIG. 4 can be obtained by pulling it out from the hollow part and removing the cylindrical outer mold 1.

【0017】[0017]

【実施例】【Example】

実施例1 ポリカーボネートをマトリックスとし、一方向の炭素繊
維で補強されたUDプリプレグシート(三井東圧化学株式
会社製の試作プリプレグ、仕上がりの厚みは150 μm/プ
ライで、プリプレグ状態での厚みは約250 μm/プライ)
を用い、内圧成形法により〔±30°〕3 の積層構成とな
る直径24 mm φのパイプを成形した。
Example 1 UD prepreg sheet reinforced with unidirectional carbon fibers using polycarbonate as a matrix (prototype prepreg manufactured by Mitsui Toatsu Chemicals, Inc., finished thickness 150 μm / ply, thickness in prepreg state is about 250 μm / ply)
Was used to form a pipe having a diameter of 24 mm and having a laminated structure of [± 30 °] 3 by an internal pressure forming method.

【0018】外型は内径24 mm φの銅パイプであり、中
子としては直径20 mm φの超高分子量ポリエチレン製丸
棒を用いた。成形条件としては、280 ℃のオーブン中に
1時間保持し、しかる後に冷水中にて急冷をした。この
ようにして成形したパイプは、外観的には外面・内面と
もに欠陥が見当たらず、また断面を研磨して顕微鏡下に
観察しても、ボイドや層間剥離は見当たらなくて優れた
性質を示していた。なお、中子の空気と接触していた両
端部は黒く焦げているため、この両端部を切除して中子
の再生を行った。
The outer mold was a copper pipe having an inner diameter of 24 mmφ, and the core was a round bar made of ultra-high molecular weight polyethylene having a diameter of 20 mmφ. As molding conditions, it was kept in an oven at 280 ° C. for 1 hour and then rapidly cooled in cold water. The pipe molded in this way has no externally visible defects on both the outer and inner surfaces, and even when the cross section is polished and observed under a microscope, no voids or delamination are found, indicating excellent properties. It was Since both ends of the core that were in contact with the air were burnt black, both ends were cut off to regenerate the core.

【0019】実施例2 中子として超高分子量ポリエチレン製丸棒の表面にテフ
ロン製の熱収縮チューブを密着させて被覆したものを用
いた他は、実施例1におけると同様に行った。得られた
パイプの品質は実施例1と同様であり、また、使用した
中子の両端部は黒く焦げることなく、再度オーブン中で
280 ℃で加熱してしかる後に徐冷することで、中子の再
使用が可能な状態に戻すことができた。
Example 2 The same procedure as in Example 1 was carried out except that a core of an ultra-high molecular weight polyethylene was used as a core and a heat-shrinkable tube made of Teflon was closely adhered to the core to cover the surface. The quality of the obtained pipe was the same as in Example 1, and the both ends of the used core were not burnt black and were re-exposed in the oven.
By heating at 280 ° C and then slowly cooling, the core could be returned to a reusable state.

【0020】比較例1 中子の材質がPTFEであることを除いて、実施例1におけ
ると同様に行った。280 ℃ではPTFEの熱膨張は超高分子
量ポリエチレンよりも下回るので、型押しが不十分とな
り、得られたパイプでは層間になお空隙が残されてい
た。 比較例2 比較例1におけると同様にしてパイプを成形し、これに
再度21 mm φのPTFE製の中子を挿入し、280 ℃×1時間
の加熱とそれに続く冷却を行った。
Comparative Example 1 The procedure of Example 1 was repeated, except that the core material was PTFE. At 280 ℃, the thermal expansion of PTFE was lower than that of ultra-high molecular weight polyethylene, so the embossing was insufficient, and voids were still left between the layers in the obtained pipe. Comparative Example 2 A pipe was molded in the same manner as in Comparative Example 1, and a 21 mmφ PTFE core was inserted into the pipe again, followed by heating at 280 ° C. for 1 hour and subsequent cooling.

【0021】このようにして成形したパイプは、外観的
には外面・内面ともに欠陥が見当たらず、また断面を研
磨して顕微鏡下に観察しても、ボイドや層間剥離は見当
たらなくて優れた性質を示していた。しかし、結果とし
て得られたパイプの品質は実施例1と同様であるが、成
形に2回の加熱・冷却の工程を要した。
The pipe molded in this manner has no externally visible defects on both the outer surface and the inner surface, and even when the cross section is polished and observed under a microscope, voids and delamination are not found, which is an excellent property. Was shown. However, the quality of the resulting pipe was similar to that of Example 1, but the molding required two heating / cooling steps.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、超
高分子量ポリエチレンからなる熱膨張性の中子を用いる
ために、軟化点もしくは融点が160 ℃〜300 ℃の熱可塑
性樹脂のマトリックス樹脂のプリプレグから効率よく繊
維補強熱可塑性樹脂パイプを製造することが可能とな
る。
As described above, according to the present invention, since a heat-expandable core made of ultra-high molecular weight polyethylene is used, a matrix resin of a thermoplastic resin having a softening point or melting point of 160 ° C to 300 ° C is used. It is possible to efficiently manufacture a fiber-reinforced thermoplastic resin pipe from the prepreg.

【図面の簡単な説明】[Brief description of drawings]

【図1】超高分子量ポリエチレンの温度と熱膨張との関
係図である。
FIG. 1 is a graph showing the relationship between temperature and thermal expansion of ultra high molecular weight polyethylene.

【図2】円筒状外型を示す斜視説明図である。FIG. 2 is a perspective explanatory view showing a cylindrical outer die.

【図3】円筒状外型とプリフォームと中子との位置関係
を示す斜視説明図である。
FIG. 3 is a perspective explanatory view showing a positional relationship among a cylindrical outer die, a preform and a core.

【図4】繊維補強熱可塑性樹脂パイプの一例を示す斜視
説明図である。
FIG. 4 is an explanatory perspective view showing an example of a fiber reinforced thermoplastic resin pipe.

【符号の説明】[Explanation of symbols]

1 円筒状外型、 2 プリフォーム、 3 中子、
4 パイプ。
1 cylindrical outer mold, 2 preform, 3 core,
4 pipes.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 軟化点もしくは融点が160 ℃〜300 ℃の
熱可塑性樹脂をマトリックスとしかつ補強繊維を含有す
るプリプレグを、超高分子量ポリエチレンからなる熱膨
張性の中子と該中子の外側に配された外型との間に介在
させ、ついで該プリプレグおよび該中子を加熱して前記
熱可塑性樹脂を軟化もしくは溶融させると共に該中子を
膨張させた後、該中子および該プリプレグを冷却するこ
とからなる繊維補強熱可塑性樹脂パイプの製造方法。
1. A prepreg containing a thermoplastic resin having a softening point or a melting point of 160 ° C. to 300 ° C. as a matrix and containing reinforcing fibers on a heat-expandable core made of ultra-high molecular weight polyethylene and on the outside of the core. The core and the prepreg are then cooled by cooling the core and the prepreg by interposing them between the outer mold and the outer mold, and then heating the prepreg and the core to soften or melt the thermoplastic resin and expand the core. A method for producing a fiber-reinforced thermoplastic resin pipe comprising:
【請求項2】 熱膨張性の中子が超高分子量ポリエチレ
ンのマンドレルである請求項1の繊維補強熱可塑性樹脂
パイプの製造方法。
2. The method for producing a fiber-reinforced thermoplastic resin pipe according to claim 1, wherein the heat-expandable core is an ultrahigh molecular weight polyethylene mandrel.
【請求項3】 熱膨張性の中子が表面にフッ素系樹脂層
を設けた超高分子量ポリエチレンのマンドレルである請
求項1の繊維補強熱可塑性樹脂パイプの製造方法。
3. The method for producing a fiber-reinforced thermoplastic resin pipe according to claim 1, wherein the heat-expandable core is a mandrel of ultra-high molecular weight polyethylene having a fluororesin layer provided on the surface thereof.
JP4099549A 1992-04-20 1992-04-20 Production of fiber reinforced thermoplastic resin pipe Pending JPH05293908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4099549A JPH05293908A (en) 1992-04-20 1992-04-20 Production of fiber reinforced thermoplastic resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4099549A JPH05293908A (en) 1992-04-20 1992-04-20 Production of fiber reinforced thermoplastic resin pipe

Publications (1)

Publication Number Publication Date
JPH05293908A true JPH05293908A (en) 1993-11-09

Family

ID=14250266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4099549A Pending JPH05293908A (en) 1992-04-20 1992-04-20 Production of fiber reinforced thermoplastic resin pipe

Country Status (1)

Country Link
JP (1) JPH05293908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181658A (en) * 2002-11-29 2004-07-02 Japan Aircraft Mfg Co Ltd Method and apparatus for manufacturing branched part of tube made of fiber-reinforced resin
JP2009269348A (en) * 2008-05-09 2009-11-19 Kurashiki Kako Co Ltd Core for molding
JP2019188707A (en) * 2018-04-25 2019-10-31 三菱ケミカル株式会社 Manufacturing method of fiber-reinforced plastic molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181658A (en) * 2002-11-29 2004-07-02 Japan Aircraft Mfg Co Ltd Method and apparatus for manufacturing branched part of tube made of fiber-reinforced resin
JP2009269348A (en) * 2008-05-09 2009-11-19 Kurashiki Kako Co Ltd Core for molding
JP2019188707A (en) * 2018-04-25 2019-10-31 三菱ケミカル株式会社 Manufacturing method of fiber-reinforced plastic molding

Similar Documents

Publication Publication Date Title
US7422714B1 (en) Method of using a shape memory material as a mandrel for composite part manufacturing
EP0415207B1 (en) Process for producing hollow article of fiber-reinforced thermoplastic resin
JP2003033984A (en) Composite structural member and its production method
US5585062A (en) Process for making a cylindrical product of fiber reinforcement-thermoplastic resin composite
EP0311400B1 (en) Process and equipment for making composite tubes
EP0185460A2 (en) Reformable composites and methods of making same
US20120201980A1 (en) Fiber-reinforced article and method therefor
JPH05293908A (en) Production of fiber reinforced thermoplastic resin pipe
JP3143754B2 (en) Method for producing deformed tube made of fiber-reinforced thermoplastic resin
JPH05116233A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JP4227299B2 (en) Manufacturing method of flanged tubular product made of fiber reinforced plastic
US6063277A (en) Fiber-reinforced, composite body contactors
JP5161903B2 (en) Method for manufacturing metal / FRP pipe, metal / FRP pipe, and method for removing thermal residual stress of metal / FRP pipe
WO1990009272A1 (en) Production of hollow article of fiber reinforced thermoplastic resin
JPH05131555A (en) Molding die for fiber-reinforced thermoplastic resin hollow body
JPH06280857A (en) Fiber reinforced thermoplastic resin pipe and its manufacture
JPH05104646A (en) Production of fiber reinforced thermoplastic resin pipe with varied thickness
JPH09277390A (en) Manufacture of frp molded product and manufacture of frp made pipe
US3532784A (en) Method for fabrication of ablative components
JPH0564849A (en) Manufacture of fiber reinforced thermoplastic resin pipe with rugged surface
JPH0577329A (en) Mold for manufacturing fiber reinforced thermoplastic resin pipe
JPH1016068A (en) Manufacture of tube body constituted of fiber-reinforced thermoplastic resin
JP2772388B2 (en) Method and apparatus for manufacturing fiber reinforced thermoplastic resin pipe
JP2836213B2 (en) Manufacturing method of golf club shaft
JP3044360B2 (en) Cylindrical intermediate for molding fiber-reinforced thermoplastic resin pipe, method for producing fiber-reinforced thermoplastic resin pipe, and apparatus for producing cylindrical intermediate