JP2004181658A - Method and apparatus for manufacturing branched part of tube made of fiber-reinforced resin - Google Patents

Method and apparatus for manufacturing branched part of tube made of fiber-reinforced resin Download PDF

Info

Publication number
JP2004181658A
JP2004181658A JP2002348169A JP2002348169A JP2004181658A JP 2004181658 A JP2004181658 A JP 2004181658A JP 2002348169 A JP2002348169 A JP 2002348169A JP 2002348169 A JP2002348169 A JP 2002348169A JP 2004181658 A JP2004181658 A JP 2004181658A
Authority
JP
Japan
Prior art keywords
mandrel
resin
fiber
pipe branch
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002348169A
Other languages
Japanese (ja)
Inventor
Teruki Fukuoka
照城 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aircraft Manufacturing Co Ltd
Original Assignee
Japan Aircraft Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aircraft Manufacturing Co Ltd filed Critical Japan Aircraft Manufacturing Co Ltd
Priority to JP2002348169A priority Critical patent/JP2004181658A/en
Publication of JP2004181658A publication Critical patent/JP2004181658A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a branched part of a tube made of a fiber-reinforced resin whose outer shape is highly accurately molded. <P>SOLUTION: When the branched part of the tube made of the fiber-reinforced resin is manufactured by molding a mandrel 10 corresponding to a male mold into a hollow elastic body and curing a raw material 13 comprising a reinforcing fiber-containing resin and the like filled between the mandrel 10 and a female mold 14 made of a metal, a pressurized gas is fed into a hollow part 10a of the mandrel 10 to expand and deform the mandrel 10, and the raw material 13 is pushed outward, and the outer shape of the raw material 13 is highly accurately molded by receiving a counterforce of the female mold 14. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化樹脂にて成形される管分岐部の製造法及び製造装置に関するものであり、特に、マンドレルを雄型とし、このマンドレルの外面に所定間隔を有して固定される雌型との間に強化繊維を含む樹脂が装填されて成形される繊維強化樹脂製管分岐部の製造法並びに製造装置に関するものである。
【0002】
【従来の技術】
従来の此種繊維強化樹脂製管分岐部の製造法又は製造装置を図7及び図8に従って説明する。図7はRTM(resin transfer molding) 成形法並びにその装置を示す。
【0003】
同図に於いて、符号1はマンドレルである。該マンドレル1は中実(無垢)の金属にて成形されており、図示例ではT字形の管分岐部を製造するための雄型に相当する。而して、該雄型のマンドレル1に対応して金属にて成型された雌型2が該マンドレル1と所定間隔を有して該マンドレル1の外面に固定されるのであるが、RTM成形法に於いては、前記マンドレル1の表面に強化繊維を巻き付け又は編成等の手段にて装着した後、前記雌型2を固定し、そして、マンドレル1及び雌型2の端部に固定される蓋体3にて該マンドレル1と雌型との間に形成される空間部Mも該蓋体3にて閉塞し、更に、該空間部Mの位置に対峙する蓋体3の一部に樹脂注入口4を設け、更に、該樹脂注入口4と反対側に固定されている蓋体3であって、前記空間部Mに対峙する個所にバキューム連結口5を開設してある。尚、図示例では前記樹脂注入口4とバキューム連結口5とは左右上下の各1個所に設けられている。
【0004】
そこで、前記バキューム連結口5を開放し、前記樹脂注入口4より樹脂溶液を注入し、前記バキューム連結口5から該樹脂が流出したとき該バキューム連結口5を閉塞して、前記空間部Mに配設されている前記強化繊維に万遍なく該樹脂溶液を浸潤させる。このとき、前記樹脂注入口4からの注入ポンプによる圧力により、前記浸潤した樹脂溶液に生じている気泡等を除去して該樹脂溶液を前記強化繊維に気密に浸潤させると共に該樹脂が加熱加圧され、所定時間経過後、樹脂の硬化を待って脱型して繊維強化樹脂製管分岐部を製造する。
【0005】
図8は従来例のオートクレーブ圧又は大気圧によって該繊維強化樹脂製管分岐部を製造する状態を示す。同図に於いて、符号6は中実(無垢)の金属にて成形されたマンドレルを示す。該マンドレル6も図7に示すマンドレル1と同様に金属製であってT字形の管分岐部を製造するための雄型に相当する。而して、該マンドレル6は主管部形成部6a及び枝管部形成部6bの双方の各先端部は前記管分岐部に相当する部分より外側方向へ突出するように形成されている。そこで、該マンドレル6を用いて管分岐部を製造する際には、該マンドレル6の端部を残して該マンドレル6の表面に強化繊維を含有している樹脂を装着する。そして、樹脂の硬化を待って脱型されるのであるが、該樹脂を硬化させる手段としては、図8に示すように、前記樹脂を含浸した強化繊維の上面をシール部7,7を介してフィルム状の柔軟な雌型8にて密閉し、そして、オートクレーブ圧又は大気圧によって該樹脂を加圧硬化させる。このとき、前記雌型8の夫々の一部にバキューム連結口9,9,9を設けて該雌型8内を真空にし、そして、該雌型8内の負圧及び前記オートクレーブ圧又は大気圧の作用により該雌型8が該樹脂表面を押圧し、該樹脂の外形形状を成形して該樹脂を硬化させ、脱型して管分岐部を製造する。
【0006】
その他、マンドレルの外表面に硬化性樹脂含浸強化繊維を巻き付け、そして、該マンドレルの周りに巻き付けた前記硬化性樹脂含浸強化繊維の外面からヒーター等の手段で加熱して硬化させ、脱型してT字形の管分岐部を製造するように構成されたものも知られている(特許文献1及び2参照)。
【0007】
特許文献1: 特開平6−335972号
特許文献2: 特開平10−128858号
【0008】
【発明が解決しようとする課題】
上記従来例のうち、RTM成形法による繊維強化樹脂製管分岐部を製造する方法に用いられる金型は、雄型及び雌型とも金属製であるため、該雌雄の金型内に真空引きと相俟ってポンプ等の手段によって樹脂が圧入されるのであるが、ポンプ圧等にて圧入される樹脂はどうしても均一な分布が期待できない。更に又、前記オートクレーブ圧或いは真空圧によって管分岐部の外形形状を成形するとき、及び前記引用文献1並びに2に開示されている製造法によって該管分岐部を製造する場合に於いても、該管分岐部の外形寸法の高精度を維持することは困難である。
【0009】
そこで、外形形状を高精度に成形して成る繊維強化樹脂製管分岐部を製造するために解決せられるべき技術的課題が生じてくるのであり、本発明は該課題を解決することを目的とする。
【0010】
【課題を解決するための手段】
本発明は上記目的を達成するために提案せられたものであり、繊維強化樹脂製管分岐部であって、該管分岐部はマンドレルを雄型とし、該マンドレルと所定間隔を有して該マンドレルの外面に固定される雌型との間に強化繊維を含む樹脂が装填され、該樹脂の硬化後、脱型して製造されるように形成された繊維強化樹脂製管分岐部の製造法に於いて、前記マンドレルは中空弾性体にて成形されて成り、該マンドレルの中空部に圧力気体を圧入して該マンドレルの中空内側面を押圧させることにより、該マンドレルが膨張変形して前記強化繊維を含む樹脂が加圧され、且つ、該樹脂の外側面が金属製雌型の内側面の反力を受けて該強化繊維を含む樹脂の外形形状が高精度に成形される繊維強化樹脂製管分岐部の製造法、及び、上記マンドレルの中空部に圧力気体を注入するための気体注入口を該マンドレルの端部開放部を閉塞している蓋体に設けた繊維強化樹脂製管分岐部の製造法、並びに、繊維強化樹脂製管分岐部であって、該管分岐部はマンドレルを雄型とし、該マンドレルと所定間隔を有して該マンドレルの外面に固定される雌型との間に強化繊維を含む樹脂が装填され、該樹脂の硬化後、脱型して製造されるように形成された繊維強化樹脂製管分岐部の製造法に於いて、前記マンドレルは中空弾性体にて成形されて成り、該マンドレルを加熱することにより、該マンドレルが膨張変形して前記強化繊維を含む樹脂が加圧され、且つ、該樹脂の外側面が金属製雌型の内側面の反力を受けて該強化繊維を含む樹脂の外形形状が高精度に成形される繊維強化樹脂製管分岐部の製造法、及び、繊維強化樹脂製管分岐部であって、該管分岐部はマンドレルを雄型とし、該マンドレルと所定間隔を有して該マンドレルの外面に固定される雌型との間に強化繊維を含む樹脂が装填され、該樹脂の硬化後、脱型して製造される繊維強化樹脂製管分岐部の製造装置に於いて、前記マンドレルは中実弾性体にて成形されて成り、該マンドレルの中空部に圧力気体を圧入して該マンドレルの中空内側面を押圧させることにより、該マンドレルが膨張変形して前記強化繊維を含む樹脂が加圧され、且つ、該樹脂の外側面が金属製雌型の内側面の反力を受けて該強化繊維を含む樹脂の外形形状が高精度に成形される繊維強化樹脂製管分岐部の製造装置、及び、上記マンドレルの中空部に圧力気体を注入するための気体注入口を該マンドレルの端部開放部を閉塞している蓋体に設けた繊維強化樹脂製管分岐部の製造装置、並びに、繊維強化樹脂製管分岐部であって、該管分岐部はマンドレルを雄型とし、該マンドレルと所定間隔を有して該マンドレルの外面に固定される雌型との間に強化繊維を含む樹脂が装填され、該樹脂の硬化後、脱型して製造される繊維強化樹脂製管分岐部の製造装置に於いて、前記マンドレルは中実弾性体にて成形されて成り、該マンドレルを加熱することにより、該マンドレルが膨張変形して前記強化繊維を含む樹脂が加圧され、且つ、該樹脂の外側面が金属製雌型の内側面の反力を受けて該強化繊維を含む樹脂の外形形状が高精度に成形される繊維強化樹脂製管分岐部の製造装置を提供するものである。
【0011】
【発明の実施の形態】
以下、本発明の一実施の形態を図1乃至図6に従って詳述する。図1乃至図4は請求項1及び2並びに4及び5記載の発明の実施の形態を示す。図1に於いて符号10は中空弾性体から成るマンドレル10である。図示例のマンドレル10は図6に示すT字形の管分岐部11を製造するための雄型に相当するものであるが、之に限定せられるべきではなく、4本以上の管分岐部を有する多連型の管分岐部を製造するための雄型相当のマンドレルであってもよい。
【0012】
而して、該マンドレル10はゴム製を可とする。然るときは、柔軟性が確保され、後述するように該マンドレル10の中空部に圧力空気を注入したとき、該マンドレル10の弾性力にて適正な膨張変形が期待できる。而して、前記圧力空気は窒素等の他の気体を用いることもできる。然るときは、圧力空気の作用と同様の作用が期待できる。
【0013】
図2は該マンドレル10の中空部10aに芯体12を嵌着した状態を示す断面図である。該芯体12は金属または硬化プラスチックにて成形され、そして、図3に示すように前記マンドレル10の表面に強化繊維又はプリプレグ等から成る素材13を巻き付ける際に、該芯体12を該マンドレル10の中空部に嵌合させることによって柔軟な物質より成るマンドレル10の形状を適正に保持させて前記素材13の巻き付け等の装着作業が円滑に実行されるように為されている。尚、前記強化繊維又はプリプレグ等から成る素材13を前記マンドレル10に装着する手段は従来一般に用いられる方法を採択するものとし、特定されるものではない。
【0014】
図4は該マンドレル10の表面に前記素材13を巻装した後、該素材13の表面に金属から成る雌型14を前記マンドレル10と所定間隔を有して固定し、管分岐部11を製造する課程を示す縦断面図である。同図に示すように、該雌型14の各端部には前述のRTM成形法と同様に蓋体15,15,15が蓋装され、そして、マンドレル10の中空部10a及び該マンドレル10と前記雌型14との間に巻装されている前記素材13に対峙する面が閉塞される。又、該蓋体15の何れかであって、且つ、該マンドレル10の中空部10aに向って圧力空気を注入するための空気注入口16を設けると共に、前記素材13と対面する個所の蓋体15に樹脂注入口17を設け、該樹脂注入口17を介し注入ポンプ(図示せず)等により樹脂を圧入する。又、前記雌型14の任意の個所にバキューム連結口18,18が設けられており、前記素材13の部位を負圧にすることにより前記樹脂注入口17からの樹脂注入を助成する。
【0015】
尚、図4及び図5の図示例では、前記樹脂注入口17に対向する面にシール19が設けられているが、該樹脂注入口17を介して樹脂を注入する場合には、該樹脂注入口17は前記シール19を回避する個所に設けられることは当然である。
【0016】
即ち、前記素材13が強化繊維であって、該強化繊維が当初該マンドレル10の表面に巻装されている場合は、前記雌型14を固定した後、前記バキューム連結口18,18を開放して前記樹脂注入口17から樹脂を注入し、そして、注入される樹脂が前記バキューム連結口18,18より流出し始めたとき、該バキューム連結口18,18を閉塞して樹脂の漏洩を防止し、更に、注入された該樹脂が加熱されて硬化することになるのであるが、前記樹脂注入段階に於いても前記バキューム連結口18,18を介する負圧及び空気注入口16からの圧力によって、樹脂内部に生じている気泡を除去し、該樹脂が前記強化繊維中に万遍なく気密に浸潤されるように実行されるのである。
【0017】
又、前記素材13をプリプレグを用いて該マンドレル10の表面に巻装した場合は、該プリプレグは炭素繊維、アラミド繊維、ガラス繊維等の強化繊維に各種樹脂が含浸されて成るシート類であるから、該プリプレグ自体には既に半硬化状態の樹脂が含浸されているので、前記雌型14を固定した後には前記樹脂注入口17を介して樹脂を新めて注入する必要はない。但し、別途樹脂注入を禁止するものではない。
【0018】
斯くの如く、柔軟性あるマンドレル10の表面に強化繊維を含む樹脂が装填されたときには、前記空気注入口16から所定圧の圧力空気を該マンドレル10の中空部10aに圧入する。然るときは、該マンドレル10は柔軟性物質にて形成されているので、該圧力空気により外方へ平均して膨張変形し、該マンドレル10の外面が前記素材13の内側面を押圧する。このように、マンドレル10が膨張変形して前記素材13を外方へ押圧するとき、該素材13は前記固定された金属製の雌型14の内側面の反力を受けて該雌型14の内側面に密着した状態で該素材13の外形形状が高精度に成形される。そして、該素材13の硬化を待って脱型され、繊維強化樹脂製管分岐部11が製造されるのである。
【0019】
尚、上記本発明は雄型相当のマンドレル10を中空弾性体にて形成し、且つ、該マンドレル10の中空部10a内に圧力空気を圧入して該マンドレル10を膨張変形させて前記素材13を加圧し、金属製の雌型14の反力をうけて該素材13の外形形状を高精度に成形するところに特徴を有するものであるから、その余の製造課程等は特に限定せられるものではない。
【0020】
尚、図4中、符号19はシールを示す。該シール19によって素材13の介装空間の気密性を保持する。
図5は請求項3及び6記載の発明の一実施の形態を示す。同図に示す管分岐部の製造法及び製造装置は図4に示す製造法及び装置と本質的に同一である。唯、図5に示すマンドレル20が中実(無垢)弾性体にて成形され、そして、該マンドレル20の膨張変形によって前記素材13が押圧される点が異る。従って、図5に於いては、図4に示す空気注入口16を有していないが、その余の技術事項は図4に示す製造法及び製造装置と全く同一であるから、図5に於いては図4と共通する構成部分は同一符号を付してその説明を省略すると共に、その構成による製造法も省略するものとする。
【0021】
而して、前記マンドレルは前述したように中実弾性体にて成形されて成るものである。好ましくは、該マンドレル20は熱膨張率の高い柔軟物質が選択されるを可とする。即ち、該マンドレル20を熱源(図示せず)に接続したとき、該マンドレル20は容易に熱膨張して変形する材質にて成形されるものとする。例えば、シリコンゴム、 アクリルゴム、フッ素ゴム等を列挙することができる。
【0022】
但し、マンドレル20が熱膨張して変形し、そして、前記強化繊維を含む樹脂が加圧され、且つ、該樹脂の外側面が金属製の雌型14の内側面の反力を受けて該強化繊維を含む樹脂の外形形状が高精度に成形され、そして、該樹脂が硬化して脱型するとき、該マンドレル20と該樹脂とが融合せず、容易に離型できるように該マンドレル20の表面処理等が施されることは当然である。
【0023】
而して、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
【0024】
【発明の効果】
本発明は上記一実施の形態にて詳述したように、繊維強化樹脂製管分岐部を製造するとき、柔軟な物質にて形成された弾性体から成る雄型のマンドレルの表面にプリプレグのような樹脂を含浸した強化繊維等から成る素材を巻装し、そして、その上面に金属製の雌型を固定して前記繊維強化樹脂製管分岐部を製造するとき、該マンドレルの膨張変形により該マンドレルが前記素材を外方へ押圧し、そして、該マンドレルによって押圧された該素材は前記雌型の内側面の反力を受けて該強化繊維を含む樹脂の外形形状が高精度に整形される。そこで、該樹脂の硬化を待って脱型し、高精度の外形形状を有する繊維強化樹脂製管分岐部が製造されることができる等、正に、著大なる効果を奏する発明である。
【図面の簡単な説明】
【図1】本発明のマンドレルを示し、その縦断面図。
【図2】図1のマンドレルに芯体を嵌着した状態を示す縦断面図。
【図3】図2のマンドレル表面に樹脂を含浸した強化繊維を巻き付けた状態を示す縦断面図。
【図4】図3に示す樹脂を含浸した強化繊維をマンドレルに巻き付け、その上面に雌型を固定した状態であって、請求項1及び2並びに4及び5記載の発明の一実施の形態を示す縦断面図。
【図5】請求項3及び6記載の発明の実施の形態を示し、その縦断面図。
【図6】本発明によって製造した繊維強化樹脂製管分岐部の斜面図。
【図7】従来例のRTM成形法によって繊維強化樹脂製管分岐部を製造する状態を示す縦断面図。
【図8】従来例のオートクレーブ圧及び真空圧によって繊維強化樹脂製管分岐部を製造する状態を示す縦断面図。
【符号の説明】
10,20 マンドレル
10a 中空部
11 管分岐部
12 芯体
13 素材
14 雌型
15 蓋体
16 空気注入口
17 樹脂注入口
18 バキューム連結口
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a pipe branch formed of a fiber-reinforced resin, and more particularly, to a female mold in which a mandrel is a male mold and which is fixed at a predetermined interval to an outer surface of the mandrel. The present invention relates to a method and an apparatus for manufacturing a fiber-reinforced resin pipe branch section in which a resin containing a reinforcing fiber is charged and molded between the pipes.
[0002]
[Prior art]
A conventional method or apparatus for producing this type of fiber reinforced resin pipe branch will be described with reference to FIGS. FIG. 7 shows an RTM (resin transfer molding) molding method and an apparatus therefor.
[0003]
In FIG. 1, reference numeral 1 denotes a mandrel. The mandrel 1 is formed of a solid (solid) metal, and in the illustrated example, corresponds to a male mold for manufacturing a T-shaped pipe branch. Thus, a female mold 2 molded of metal corresponding to the male mandrel 1 is fixed to the outer surface of the mandrel 1 at a predetermined distance from the mandrel 1. In this method, after reinforcing fibers are attached to the surface of the mandrel 1 by means of winding or knitting, the female mold 2 is fixed, and a lid fixed to the ends of the mandrel 1 and the female mold 2 A space M formed between the mandrel 1 and the female mold in the body 3 is also closed by the cover 3, and a resin is injected into a part of the cover 3 facing the position of the space M. An inlet 4 is provided, and a vacuum connection port 5 is opened at a position facing the space M on the lid 3 fixed to the opposite side of the resin injection port 4. In the illustrated example, the resin injection port 4 and the vacuum connection port 5 are provided at one position on each of the left, right, upper and lower sides.
[0004]
Then, the vacuum connection port 5 is opened, a resin solution is injected from the resin injection port 4, and when the resin flows out from the vacuum connection port 5, the vacuum connection port 5 is closed, and the vacuum connection port 5 is closed. The resin solution is uniformly infiltrated into the reinforcing fibers provided. At this time, bubbles and the like generated in the infiltrated resin solution are removed by the pressure of the infusion pump from the resin injection port 4 to allow the resin solution to air-tightly infiltrate the reinforcing fibers, and the resin is heated and pressed. After a lapse of a predetermined time, the resin is cured and the mold is released to produce a fiber-reinforced resin pipe branch.
[0005]
FIG. 8 shows a state in which the fiber-reinforced resin pipe branch section is manufactured by the conventional autoclave pressure or atmospheric pressure. In the figure, reference numeral 6 denotes a mandrel formed of a solid (pure) metal. The mandrel 6, like the mandrel 1 shown in FIG. 7, is also made of metal and corresponds to a male mold for manufacturing a T-shaped pipe branch. Thus, the mandrel 6 is formed such that the respective distal ends of both the main pipe portion forming portion 6a and the branch pipe portion forming portion 6b protrude outward from a portion corresponding to the pipe branch portion. Therefore, when manufacturing a pipe branch using the mandrel 6, a resin containing a reinforcing fiber is mounted on the surface of the mandrel 6 except for the end of the mandrel 6. Then, the resin is released after the resin is hardened. As a means for hardening the resin, as shown in FIG. 8, the upper surface of the reinforcing fiber impregnated with the resin is sealed via the seal portions 7 and 7. The resin is sealed with a film-shaped flexible female mold 8, and the resin is pressurized and cured by autoclave pressure or atmospheric pressure. At this time, vacuum connection ports 9, 9, 9 are provided in a part of each of the female dies 8 to evacuate the female dies 8, and the negative pressure in the female dies 8 and the autoclave pressure or atmospheric pressure The female die 8 presses the resin surface by the action of the above, the outer shape of the resin is molded, the resin is hardened, and the resin is released to produce a pipe branch portion.
[0006]
In addition, the curable resin-impregnated reinforcing fiber is wound around the outer surface of the mandrel, and is cured by heating with a means such as a heater from the outer surface of the curable resin-impregnated reinforcing fiber wound around the mandrel, and is released from the mold. There is also known one configured to manufacture a T-shaped pipe branch (see Patent Documents 1 and 2).
[0007]
Patent Document 1: Japanese Patent Application Laid-Open No. 6-335572 Patent Document 2: Japanese Patent Application Laid-Open No. 10-128858
[Problems to be solved by the invention]
Among the above conventional examples, the mold used in the method of manufacturing the fiber reinforced resin pipe branch portion by the RTM molding method is such that both the male mold and the female mold are made of metal. The resin is press-fitted by means of a pump or the like, but a uniform distribution of the resin press-fitted by the pump pressure or the like cannot be expected. Further, when the outer shape of the pipe branch is formed by the autoclave pressure or the vacuum pressure, and when the pipe branch is manufactured by the manufacturing method disclosed in the above cited references 1 and 2, It is difficult to maintain high accuracy in the outer dimensions of the pipe branch.
[0009]
Therefore, a technical problem to be solved arises in order to manufacture a fiber-reinforced resin pipe branch formed by molding the outer shape with high precision, and the present invention has an object to solve the problem. I do.
[0010]
[Means for Solving the Problems]
The present invention has been proposed in order to achieve the above object, and is a fiber reinforced resin pipe branch, wherein the pipe branch has a male mandrel and has a predetermined distance from the mandrel. A method of manufacturing a fiber reinforced resin pipe branch formed such that a resin containing reinforcing fibers is loaded between a female mold fixed to an outer surface of a mandrel and the resin is cured and then molded and removed. In the above, the mandrel is formed of a hollow elastic body, and pressurized gas is injected into a hollow portion of the mandrel to press the hollow inner side surface of the mandrel, whereby the mandrel expands and deforms to strengthen the mandrel. The resin containing fibers is pressurized, and the outer surface of the resin is made of a fiber-reinforced resin in which the outer shape of the resin containing the reinforcing fibers is molded with high precision by receiving the reaction force of the inner surface of the female female mold. Pipe branch manufacturing method, and the above mandrel A method for manufacturing a fiber-reinforced resin pipe branch in which a gas inlet for injecting a pressurized gas into an empty space is provided in a lid closing an open end of the mandrel, and a fiber-reinforced resin pipe branch. Wherein the pipe branch section has a mandrel of a male type, and a resin containing reinforcing fibers is loaded between the mandrel and a female type fixed to the outer surface of the mandrel at a predetermined interval, and the resin After curing, in a method of manufacturing a fiber reinforced resin pipe branch formed to be manufactured by demolding, the mandrel is formed by molding a hollow elastic body, and by heating the mandrel, The resin containing the reinforcing fibers is pressurized when the mandrel expands and deforms, and the outer shape of the resin containing the reinforcing fibers is changed by receiving the reaction force of the outer surface of the resin on the inner surface of the metal female mold. Manufacturing method of fiber reinforced resin pipe branch formed with high precision And a fiber reinforced resin pipe branch, wherein the pipe branch has a male mandrel and a reinforcing fiber between the mandrel and a female mold fixed to the outer surface of the mandrel at a predetermined interval. In a manufacturing apparatus of a fiber reinforced resin pipe branch portion manufactured by loading a resin containing the resin and curing the resin and then removing the mold, the mandrel is formed by molding a solid elastic body. By injecting a pressurized gas into the hollow portion and pressing the hollow inner surface of the mandrel, the mandrel expands and deforms to pressurize the resin containing the reinforcing fibers, and the outer surface of the resin is formed of a metal female. Apparatus for manufacturing a fiber reinforced resin pipe branch section in which the outer shape of the resin containing the reinforcing fiber is molded with high precision under the reaction force of the inner surface of the mold, and injecting pressurized gas into the hollow part of the mandrel A gas inlet for the end of the mandrel An apparatus for manufacturing a fiber reinforced resin pipe branch provided in a lid closing an open part, and a fiber reinforced resin pipe branch, wherein the pipe branch has a male mandrel, and A resin containing reinforcing fibers is loaded between a female mold fixed to the outer surface of the mandrel at a predetermined interval, and after curing of the resin, a fiber-reinforced resin pipe branch portion manufactured by demolding. In the manufacturing apparatus, the mandrel is formed by molding a solid elastic body, and by heating the mandrel, the mandrel expands and deforms to press the resin containing the reinforcing fibers, and the resin The present invention provides an apparatus for manufacturing a fiber reinforced resin pipe branch portion in which the outer surface of a metal female mold receives the reaction force of the inner surface of a female female mold and the outer shape of the resin containing the reinforcing fiber is molded with high precision.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 4 show an embodiment of the invention described in claims 1 and 2 and 4 and 5. In FIG. 1, reference numeral 10 denotes a mandrel 10 made of a hollow elastic body. The mandrel 10 in the illustrated example is equivalent to a male type for manufacturing the T-shaped pipe branch portion 11 shown in FIG. 6, but is not limited thereto, and has four or more pipe branch portions. It may be a mandrel equivalent to a male type for manufacturing a multiple pipe branch.
[0012]
Thus, the mandrel 10 can be made of rubber. In that case, flexibility is ensured, and when the pressurized air is injected into the hollow portion of the mandrel 10 as described later, appropriate expansion and deformation can be expected by the elastic force of the mandrel 10. Thus, another gas such as nitrogen can be used as the compressed air. In that case, the same action as the action of the pressurized air can be expected.
[0013]
FIG. 2 is a cross-sectional view showing a state where the core body 12 is fitted into the hollow portion 10a of the mandrel 10. The core 12 is formed of metal or hardened plastic, and as shown in FIG. 3, when the material 13 made of reinforcing fiber or prepreg is wound around the surface of the mandrel 10, the core 12 is The mandrel 10 made of a flexible material is appropriately held by fitting into the hollow portion of the material 13 so that the mounting operation such as winding of the material 13 is smoothly performed. The means for attaching the material 13 made of the reinforcing fibers or prepreg to the mandrel 10 adopts a method generally used conventionally and is not specified.
[0014]
FIG. 4 shows that after the material 13 is wound on the surface of the mandrel 10, a female mold 14 made of metal is fixed on the surface of the material 13 at a predetermined interval from the mandrel 10 to manufacture the pipe branch portion 11. It is a longitudinal cross-sectional view showing a process to be performed. As shown in the figure, lids 15, 15, 15 are mounted on each end of the female mold 14 in the same manner as in the above-described RTM molding method, and the hollow portion 10a of the mandrel 10 and the mandrel 10 are connected to each other. The surface facing the material 13 wound between the female mold 14 is closed. An air inlet 16 for injecting pressurized air toward one of the lids 15 and into the hollow portion 10a of the mandrel 10 is provided, and a lid facing the material 13 is provided. 15 is provided with a resin injection port 17, and the resin is press-fitted through the resin injection port 17 by an injection pump (not shown) or the like. Vacuum connection ports 18 are provided at arbitrary positions of the female die 14, and the resin injection from the resin injection port 17 is assisted by applying a negative pressure to the material 13.
[0015]
4 and 5, a seal 19 is provided on the surface facing the resin injection port 17, but when the resin is injected through the resin injection port 17, the resin injection is performed. The inlet 17 is, of course, provided at a place avoiding the seal 19.
[0016]
That is, when the material 13 is a reinforcing fiber and the reinforcing fiber is initially wound on the surface of the mandrel 10, after fixing the female mold 14, the vacuum connection ports 18, 18 are opened. The resin is injected from the resin injection port 17 and when the injected resin starts flowing out of the vacuum connection ports 18, the vacuum connection ports 18 are closed to prevent leakage of the resin. Further, the injected resin is heated and hardened. In the resin injection step, the negative pressure through the vacuum connection ports 18 and the pressure from the air injection port 16 also cause the resin to harden. Air bubbles generated inside the resin are removed, and the process is performed so that the resin is uniformly and airtightly infiltrated into the reinforcing fibers.
[0017]
When the material 13 is wound around the surface of the mandrel 10 using a prepreg, the prepreg is a sheet formed by impregnating various resins with reinforcing fibers such as carbon fiber, aramid fiber, and glass fiber. Since the prepreg itself has already been impregnated with the resin in a semi-cured state, it is not necessary to inject a new resin through the resin injection port 17 after fixing the female mold 14. However, it does not prohibit resin injection separately.
[0018]
As described above, when the resin containing the reinforcing fiber is loaded on the surface of the flexible mandrel 10, pressurized air of a predetermined pressure is injected into the hollow portion 10 a of the mandrel 10 from the air inlet 16. In that case, since the mandrel 10 is formed of a flexible material, the mandrel 10 is inflated and deformed on average outward by the pressurized air, and the outer surface of the mandrel 10 presses the inner surface of the material 13. Thus, when the mandrel 10 expands and deforms and presses the material 13 outward, the material 13 receives the reaction force of the inner surface of the fixed metal female mold 14 and The outer shape of the material 13 is molded with high precision in a state of being in close contact with the inner surface. Then, the material 13 is released after being cured, and the fiber reinforced resin pipe branch portion 11 is manufactured.
[0019]
In the present invention, the male-type mandrel 10 is formed of a hollow elastic body, and pressurized air is injected into the hollow portion 10a of the mandrel 10 to expand and deform the mandrel 10 to form the material 13. It is characterized by the fact that the outer shape of the material 13 is formed with high accuracy by receiving the reaction force of the metal female mold 14 when pressurized, so that the remaining manufacturing processes and the like are not particularly limited. Absent.
[0020]
In FIG. 4, reference numeral 19 denotes a seal. The seal 19 maintains the airtightness of the interposed space of the material 13.
FIG. 5 shows an embodiment of the third and sixth aspects of the present invention. The method and apparatus for manufacturing the pipe branch shown in the figure are essentially the same as the method and apparatus shown in FIG. The only difference is that the mandrel 20 shown in FIG. 5 is formed of a solid (pure) elastic body, and the material 13 is pressed by the expansion and deformation of the mandrel 20. Therefore, although FIG. 5 does not have the air inlet 16 shown in FIG. 4, the other technical items are exactly the same as those of the manufacturing method and the manufacturing apparatus shown in FIG. In addition, the same components as those in FIG. 4 are denoted by the same reference numerals, description thereof will be omitted, and a manufacturing method based on the configuration will also be omitted.
[0021]
The mandrel is formed of a solid elastic body as described above. Preferably, the mandrel 20 is selected from a soft material having a high coefficient of thermal expansion. That is, when the mandrel 20 is connected to a heat source (not shown), the mandrel 20 is formed of a material that easily expands and deforms. For example, silicon rubber, acrylic rubber, fluorine rubber and the like can be listed.
[0022]
However, the mandrel 20 is thermally expanded and deformed, and the resin containing the reinforcing fibers is pressed, and the outer surface of the resin receives the reaction force of the inner surface of the metal female mold 14 to be reinforced. The outer shape of the resin containing fibers is molded with high precision, and when the resin is cured and released from the mold, the mandrel 20 and the resin are not fused so that the mandrel 20 can be easily released from the mold. Naturally, a surface treatment or the like is performed.
[0023]
Therefore, the present invention can be variously modified without departing from the spirit of the present invention, and it is natural that the present invention extends to the modified ones.
[0024]
【The invention's effect】
As described in detail in the above-described embodiment, when manufacturing a fiber-reinforced resin pipe branch portion, the surface of a male mandrel made of an elastic body formed of a flexible material is formed on the surface of a prepreg like a prepreg. When a material made of a reinforcing fiber impregnated with a natural resin is wound, and a metal female mold is fixed on the upper surface to manufacture the fiber-reinforced resin pipe branch portion, the mandrel expands and deforms to form the fiber. The mandrel presses the material outward, and the material pressed by the mandrel receives the reaction force of the inner surface of the female mold, and the outer shape of the resin containing the reinforcing fibers is shaped with high precision. . Therefore, the present invention is an invention having a remarkably great effect, for example, it is possible to produce a fiber-reinforced resin pipe branch having a highly accurate outer shape by removing the mold after the resin is cured.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a mandrel of the present invention.
FIG. 2 is a longitudinal sectional view showing a state where a core body is fitted to the mandrel of FIG. 1;
FIG. 3 is a longitudinal sectional view showing a state in which a reinforcing fiber impregnated with a resin is wound around the surface of the mandrel of FIG. 2;
FIG. 4 shows a state in which a reinforcing fiber impregnated with the resin shown in FIG. 3 is wound around a mandrel, and a female mold is fixed on the upper surface of the mandrel. FIG.
FIG. 5 is a longitudinal sectional view showing an embodiment of the invention described in claims 3 and 6;
FIG. 6 is a perspective view of a fiber-reinforced resin pipe branch produced according to the present invention.
FIG. 7 is a longitudinal sectional view showing a state in which a fiber-reinforced resin pipe branch is manufactured by a conventional RTM molding method.
FIG. 8 is a longitudinal sectional view showing a state in which a fiber-reinforced resin pipe branch portion is manufactured by an autoclave pressure and a vacuum pressure in a conventional example.
[Explanation of symbols]
10, 20 Mandrel 10a Hollow part 11 Pipe branch part 12 Core body 13 Material 14 Female mold 15 Lid 16 Air injection port 17 Resin injection port 18 Vacuum connection port

Claims (6)

繊維強化樹脂製管分岐部であって、該管分岐部はマンドレルを雄型とし、該マンドレルと所定間隔を有して該マンドレルの外面に固定される雌型との間に強化繊維を含む樹脂が装填され、該樹脂の硬化後、脱型して製造されるように形成された繊維強化樹脂製管分岐部の製造法に於いて、
前記マンドレルは中空弾性体にて成形されて成り、該マンドレルの中空部に圧力気体を圧入して該マンドレルの中空内側面を押圧させることにより、該マンドレルが膨張変形して前記強化繊維を含む樹脂が加圧され、且つ、該樹脂の外側面が金属製雌型の内側面の反力を受けて該強化繊維を含む樹脂の外形形状が高精度に成形されることを特徴とする繊維強化樹脂製管分岐部の製造法。
A fiber-reinforced resin pipe branch, wherein the pipe branch has a male mandrel and a resin containing reinforcing fibers between the mandrel and a female mold fixed to the outer surface of the mandrel at a predetermined interval. Is loaded, after curing of the resin, in a method of manufacturing a fiber reinforced resin pipe branch formed to be manufactured by demolding,
The mandrel is formed of a hollow elastic body, and pressurized gas is injected into the hollow portion of the mandrel to press the hollow inner side surface of the mandrel, whereby the mandrel expands and deforms and a resin containing the reinforcing fiber is formed. Is pressurized, and the outer surface of the resin receives the reaction force of the inner surface of the metal female mold to form the outer shape of the resin containing the reinforcing fiber with high precision. Manufacturing method of pipe branch.
上記マンドレルの中空部に圧力気体を注入するための気体注入口を該マンドレルの端部開放部を閉塞している蓋体に設けたことを特徴とする請求項1記載の繊維強化樹脂製管分岐部の製造法。2. A fiber-reinforced resin pipe branch according to claim 1, wherein a gas inlet for injecting pressurized gas into the hollow portion of the mandrel is provided in a lid closing an open end of the mandrel. Manufacturing method of the department. 繊維強化樹脂製管分岐部であって、該管分岐部はマンドレルを雄型とし、該マンドレルと所定間隔を有して該マンドレルの外面に固定される雌型との間に強化繊維を含む樹脂が装填され、該樹脂の硬化後、脱型して製造されるように形成された繊維強化樹脂製管分岐部の製造法に於いて、
前記マンドレルは中実弾性体にて成形されて成り、該マンドレルを加熱することにより、該マンドレルが膨張変形して前記強化繊維を含む樹脂が加圧され、且つ、該樹脂の外側面が金属製雌型の内側面の反力を受けて該強化繊維を含む樹脂の外形形状が高精度に成形されることを特徴とする繊維強化樹脂製管分岐部の製造法。
A fiber-reinforced resin pipe branch, wherein the pipe branch has a male mandrel and a resin containing reinforcing fibers between the mandrel and a female mold fixed to the outer surface of the mandrel at a predetermined interval. Is loaded, after curing of the resin, in a method of manufacturing a fiber reinforced resin pipe branch formed to be manufactured by demolding,
The mandrel is formed by molding a solid elastic body, and by heating the mandrel, the mandrel expands and deforms to press the resin containing the reinforcing fibers, and the outer surface of the resin is made of metal. A method for producing a fiber-reinforced resin pipe branch, characterized in that an outer shape of a resin containing said reinforcing fibers is formed with high precision by receiving a reaction force of an inner surface of a female mold.
繊維強化樹脂製管分岐部であって、該管分岐部はマンドレルを雄型とし、該マンドレルと所定間隔を有して該マンドレルの外面に固定される雌型との間に強化繊維を含む樹脂が装填され、該樹脂の硬化後、脱型して製造される繊維強化樹脂製管分岐部の製造装置に於いて、
前記マンドレルは中空弾性体にて成形されて成り、該マンドレルの中空部に圧力気体を圧入して該マンドレルの中空内側面を押圧させることにより、該マンドレルが膨張変形して前記強化繊維を含む樹脂が加圧され、且つ、該樹脂の外側面が金属製雌型の内側面の反力を受けて該強化繊維を含む樹脂の外形形状が高精度に成形されることを特徴とする繊維強化樹脂製管分岐部の製造装置。
A fiber-reinforced resin pipe branch, wherein the pipe branch has a male mandrel and a resin containing reinforcing fibers between the mandrel and a female mold fixed to the outer surface of the mandrel at a predetermined interval. Is loaded, after curing of the resin, in a fiber reinforced resin pipe branch manufacturing apparatus manufactured by demolding,
The mandrel is formed of a hollow elastic body, and pressurized gas is injected into the hollow portion of the mandrel to press the hollow inner side surface of the mandrel, whereby the mandrel expands and deforms and a resin containing the reinforcing fiber is formed. Is pressurized, and the outer surface of the resin receives the reaction force of the inner surface of the metal female mold to form the outer shape of the resin containing the reinforcing fiber with high precision. Equipment for manufacturing pipe branching sections.
上記マンドレルの中空部に圧力気体を注入するための気体注入口を該マンドレルの端部開放部を閉塞している蓋体に設けたことを特徴とする請求項3記載の繊維強化樹脂製管分岐部の製造装置。4. A fiber reinforced resin pipe branch according to claim 3, wherein a gas inlet for injecting a pressurized gas into the hollow portion of the mandrel is provided in a lid closing an open end of the mandrel. Department manufacturing equipment. 繊維強化樹脂製管分岐部であって、該管分岐部はマンドレルを雄型とし、該マンドレルと所定間隔を有して該マンドレルの外面に固定される雌型との間に強化繊維を含む樹脂が装填され、該樹脂の硬化後、脱型して製造される繊維強化樹脂製管分岐部の製造装置に於いて、
前記マンドレルは中実弾性体にて成形されて成り、該マンドレルを加熱することにより、該マンドレルが膨張変形して前記強化繊維を含む樹脂が加圧され、且つ、該樹脂の外側面が金属製雌型の内側面の反力を受けて該強化繊維を含む樹脂の外形形状が高精度に成形されることを特徴とする繊維強化樹脂製管分岐部の製造装置。
A fiber-reinforced resin pipe branch, wherein the pipe branch has a male mandrel and a resin containing reinforcing fibers between the mandrel and a female mold fixed to the outer surface of the mandrel at a predetermined interval. Is loaded, after curing of the resin, in a fiber reinforced resin pipe branch manufacturing apparatus manufactured by demolding,
The mandrel is formed by molding a solid elastic body, and by heating the mandrel, the mandrel expands and deforms to press the resin containing the reinforcing fibers, and the outer surface of the resin is made of metal. An apparatus for manufacturing a fiber reinforced resin pipe branch portion, wherein a resin-containing resin-containing outer shape is molded with high precision by receiving a reaction force of an inner surface of a female mold.
JP2002348169A 2002-11-29 2002-11-29 Method and apparatus for manufacturing branched part of tube made of fiber-reinforced resin Pending JP2004181658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348169A JP2004181658A (en) 2002-11-29 2002-11-29 Method and apparatus for manufacturing branched part of tube made of fiber-reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348169A JP2004181658A (en) 2002-11-29 2002-11-29 Method and apparatus for manufacturing branched part of tube made of fiber-reinforced resin

Publications (1)

Publication Number Publication Date
JP2004181658A true JP2004181658A (en) 2004-07-02

Family

ID=32751150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348169A Pending JP2004181658A (en) 2002-11-29 2002-11-29 Method and apparatus for manufacturing branched part of tube made of fiber-reinforced resin

Country Status (1)

Country Link
JP (1) JP2004181658A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138338A (en) * 2019-02-27 2020-09-03 株式会社ショーワ Mandrel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584841A (en) * 1990-12-07 1993-04-06 Yokohama Rubber Co Ltd:The Preparation of profile pipe of fiber-reinforced thermoplastic resin
JPH05293908A (en) * 1992-04-20 1993-11-09 Yokohama Rubber Co Ltd:The Production of fiber reinforced thermoplastic resin pipe
JPH0780947A (en) * 1993-06-23 1995-03-28 Murata Mach Ltd Molding composite consisting of braid and resin
JPH09267408A (en) * 1996-04-02 1997-10-14 Toray Ind Inc Production of frp tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584841A (en) * 1990-12-07 1993-04-06 Yokohama Rubber Co Ltd:The Preparation of profile pipe of fiber-reinforced thermoplastic resin
JPH05293908A (en) * 1992-04-20 1993-11-09 Yokohama Rubber Co Ltd:The Production of fiber reinforced thermoplastic resin pipe
JPH0780947A (en) * 1993-06-23 1995-03-28 Murata Mach Ltd Molding composite consisting of braid and resin
JPH09267408A (en) * 1996-04-02 1997-10-14 Toray Ind Inc Production of frp tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138338A (en) * 2019-02-27 2020-09-03 株式会社ショーワ Mandrel

Similar Documents

Publication Publication Date Title
JP3192719B2 (en) Resin transfer molding method and apparatus
JP6140679B2 (en) Resin injection molding process using vacuum with reusable resin distribution line
JP6557972B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced plastic
US6264868B1 (en) Method for making hollow parts of composite material
JPH04294110A (en) Adaptable composite material molding die
JPH10146898A (en) Molding of fiber reinforced composite material
JP2005534533A5 (en)
CA2170106A1 (en) Resin transfer molding process
US7939004B2 (en) Pressing bag and its production method, and method for producing composite body using such pressing bag
EP1000725B1 (en) Apparatus and method for producing a compression molded product
US7758793B2 (en) Method and apparatus for manufacturing of an article including an empty space
JP5519149B2 (en) Apparatus for injecting resin into at least one fiber layer of a fiber reinforced product to be manufactured
US6517769B2 (en) Method and apparatus for producing a structural unit made of fiber reinforced material
WO2014115668A1 (en) Method for molding hollow molding and method for manufacturing fiber reinforced plastic
JP2004181658A (en) Method and apparatus for manufacturing branched part of tube made of fiber-reinforced resin
ATE265312T1 (en) METHOD FOR PRODUCING A PROFILED, BOWL-LIKE OBJECT AND A MOLD USABLE FOR THIS
KR102312120B1 (en) Forming apparatus and method for fiber reinforced composite material having complicate cross-sectional shape
JP2003094448A (en) Manufacturing method for frp hollow structure
JP7318112B2 (en) Fiber-reinforced composite material molding method and fiber-reinforced composite material molding apparatus
JP2954266B2 (en) Manufacturing method of hollow body made of fiber reinforced thermosetting resin
JPH08770A (en) Method for molding racket
US20040247722A1 (en) Mould tool and method for resin transfer moulding
JPH10315342A (en) Flexible hollow mandrel, method for molding fiber-reinforced resin bent tube, and fiber-reinforced resin bent tube
JP2582335B2 (en) Method and apparatus for molding fiber-reinforced plastic moldings
JP7279102B2 (en) Fiber-reinforced composite material molding method and fiber-reinforced composite material molding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902