JPH05293903A - Highly foamed sheet of non-crosslinked polypropylenebased resin and production thereof - Google Patents

Highly foamed sheet of non-crosslinked polypropylenebased resin and production thereof

Info

Publication number
JPH05293903A
JPH05293903A JP4125392A JP12539292A JPH05293903A JP H05293903 A JPH05293903 A JP H05293903A JP 4125392 A JP4125392 A JP 4125392A JP 12539292 A JP12539292 A JP 12539292A JP H05293903 A JPH05293903 A JP H05293903A
Authority
JP
Japan
Prior art keywords
sheet
temperature
foamed sheet
foaming
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4125392A
Other languages
Japanese (ja)
Inventor
Noboru Takeda
登 武田
Manabu Tanuma
学 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4125392A priority Critical patent/JPH05293903A/en
Publication of JPH05293903A publication Critical patent/JPH05293903A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To enhance secondary workability such as vacuum thermoforming by using a foamed sheet which shows a specified endothermic peak in the prescribed DSC curve and has specified plane smoothness for the highly foamed sheet of non- crosslinked polypropylene-based resin wherein the rate of a closed cell and bulk density show the specified value respectively. CONSTITUTION:A foamed sheet is raised in temperature to 200 deg.C from room temperature at 10 deg.C/minute temperature rise velocity by a differential scanning calorimeter. A cure obtained in this case is defined as the DSC curve of a first time. The foamed sheet is lowered in temperature to 40 deg.C from 200 deg.C at 5 deg.C/minute temperature drop velocity and again similarly raised in temperature to 200 deg.C. A curve obtained in this case is defined as the DSC curve of a second timed When the curves are defined in such a way, the following foamed sheet is used for the highly foamed sheet of non-crosslinked polypropylene-based resin which has >=90% rate of closed cell, 0.20-0.15g/cm<3> bulk density and 1-10mm thickness. In the foamed sheet, at least two or more endothermic peaks show 140-165 deg.C and the difference of temperature of the respective vertexes of the endothermic peaks in the low temperature side and the high temperature side is 5 deg.C or above and also the value of plane smoothness is 0.02 or below.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、架橋高発泡シートの廃
棄物問題に対応したもので、従来その実現が不可能とさ
れていた無架橋ポリプロピレン系樹脂高発泡シート及び
その製造方法に関するものである。さらに詳しくいえ
ば、従来の無架橋ポリプロピレン押出高発泡シートでは
得られなかった所の、架橋ポリプロピレン高発泡シート
に匹敵する優れた特性を有する、新規にして有用性に富
んだ無架橋ポリプロピレン系樹脂高発泡シート及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a problem of waste of a crosslinked highly foamed sheet, and relates to a non-crosslinked polypropylene resin highly foamed sheet which has hitherto been impossible to realize and a manufacturing method thereof. is there. More specifically, a new and highly useful non-crosslinked polypropylene resin having excellent properties comparable to those of the high-expanded crosslinked polypropylene sheet, which could not be obtained by the conventional non-crosslinked polypropylene extruded high foamed sheet. The present invention relates to a foamed sheet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ポリオレフィン高発泡シートは、機械的
強度、柔軟性、耐熱性、耐薬品性、軽量性などに優れて
おり、車両、断熱工業、包装梱包分野など広範囲の用途
に利用されている。中でも、ポリエチレン高発泡シート
が融点が低い分だけ柔軟性、伸びなどに優れているのに
対して、ポリプロピレン高発泡シートは引張強度や曲げ
強度などの機械的強度、耐熱性に優れている。しかし反
面、ポリプロピレン系樹脂は結晶性ポリマーであり、溶
融温度以上に加熱すると急激な粘度低下が起こる為、発
泡に適した粘弾性となる温度範囲が狭く、高発泡倍率の
発泡体を得るのが極めて難しいという問題があった。
2. Description of the Related Art Polyolefin high-foamed sheets are excellent in mechanical strength, flexibility, heat resistance, chemical resistance, and light weight, and are used in a wide range of applications such as vehicles, heat insulation industry, packaging and packaging fields. .. Among them, the polyethylene high-foamed sheet is excellent in flexibility and elongation due to its low melting point, whereas the polypropylene high-foamed sheet is excellent in mechanical strength such as tensile strength and bending strength and heat resistance. On the other hand, however, polypropylene resins are crystalline polymers, and when heated above the melting temperature, the viscosity decreases sharply, so the temperature range for viscoelasticity suitable for foaming is narrow, and it is possible to obtain foams with a high expansion ratio. There was the problem of being extremely difficult.

【0003】上記問題点を解決するため、たとえば特公
昭42−26953号公報にはポリプロピレン系樹脂発
泡シートの製造時に放射線を照射し、材料を適当に架橋
して、溶融粘度の温度依存性を小さくする方法が提案さ
れており、現在工業的に実施され完成されたものとなっ
ている。
In order to solve the above-mentioned problems, for example, in Japanese Patent Publication No. 42-26953, radiation is irradiated at the time of manufacturing a polypropylene resin foam sheet to appropriately crosslink the material to reduce the temperature dependence of melt viscosity. A method of doing so has been proposed and is currently being industrially implemented and completed.

【0004】この架橋技術は、本来、樹脂特性の改質手
段として知られているものであって、ポリプロピレン系
樹脂内にポリスチレンなどの他の樹脂成分を混合し共存
させ該樹脂の特性を改質する手段に比べて、ポリプロピ
レン系樹脂のもつ本来の特性を損なうことのない利点を
有する。そして、化学発泡法により得た架橋ポリプロピ
レン系樹脂高発泡シートは、熱真空成形性などの優れた
二次加工性を有し表面平滑美粧であることより自動車の
内装材、断熱材、スポーツ用品や電子レンジ用の食品パ
ッケージなどに広く利用されている。
This cross-linking technique is originally known as a means for modifying resin properties, and polypropylene resin is mixed with other resin components such as polystyrene to coexist to modify the properties of the resin. Compared with the above means, there is an advantage that the original characteristics of the polypropylene resin are not impaired. The cross-linked polypropylene-based resin high-foaming sheet obtained by the chemical foaming method has excellent secondary processability such as thermo-vacuum moldability and has a smooth surface. Widely used in food packages for microwave ovens.

【0005】しかしながら、このポリプロピレン系樹脂
の架橋手段は、架橋の為の余分な工程を必要とするため
設備費やエネルギー諸経費が比較的大きく、しかも架橋
された発泡シートは不要になっても元の樹脂に戻して回
収利用することができないなど経済的に不利な問題があ
る。特に地球環境問題(廃棄物処理)が厳しく要求され
ている現在、架橋工程を省略したポリプロピレン系樹脂
の高発泡シートに関する技術の開発が強く望まれてい
る。
However, this polypropylene resin cross-linking means requires an extra step for cross-linking, so that the equipment cost and energy expenses are relatively large, and even if the cross-linked foamed sheet becomes unnecessary, There is an economically disadvantageous problem in that it cannot be returned to the resin and used for recovery. In particular, as the global environmental problem (waste treatment) is severely demanded, it is strongly desired to develop a technology regarding a high-foaming polypropylene resin sheet in which a crosslinking step is omitted.

【0006】これに相当する無架橋のポリプロピレン系
樹脂発泡シートとしては、押出発泡方法で得た発泡シー
トが知られている。例えば、特開昭49−11876
4号(結晶性ポリプロピレン50〜90重量%とエチレ
ン−プロピレンランダム共重合体10〜50重量%と化
学発泡剤とよりなる混合物をシート状に加熱押出しする
方法)と特開昭60−31538号(プロピレン単独
重合体またはプロピレン−エチレンブロック共重合体5
2〜97重量%とプロピレン−α−オレフィン共重合体
3〜48重量%を混合して発泡剤と溶融混練した後、押
出発泡する方法)の公報には、熱真空成形性、表面平滑
美粧性のある低発泡倍率(6cc/g以下、即ち見かけ密
度が0.167g/cc以上)の発泡シートを得る方法が
記載されている。
As a non-crosslinked polypropylene resin foam sheet corresponding to this, a foam sheet obtained by an extrusion foaming method is known. For example, JP-A-49-11876
No. 4 (a method of extruding a mixture of 50 to 90% by weight of crystalline polypropylene, 10 to 50% by weight of an ethylene-propylene random copolymer and a chemical foaming agent in a sheet form by heating) and JP-A-60-31538 ( Propylene homopolymer or propylene-ethylene block copolymer 5
2 to 97% by weight and a propylene-α-olefin copolymer of 3 to 48% by weight, melt-kneaded with a foaming agent, and then extrusion foaming. There is described a method for obtaining a foamed sheet having a certain low expansion ratio (6 cc / g or less, that is, an apparent density of 0.167 g / cc or more).

【0007】また、特開昭58−49730号(プロ
ピレン−エチレンブロック共重合体80〜99重量%と
プロピレン−エチレン−ブテン三元ランダム共重合体1
〜20重量%の混合物を発泡剤と溶融混練した後、押出
発泡する方法)と特開昭62−192430号(プロ
ピレン単独重合体及び/またはエチレン−プロピレンブ
ロック共重合体30〜95重量%とエチレン−プロピレ
ンランダム共重合体5〜70重量%の混合物を発泡剤と
溶融混練した後、押出発泡する方法)の公報には、高発
泡倍率(30〜70cc/g、即ち見かけ密度が0.01
4g/cc〜0.033g/cc)の発泡シートを得る方法
が記載されている。
Further, JP-A-58-49730 (Propylene-ethylene block copolymer 80 to 99% by weight and propylene-ethylene-butene ternary random copolymer 1)
~ 20 wt% of the mixture is melt-kneaded with a blowing agent and then extrusion foaming) and JP-A-62-192430 (propylene homopolymer and / or ethylene-propylene block copolymer 30-95 wt% and ethylene). -Propylene Random Copolymer A mixture of 5 to 70% by weight is melt-kneaded with a foaming agent, and then extrusion foaming is disclosed in a publication of high expansion ratio (30 to 70 cc / g, that is, apparent density of 0.01).
A method for obtaining a foamed sheet of 4 g / cc to 0.033 g / cc) is described.

【0008】これらの押出発泡方法は、融点の低いラン
ダム系プロピレン樹脂の混合によりポリプロピレン系樹
脂発泡体を製造する際に問題となる発泡適正温度範囲が
狭いという欠点を解決し、しかもポリプロピレン系樹脂
の有する優れた物性を十分に発現し、また提供すること
を目的としている。
These extrusion foaming methods solve the drawback of narrowing the proper foaming temperature range, which is a problem when a polypropylene resin foam is produced by mixing a random propylene resin having a low melting point. The purpose is to sufficiently develop and provide the excellent physical properties possessed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、押出発
泡法を用いる上記発明では、架橋高発泡シートの様な可
撓性を有し、表面平滑で美粧性を持ちそして熱真空成形
二次加工性を持つ高発泡シートが得られないという問題
点が依然として残っている。この原因は、押出発泡法が
高温高圧状態で発泡剤を均質混合したあと融点近傍まで
冷却し押出機先端に取り付けたダイより大気中に押出し
て一般に発泡させる方法である所に本質的な難点がある
と考えられる。
However, in the above-mentioned invention using the extrusion foaming method, it has flexibility like a cross-linked high-foaming sheet, has a smooth surface, is aesthetic, and has a hot vacuum forming secondary processability. The problem still remains that a high-foaming sheet cannot be obtained. The cause of this is that the extrusion foaming method is a method in which the foaming agent is homogeneously mixed in a high temperature and high pressure state, then cooled to near the melting point, and extruded into the air from a die attached to the tip of the extruder to generally foam, which is an essential difficulty. It is believed that there is.

【0010】即ち、i)上記公報,の低発泡シート
の場合には、押出発泡時に発泡速度が割りと遅く、該シ
ートの座屈強度が高い事より表面平滑な発泡シートを造
り易いのに対して、上記公報,の高発泡シートの場
合には、発泡速度が速く急速に樹脂が延伸され、その瞬
時の大きな歪変化に対して未発泡部の拘束力(三次元に
広がろうとする力の反力)が作用し、その結果表面の波
打った平滑美粧性に乏しい発泡シートしか得られないと
いう問題点である。
That is, i) In the case of the low-foamed sheet of the above publication, the foaming rate during extrusion foaming is relatively slow and the buckling strength of the sheet is high, so that a foamed sheet having a smooth surface can be easily produced. In the case of the high-foaming sheet of the above-mentioned publication, the resin has a high foaming speed and is rapidly stretched, and the restraining force of the unfoamed portion (the force of spreading in three dimensions) against the instantaneous large strain change. This is a problem that only a foamed sheet having a smooth surface with a wavy surface and poor cosmetic appearance is obtained.

【0011】この問題の解決策として、溶解性の高い或
いは沸点の高い揮発性発泡剤を用いて発泡速度を遅くし
たりしているが、これは粗大な気泡径を産み逆に美粧性
を悪化する。また環状スリットダイより押出しバブルを
形成して、そのバブル中に加圧気体(空気など)を注入
して発泡成形する方法など色々試みられているが、高発
泡(6cc/g以上)品では平滑美粧性に乏しい発泡シー
トしか得られていない。ii)独立気泡率の高い高発泡シ
ートは、気泡成長過程での発泡剤の蒸発による吸熱によ
り気泡膜を形成する溶融樹脂が冷却され結晶固定化して
得られる。
As a solution to this problem, a volatile foaming agent having a high solubility or a high boiling point is used to slow the foaming rate, but this produces a coarse bubble diameter and, conversely, deteriorates the cosmetic appearance. To do. In addition, various methods have been tried such as forming an extruded bubble from an annular slit die and injecting a pressurized gas (air, etc.) into the bubble to perform foam molding, but with a highly foamed product (6 cc / g or more), it is smooth. Only a foamed sheet with poor beauty is obtained. ii) A high-foaming sheet having a high closed cell rate is obtained by crystallizing and immobilizing the molten resin that forms a cell film by heat absorption due to evaporation of the foaming agent in the cell growth process.

【0012】しかし、ポリプロピレン系樹脂は結晶化速
度が極端に遅いという欠点を持つため、発泡剤の蒸発潜
熱のみでは結晶化させ気泡膜を固定できず、上記公報
,の高発泡シートの製法においては、該樹脂の融点
以下の発泡温度で押出発泡して、独立気泡率の高い発泡
シートを得ている。
However, the polypropylene resin has a drawback that the crystallization rate is extremely slow, so that the foam film cannot be fixed by crystallization only by the latent heat of vaporization of the foaming agent. A foamed sheet having a high closed cell rate is obtained by extrusion foaming at a foaming temperature below the melting point of the resin.

【0013】融点の低いランダム系プロピレン樹脂の混
合により発泡適正温度範囲を広くすることはできるが、
発泡温度はその分少なくても低温側にシフトする。この
融点以下の発泡温度という条件は逆に、ダイ内壁面など
の滞留部にての結晶化そして流出を引き起こし、その結
果として表面割れが起き易く可撓性が無いとか、発泡シ
ート表面にくぼみ、ヒビ割れが発生し、品位のある発泡
シートが造れないという問題点である。
Although the proper foaming temperature range can be widened by mixing a random propylene resin having a low melting point,
The foaming temperature shifts to the low temperature side by a small amount. On the contrary, the condition of the foaming temperature equal to or lower than the melting point causes crystallization and outflow in the retention part such as the inner wall surface of the die, and as a result, surface cracks are apt to occur and lack flexibility, or the surface of the foamed sheet is dented, The problem is that cracks occur and a quality foam sheet cannot be made.

【0014】そして、これらの問題点が未解決である為
に、熱真空成形二次加工性の優れた高発泡シートも造れ
ないことである。その結果、熱成形加工性、表面外観品
位の要求度が低い包装材に限られている。そして高付加
価値である架橋高発泡シートの代替品として、車両、断
熱工業分野に進入できない理由がここにあるものと推察
される。
Since these problems have not been solved yet, it is impossible to produce a highly foamed sheet having excellent secondary workability in thermal vacuum forming. As a result, it is limited to packaging materials that have low requirements for thermoformability and surface appearance quality. It is speculated that this is the reason why it is not possible to enter the fields of vehicles and heat insulation as a substitute for high value-added crosslinked and highly foamed sheets.

【0015】本発明者等は、上記の現状に鑑みて長期に
渡り、無架橋で架橋発泡シートのごとく優れた特性を出
現できる最適発泡法について研究を重ねた結果、従来の
無架橋ポリプロピレン系樹脂押出発泡シート品に比べ
て、可撓性を有し表面平滑で美粧性を持つところの無架
橋高発泡シートを得ることに成功したものである。そし
て、驚くべきことに本発明で完成された無架橋高発泡シ
ートは、架橋高発泡シートに匹敵する位の熱真空成形二
次加工性を有した高発泡シートである事実を究明し、本
発明の完成をみたものである。
In view of the above situation, the inventors of the present invention have conducted a long-term study on an optimal foaming method capable of exhibiting excellent properties like a crosslinked foamed sheet without crosslinking, and as a result, the conventional noncrosslinked polypropylene resin has been obtained. It succeeded in obtaining a non-crosslinked highly foamed sheet which is flexible, has a smooth surface, and has cosmetic properties as compared with an extruded foamed sheet product. And, surprisingly, the fact that the non-crosslinked high-foamed sheet completed in the present invention is a high-foamed sheet having a thermal vacuum forming secondary processability comparable to that of the crosslinked high-foamed sheet was found, Is the completion of.

【0016】しかして本発明の目的は、廃棄物問題をク
リアーするところの無架橋ポリプロピレン系樹脂を用い
て、従来の押出高発泡シートよりも表面平滑美粧性に優
れた高発泡シートが得られる製造方法を提供することで
あり、そして熱真空成形二次加工性に優れた無架橋ポリ
プロピレン系樹脂高発泡シートを提供することである。
Therefore, the object of the present invention is to produce a high-foaming sheet having a surface smoothness and cosmetics superior to that of a conventional extruded high-foaming sheet by using a non-crosslinked polypropylene resin which clears the waste problem. It is to provide a method, and to provide a non-crosslinked polypropylene-based resin highly foamed sheet which is excellent in hot vacuum forming secondary processability.

【0017】[0017]

【課題を解決するための手段】上記本発明の目的は本発
明の発泡シート、即ち独立気泡率が90%以上、見掛け
密度が0.020〜0.15g/cm3 で、厚み1〜10
mmの無架橋ポリプロピレン系樹脂高発泡シートにおい
て、該発泡シートが示差走査熱量測定によって得られる
第2回目のDSC曲線(但し発泡シート3〜5mgを示差
走査熱量計によって室温から200℃まで10℃/分の
昇温速度で昇温した時に得られる曲線を第1回目のDS
C曲線とし、次いで200℃から5℃/分の降温速度で
40℃まで降温し、再度10℃/分の昇温速度で200
℃まで昇温した時に得られる曲線を第2回目のDSC曲
線とする)に於いて、少なくとも2つ以上の吸熱ピーク
を140〜165℃の温度範囲に示し、該低温側吸熱ピ
ークの頂点の温度と該高温側吸熱ピークの頂点の温度と
の差が5℃以上であり、且つ下記の方法で求めた表面平
滑度(平S)の値が0.02以下にあることを特徴とす
る無架橋ポリプロピレン系樹脂高発泡シート。
The above object of the present invention is to provide a foamed sheet of the present invention, that is, a closed cell ratio of 90% or more, an apparent density of 0.020 to 0.15 g / cm 3 , and a thickness of 1 to 10.
mm non-crosslinked polypropylene-based resin high foamed sheet, the foamed sheet was obtained by differential scanning calorimetry at the second DSC curve (however, 3-5 mg of foamed sheet from room temperature to 200 ° C at 10 ° C / 200 ° C). The curve obtained when the temperature was raised at a heating rate of
C curve, then the temperature was lowered from 200 ° C. to 5 ° C./min to 40 ° C., and again to 10 ° C./min to 200 ° C.
The curve obtained when the temperature is raised to 0 ° C is referred to as the second DSC curve), and at least two or more endothermic peaks are shown in the temperature range of 140 to 165 ° C. And the temperature at the apex of the endothermic peak on the high temperature side is 5 ° C. or more, and the value of the surface smoothness (flat S) obtained by the following method is 0.02 or less. Highly foamed polypropylene resin sheet.

【0018】表面平滑度(平S)は、該発泡シートのあ
る幅方向全長当たり幅方向長さ150mmにわたる1箇所
の測定割合で、流れ方向に100mm間隔で幅方向の位置
ランダムな10箇所について次の計測を行い、求めた値
Sの10箇所の平均値で示すものである。
The surface smoothness (flat S) is the ratio of measurement at one location over the entire length in the width direction of the foamed sheet, which is 150 mm in length in the width direction. Is measured, and the obtained value S is shown as an average value at 10 points.

【0019】計測は、小片シート(幅方向長さ200mm
×流れ方向長さ50mm)を焼結金属でできた平滑な定盤
を上面に有するチャンバーの上に載せ、真空吸引しシー
ト片面を定盤に密着させ、定盤に付随した状態にあるロ
ーラー(外径22mm、幅7mm)式厚みゲージを上記小片
シートの両端25mmを除く150mm幅方向に走行させ、
最小読みとり0.01mm単位で厚みを連続して測定記録
したものである。そしてこの測定記録した厚みデーター
曲線上で山から次の谷・その谷から次の山にと分割し、
夫々分割区分ごとに山と谷部の厚み差(△T:mm)及び
そのスパン長(L:mm)を読みとり次式で算出した最大
値を採用する。
The measurement is carried out on a small sheet (200 mm in width direction).
× Flow direction length 50 mm) is placed on a chamber having a smooth surface plate made of sintered metal on the upper surface, vacuum suction is applied to one side of the sheet to the surface plate, and a roller attached to the surface plate ( (Outer diameter 22 mm, width 7 mm) Type thickness gauge is run in the width direction of 150 mm excluding 25 mm at both ends of the small piece sheet,
The minimum reading is a value obtained by continuously measuring and recording the thickness in units of 0.01 mm. And on this measured and recorded thickness data curve, divide from a mountain to the next valley, and from that valley to the next mountain,
The maximum value calculated by the following formula is adopted by reading the thickness difference (ΔT: mm) between the peak and the valley and the span length (L: mm) for each division.

【0020】[0020]

【数3】S=△T/L この操作を上記の10箇所にて繰り返し行ったものであ
る。を採用すること、及び本発明の製造方法即ち、独立
気泡率が90%以上、見掛け密度が0.020〜0.1
5g/cm3 で、厚み1〜10mmの無架橋ポリプロピレン
系樹脂高発泡シートの製法において、示差走査熱量測定
(昇温速度10℃/分)による吸熱ピークを135〜1
50℃に有する炭素数2〜20のα−オレフィンとのラ
ンダム共重合ポリプロピレン樹脂(A)55〜95重量
%と、吸熱ピークが該ランダム共重合体より10℃以上
高いポリプロピレン単独重合体、エチレンとのブロック
共重合ポリプロピレン樹脂、炭素数2〜20のα−オレ
フィンとのランダム共重合ポリプロピレン樹脂の中の一
つ以上の組合わせ樹脂(B)5〜45重量%とからなる
混合樹脂を、押出機に通して溶融混練後シート状に押出
成形し、該素シートに揮発性発泡剤または無機ガスを含
浸し、そして樹脂(B)の融点より低い温度のスチーム
により0.2〜1.0倍/秒の発泡速度で発泡せしめ、
下記の方法で求めた表面平滑度(平S)が0.02以下
にすることを特徴とする無架橋ポリプロピレン系樹脂高
発泡シートの製造方法。
## EQU00003 ## S = .DELTA.T / L This operation is repeated at the above 10 points. And the manufacturing method of the present invention, that is, the closed cell ratio is 90% or more, and the apparent density is 0.020 to 0.1.
In the method for producing a non-crosslinked polypropylene-based resin high-foaming sheet having a thickness of 1 to 10 mm at 5 g / cm 3 , the endothermic peak by differential scanning calorimetry (heating rate 10 ° C./min) is 135 to 1.
Random copolymerized polypropylene resin (A) 55 to 95% by weight with an α-olefin having 2 to 20 carbon atoms at 50 ° C., and a polypropylene homopolymer having an endothermic peak higher than that of the random copolymer by 10 ° C., ethylene. Of block copolymer polypropylene resin, and one or more combination resins (B) of 45 to 45% by weight of a random copolymer polypropylene resin with an α-olefin having 2 to 20 carbon atoms, and a mixed resin. The mixture is melt-kneaded through an extruder and extruded into a sheet, the volatile foaming agent or the inorganic gas is impregnated into the sheet, and the steam is heated at a temperature lower than the melting point of the resin (B) to 0.2 to 1.0 times / Foam at a foaming speed of seconds,
A surface-smoothness (flat S) obtained by the following method is 0.02 or less.

【0021】表面平滑度(平S)は、該発泡シートのあ
る幅方向全長当たり幅方向長さ150mmにわたる1箇所
の測定割合で、流れ方向に100mm間隔で幅方向の位置
ランダムな10箇所について次の計測を行い、求めた値
Sの10箇所の平均値で示すものである。
The surface smoothness (flat S) is the ratio of measurement at one location over the entire length in the width direction of the foamed sheet, which is 150 mm in the width direction, and the following is obtained for 10 random locations in the width direction at intervals of 100 mm in the flow direction. Is measured, and the obtained value S is shown as an average value at 10 points.

【0022】計測は、小片シート(幅方向長さ200mm
×流れ方向長さ50mm)を焼結金属でできた平滑な定盤
を上面に有するチャンバーの上に載せ、真空吸引しシー
ト片面を定盤に密着させ、定盤に付随した状態にあるロ
ーラー(外径22mm、幅7mm)式厚みゲージを上記小片
シートの両端25mmを除く150mm幅方向に走行させ、
最小読みとり0.01mm単位で厚みを連続して測定記録
したものである。そしてこの測定記録した厚みデーター
曲線上で山から次の谷・その谷から次の山にと分割し、
夫々分割区分ごとに山と谷部の厚み差(△T:mm)及び
そのスパン長(L:mm)を読みとり次式で算出した最大
値を採用する。
The measurement is carried out on a small piece sheet (widthwise length 200 mm
× Flow direction length 50 mm) is placed on a chamber having a smooth surface plate made of sintered metal on the upper surface, vacuum suction is applied to one side of the sheet to the surface plate, and a roller attached to the surface plate ( (Outer diameter 22 mm, width 7 mm) Type thickness gauge is run in the width direction of 150 mm excluding 25 mm at both ends of the small piece sheet,
The minimum reading is a value obtained by continuously measuring and recording the thickness in units of 0.01 mm. And on this measured and recorded thickness data curve, divide from a mountain to the next valley, and from that valley to the next mountain,
The maximum value calculated by the following formula is adopted by reading the thickness difference (ΔT: mm) between the peak and the valley and the span length (L: mm) for each division.

【0023】[0023]

【数4】S=△T/L この操作を上記の10箇所にて繰り返し行ったものであ
る。を採用することによって、容易に達成することがで
きる。
## EQU00004 ## S = .DELTA.T / L This operation is repeated at the above 10 points. Can be easily achieved.

【0024】以下本発明の内容を、発明の構成要件に添
って図面などを用いて詳述する。図1は本発明の無架橋
高発泡シート(実験No.1の本発明方法で得たもの)、
図2は比較品の無架橋高発泡シート(実験No.33の押
出発泡方法で得たもの)であり、いずれも発泡シートの
幅方向断面を拡大した局部の写生概念図である。
The contents of the present invention will be described in detail below with reference to the drawings according to the constituent features of the invention. FIG. 1 shows a non-crosslinked highly foamed sheet of the present invention (obtained by the method of the present invention of Experiment No. 1),
FIG. 2 shows a non-crosslinked high-foaming sheet of a comparative product (obtained by the extrusion foaming method of Experiment No. 33), both of which are conceptual sketches of local enlargement of the cross section in the width direction of the foaming sheet.

【0025】図1,2の共通点は、これらはともにポリ
プロピレン系樹脂の同一組成を基材樹脂とする高発泡シ
ートである。この2種の発泡シートは独立気泡率が高く
(90%以上)、機械的強度、圧縮回復性に富むもので
あり、緩衝包装材としては実用上問題なく使用できるも
のである。
1 and 2 are common in that they are both highly foamed sheets having the same composition of polypropylene resin as the base resin. These two types of foamed sheets have a high closed cell rate (90% or more), are excellent in mechanical strength and compression recovery, and can be practically used as a cushioning packaging material.

【0026】上記2種発泡シートの構造上の特徴を図
1,2の対比で見ると、本発明(図1)の発泡シート
は、幅方向の気泡径が揃ったもので比較的平滑な表面状
態を有しているのに比べて、比較品(図2)の発泡シー
トは、幅方向における表面付近の気泡径が小径の気泡
群、大径の気泡群という様にランダム配置されており、
且つ表面が波打っていて平滑性に欠ける状態であること
がよく分かる。この表面の平滑状態と幅方向における気
泡径の均一状態とを誘発させる原因はどちらも同じであ
り、発泡時の歪変化(外的な反応力)に対する局所的な
粘弾性変化による異常現象と推定される。
Comparing the structural characteristics of the above-mentioned type 2 foamed sheet with the comparison of FIGS. 1 and 2, the foamed sheet of the present invention (FIG. 1) has uniform cell diameters in the width direction and a relatively smooth surface. Compared with the state, the foam sheet of the comparative product (FIG. 2) is randomly arranged such that the cell diameter in the vicinity of the surface in the width direction is a cell group having a small diameter and a cell group having a large diameter.
Moreover, it is well understood that the surface is wavy and lacks in smoothness. The cause of the smooth state of the surface and the uniform state of the bubble diameter in the width direction are both the same, and it is presumed to be an abnormal phenomenon due to a local viscoelastic change with respect to strain change (external reaction force) during foaming. To be done.

【0027】そこで従来の無架橋高発泡シート品と、こ
の構造上の違いが区分でき、かつ本発明の無架橋高発泡
シート品の特徴が表現できる構造を係数化しようと工夫
した。即ちそれは、本発明の無架橋高発泡シートの主要
要件であるところの、「表面平滑度(平S)が0.02
以下にある」という構造指標である。
Therefore, it was devised to make a coefficient into a structure capable of distinguishing the structural difference from the conventional non-crosslinked high-foamed sheet product and expressing the characteristics of the non-crosslinked high-foamed sheet product of the present invention. That is, it has a "surface smoothness (flat S) of 0.02" which is a main requirement of the non-crosslinked high-foamed sheet of the present invention.
Below is a structural index.

【0028】先ず、表面平滑度(平S)そのものの求め
方について説明する。図4は、該発泡シートの測定箇所
のサンプリング位置を表したもので、ある任意の幅方向
全長線:A1を流れ方向中心線とする任意の位置で幅方
向長さ200mm×流れ方向長さ50mmサイズの小片シー
ト:P1を、そしてA1線に対し流れ方向に100mm間
隔あるA2線を流れ方向中心線としてP1に対し幅方向
位置がランダムで幅方向長さ200mm×流れ方向長さ5
0mmサイズの小片シート:P2を、更に同様にしてP3
〜10をサンプリングすることを示す。
First, a method of obtaining the surface smoothness (flat S) itself will be described. FIG. 4 shows sampling positions of measurement points of the foamed sheet, and an arbitrary width-direction total length line: a width-direction length of 200 mm and a flow-direction length of 50 mm at an arbitrary position with A1 as a flow-direction center line. Small size sheet: P1 and the A2 line with a 100 mm interval in the flow direction relative to the A1 line as the center line in the flow direction, the position in the width direction is random with respect to P1, and the length in the width direction is 200 mm x the length in the flow direction
0mm size small piece sheet: P2 and P3 in the same way
Shows that -10 is sampled.

【0029】そしてこの小片シート(幅方向長さ200
mm×流れ方向長さ50mm)を焼結金属でできた平滑な定
盤を上面に有するチャンバーの上に載せ、真空吸引しシ
ート片面を定盤に密着させ、定盤に付随した状態にある
ローラー(外径22mm、幅7mm)式厚みゲージを上記小
片シートの両端25mmを除く150mm幅方向に上記中心
線:Aシート表面上を走行させ、最小読みとり0.01
mm単位で厚みを連続して測定記録する。
Then, this small piece sheet (widthwise length 200
(mm x length in the flow direction 50 mm) is placed on a chamber having a smooth surface plate made of sintered metal on the upper surface, vacuum suction is applied to one side of the sheet to adhere to the surface plate, and the roller is attached to the surface plate. A minimum thickness of 0.01 is obtained by running a type thickness gauge (outer diameter 22 mm, width 7 mm) on the surface of the center line: A sheet in the width direction of 150 mm excluding 25 mm at both ends of the small piece sheet.
Continuously measure and record the thickness in mm.

【0030】図5はこの測定記録した厚みデーター曲線
を表したもので、表面平滑度Sは、山から次の谷・その
谷から次の山にと分割し、夫々分割区分ごとに山と谷部
の厚み差(△T:mm)及びそのスパン長(L:mm)を読
みとり、次式で算出した最大値である。
FIG. 5 shows the measured and recorded thickness data curve. The surface smoothness S is divided into one valley to the next valley and that valley to the next mountain. It is the maximum value calculated by the following equation by reading the thickness difference (ΔT: mm) and the span length (L: mm) of the part.

【0031】[0031]

【数5】S=△T/L そして表面平滑度(平S)は、上記10箇所にてこの操
作を繰り返し行ない、この10箇所の測定値Sの平均値
で示したものである。
## EQU00005 ## S = .DELTA.T / L The surface smoothness (flat S) is the average value of the measured values S at the 10 points where the above operation was repeated.

【0032】この式が示す意義を説明すると、この要件
因子は発泡シートの偏肉度を数字化したものであり、表
面が如何程に平滑であるかを表した一つの構造指標であ
ると考えている。例えば、シート自体が波打っている物
は発泡シート幅方向の厚みムラがあり、S値は大きな数
値を示す。即ち、厚みが均一で、かつ表面が平滑な物が
本発明品であるということで、上記S値が小さく0(ゼ
ロ)に近似したものであることが、より望ましい表面構
造であるとしている。
Explaining the significance of this formula, it is considered that this requirement factor is a numerical representation of the uneven thickness of the foamed sheet, which is one structural index showing how smooth the surface is. There is. For example, a corrugated sheet itself has thickness unevenness in the width direction of the foamed sheet, and the S value shows a large numerical value. That is, since the product having a uniform thickness and a smooth surface is the product of the present invention, it is said that a more desirable surface structure is one in which the S value is small and approximates to 0 (zero).

【0033】後記の第2表(実施例、比較例1に対応)
は、上記S値を指標として見た実用特性効果の関係を示
すものである。ここでは対比の関係を単純化する為に、
使用ポリマー組成は同一で、対象シートの見かけ密度、
全体厚みが同じ水準に揃える努力が払われている。
Table 2 below (corresponding to Example and Comparative Example 1)
Shows the relationship of practical characteristic effects when the S value is used as an index. Here, in order to simplify the relationship of contrast,
The polymer composition used is the same, the apparent density of the target sheet,
Efforts are being made to bring the overall thickness to the same level.

【0034】第2表の結果によると、表皮材との接着性
(外観及び接着強度)、打抜き加工性、熱真空成形性能
(加熱条件幅の広さ)、美粧性(発泡シート表面の光沢
及びくぼみの有無)のすべてを優れた水準に兼備させた
い観点からは、(平S)値は少なくとも0.02以下の
値であることの意味が実証されている。
According to the results shown in Table 2, the adhesiveness to the skin material (appearance and adhesive strength), punching workability, thermal vacuum forming performance (wide range of heating conditions), aesthetics (gloss and surface of the foamed sheet). From the viewpoint of ensuring that all of the (presence or absence of dents) have excellent levels, the meaning that the (plain S) value is at least 0.02 or less has been demonstrated.

【0035】本発明の無架橋発泡シートの次の主要要
件、即ち「該無架橋高発泡シートの示差走査熱量測定に
よって得られる第2回目のDSC曲線」に、「(1)少
なくとも2つ以上の吸熱ピークを、(2)140〜16
5℃の温度範囲に示し、(3)該低温側吸熱ピークの頂
点の温度と該高温側吸熱ピークの頂点の温度との差が5
℃以上」である要件部分の重要性は、深絞り成形性の向
上効果及び耐熱性を発揮させるためのものである。この
要件は、上述した表面平滑度(平S)が充足され、成形
加熱条件幅の広さが満たされていることが必要で、この
ところの関係は第3表に示されている。
The following main requirement of the non-crosslinked foamed sheet of the present invention, namely "the second DSC curve obtained by the differential scanning calorimetry of the non-crosslinked high-foamed sheet", "(1) At least two or more Endothermic peak is (2) 140-16
In the temperature range of 5 ° C., (3) the difference between the temperature at the apex of the low temperature side endothermic peak and the temperature at the apex of the high temperature side endothermic peak is 5
The importance of the requirement portion that is “° C. or higher” is to exert the effect of improving the deep drawing formability and heat resistance. This requirement is that the above-mentioned surface smoothness (flat S) is satisfied, and a wide range of molding heating conditions is satisfied, and the relationship there is shown in Table 3.

【0036】先ず示差走査熱量測定によって得られる第
2回目のDSC曲線が示す意味について説明すると、こ
の要件因子は本発明者等が究明した一つのポリマー構造
特性であると考えている。図3は代表的な第2回目のD
SC曲線を表したもので、図中Iの曲線は本発明の無架
橋高発泡シート(実験No.1の本発明の方法で得た発泡
シート)、図中IIの曲線は比較品の無架橋高発泡シート
(実験No.15で得たランダム共重合プロピレン樹脂発
泡シート)そして図中III の曲線は同じく比較品の無架
橋高発泡シート(実験No.19で得たブロック共重合プ
ロピレン樹脂発泡シート)を測定して得た第2回目のD
SC曲線結果である。
First, the meaning of the second DSC curve obtained by differential scanning calorimetry will be explained. It is considered that this requirement factor is one of the polymer structural characteristics that the present inventors have clarified. Figure 3 is a typical second D
In the figure, the curve I represents the non-crosslinked highly foamed sheet of the present invention (foamed sheet obtained by the method of the present invention in Experiment No. 1), and the curve II represents the non-crosslinked product of the comparative product. Highly foamed sheet (random copolymerized propylene resin foamed sheet obtained in Experiment No. 15) and the curve III in the figure shows the non-crosslinked highly expanded sheet of the comparative product (block copolymerized propylene resin foamed sheet obtained in Experiment No. 19). ) The second D obtained by measuring
It is an SC curve result.

【0037】本発明者等は、対象とする無架橋高発泡シ
ートの熱成形性能に関する研究を重ねた結果、上記DS
C融解特性が熱成形性に大きく依存することに気が付
き、完成に漕ぎ付けたものである。即ち図3のIII の様
に狭い温度範囲の融解挙動を示すものにおいては、成形
可能温度が点でしかなく工業的に成形加工することが不
可能なこと、そして図3のIIの様に融解する温度幅が広
くなだらかな融解挙動を示すものにおいては、成形可能
な温度範囲をとることができるものの、まだ粘弾性の温
度依存性が大きく深絞り成形することができないことで
ある。
As a result of repeated studies on the thermoforming performance of the non-crosslinked high-foam sheet of interest, the present inventors have found that the above DS
We noticed that the C-melting characteristics greatly depended on the thermoformability, and made the final decision. That is, in the case of melting behavior in a narrow temperature range like III in FIG. 3, the moldable temperature is only a point and industrial molding is impossible, and like II in FIG. In the case of a material having a wide temperature range and exhibiting a gentle melting behavior, the temperature range in which molding is possible can be taken, but the temperature dependence of viscoelasticity is still large and deep drawing cannot be carried out.

【0038】これらの現象から、優れた深絞り成形性を
示す無架橋高発泡シートのDSC融解特性の出現に観点
を絞り、種々のプロピレン系樹脂そしてその混合組合わ
せ樹脂について発泡試作し、DSC測定及び熱成形性評
価を繰り返し行い完成させたものである。その要件因子
は、上記の(1)少なくとも2つ以上の吸熱ピークと
(3)該低温側吸熱ピークの頂点の温度と該高温側吸熱
ピークの頂点の温度との差が5℃以上にあることであ
り、本発明の代表的DSC曲線として、図3中のI曲線
(2つの吸熱ピーク温度(151℃、160℃)と△T
(9℃))を提示する。
From these phenomena, focusing on the appearance of DSC melting characteristics of an uncrosslinked high-foaming sheet exhibiting excellent deep-drawing moldability, various propylene-based resins and their mixed combination resins were subjected to foaming trial production and DSC measurement. And the thermoformability evaluation was repeated and completed. The requirement factor is that the difference between the temperature at the apex of (1) at least two or more endothermic peaks and (3) the apex of the low temperature side endothermic peak and the apex of the high temperature side endothermic peak is 5 ° C. or more. As a typical DSC curve of the present invention, the I curve (two endothermic peak temperatures (151 ° C., 160 ° C.) and ΔT in FIG.
(9 ° C.)) is presented.

【0039】ここで第2回目のDSC曲線、即ち「発泡
シート3〜5mgを示差走査熱量計によって室温から20
0℃まで10℃/分の昇温速度で昇温した時に得られる
曲線を第1回目のDSC曲線とし、次いで200℃から
5℃/分の降温速度で40℃まで降温し、再度10℃/
分の昇温速度で200℃まで昇温した時に得られる曲
線」を採用した理由について説明すると、第1回目のD
SC曲線には発泡時の熱処理作用(加熱昇温速度、発泡
温度、降温速度)が少なからず表れ、しかもこれは発泡
シートの厚み方向に融解特性の違いを持ったものである
為になかなか熱成形性能と相関がとれなくデータ把握で
きないという問題が起きた。後述の如く、深絞り熱成形
性能と第2回目のDSC曲線特性とは相関あり、そこで
真の融解特性を示す第2回目のDSC曲線を採用したも
のである。
Here, the second DSC curve, that is, "3 to 5 mg of the foamed sheet was measured at 20 ° C. from room temperature by a differential scanning calorimeter.
The curve obtained when the temperature was raised to 0 ° C. at a rate of 10 ° C./min was used as the first DSC curve, and then the temperature was lowered from 200 ° C. to 40 ° C. at a rate of 5 ° C./min, and again 10 ° C./min.
The reason why the "curve obtained when the temperature is raised to 200 ° C. at a heating rate of 1 minute" is adopted will be explained.
The heat treatment effect during foaming (heating temperature rising rate, foaming temperature, cooling rate) is not absent in the SC curve, and this is because it has a difference in melting characteristics in the thickness direction of the foamed sheet, so it is rather thermoforming. There was a problem that data could not be grasped because it could not be correlated with performance. As will be described later, there is a correlation between the deep-drawing thermoforming performance and the second DSC curve characteristic, and therefore the second DSC curve showing the true melting characteristic is adopted.

【0040】第3表(実施例、比較例2に対応)は、無
架橋高発泡シートの第2回目のDSC曲線、即ちポリマ
ー融解特性を指標として見た熱成形性能向上効果及び耐
熱性の関係を示すものである。ここでは対比の関係を単
純化する為に、対象シートの表面平滑度(平S)、見か
け密度、全体厚みが同じ水準に揃える努力が払われてい
る。
Table 3 (corresponding to Example and Comparative Example 2) shows the relationship between the second DSC curve of the non-crosslinked highly foamed sheet, that is, the effect of improving the thermoforming performance and the heat resistance viewed from the polymer melting property as an index. Is shown. Here, in order to simplify the relationship of comparison, efforts are made to make the surface smoothness (flat S), apparent density, and overall thickness of the target sheet uniform.

【0041】第3表の結果によると、自動車成形天井材
などの複雑な熱真空成形に要求されるところの深絞り性
を付加する観点からは、無架橋高発泡シートの示差走査
熱量測定によって得られる第2回目のDSC曲線におい
て、少なくとも2つ以上の吸熱ピークと、該低温側吸熱
ピークの頂点の温度と該高温側吸熱ピークの頂点の温度
との差が5℃以上にあることの意味が実証されている。
そして耐熱寸法安定性を兼備させる観点からは、該吸熱
ピークが140〜165℃の温度範囲にあることの意味
が実証されている。
According to the results shown in Table 3, from the viewpoint of adding the deep drawability required for complicated thermal vacuum forming of automobile molding ceiling materials, etc., it was obtained by differential scanning calorimetry of an uncrosslinked high foam sheet. In the second DSC curve obtained, it is meant that at least two or more endothermic peaks and the difference between the temperature at the apex of the low temperature side endothermic peak and the temperature at the apex of the high temperature side endothermic peak is 5 ° C. or more. Has been proven.
From the viewpoint of having both heat-resistant dimensional stability, it has been proved that the endothermic peak is in the temperature range of 140 to 165 ° C.

【0042】本発明における無架橋高発泡シートの気泡
径について特に制限はないが、断熱性、美粧性を確保す
る上で2mm以下が望ましく、更には0.5mm以下が好ま
しい。
The cell diameter of the non-crosslinked high-foam sheet according to the present invention is not particularly limited, but it is preferably 2 mm or less, more preferably 0.5 mm or less in order to ensure heat insulation and cosmetic properties.

【0043】次に本発明の無架橋高発泡シートの製造方
法について説明する。本発明の製造方法の主要点は、
(イ)示差走査熱量測定(昇温速度10℃/分)による
吸熱ピークを135〜150℃に有する炭素数2〜20
のα−オレフィンとのランダム共重合ポリプロピレン樹
脂(A)55〜95重量%と、吸熱ピークが該ランダム
共重合体より10℃以上高いポリプロピレン単独重合
体、エチレンとのブロック共重合ポリプロピレン樹脂、
炭素数2〜20のα−オレフィンとのランダム共重合ポ
リプロピレン樹脂の中の1つ以上の組合わせ樹脂(B)
5〜45重量%とからなる混合樹脂を用いること、
(ロ)上記(イ)の樹脂を押出機に通して溶解混練後シ
ート状に押出成形し、該素シートに揮発性発泡剤または
無機ガスを含浸すること、(ハ)そして上記樹脂(B)
の融点より低い温度のスチームにより0.2〜1.0倍
/秒の発泡速度で発泡せしめること、を採用することで
ある。
Next, a method for producing the non-crosslinked highly foamed sheet of the present invention will be described. The main points of the manufacturing method of the present invention are:
(A) Carbon number of 2 to 20 having an endothermic peak at 135 to 150 ° C. by differential scanning calorimetry (heating rate 10 ° C./min)
Random copolymerized polypropylene resin (A) with α-olefin of 55 to 95% by weight, a polypropylene homopolymer having an endothermic peak higher than that of the random copolymer by 10 ° C. or more, a block copolymerized polypropylene resin with ethylene,
One or more combination resins (B) among random copolymer polypropylene resins with α-olefins having 2 to 20 carbon atoms
Using a mixed resin consisting of 5 to 45% by weight,
(B) The resin of (a) above is melted and kneaded through an extruder and extrusion-molded into a sheet, and the elemental sheet is impregnated with a volatile foaming agent or an inorganic gas, (c) and the resin (B).
The foaming rate is 0.2 to 1.0 times / second with steam having a temperature lower than the melting point.

【0044】先ず上記主要点(イ)の必要性は、前述の
「無架橋高発泡シートの示差走査熱量測定によって得ら
れる第2回目のDSC曲線に、少なくとも2つ以上の吸
熱ピークを140〜165℃の温度範囲に示し、該低温
側吸熱ピークの頂点の温度と該高温側吸熱ピークの頂点
の温度との差が5℃以上」である要部部分を持つ本発明
の無架橋高発泡シートを出現させることにある。このと
ころの関係は、第3表に示されてる。
First, the necessity of the above-mentioned main point (a) is that at least two or more endothermic peaks of 140 to 165 are included in the second DSC curve obtained by the differential scanning calorimetry of the above-mentioned non-crosslinked highly foamed sheet. In the temperature range of ℃, the cross-linked high-foaming sheet of the present invention having a main part having a difference of 5 ° C. or more between the temperature at the apex of the low temperature side endothermic peak and the temperature at the apex of the high temperature side endothermic peak. To make it appear. The relationship between these places is shown in Table 3.

【0045】第3表(実施例、比較例2に対応)による
と、少なくとも2つ以上の吸熱ピークを示し、該低温
側吸熱ピークの頂点の温度と該高温側吸熱ピークの頂点
の温度との差が5℃以上にある無架橋高発泡シートを出
現するには、実験No.8(上記A樹脂の吸熱ピーク13
8℃と上記B樹脂の吸熱ピーク148℃の混合、温度差
10℃)と実験No.20(上記A樹脂の吸熱ピーク14
0℃と上記B樹脂の吸熱ピーク148℃の混合、温度差
8℃)との結果対比にて、上記A樹脂の吸熱ピーク温度
に対しB樹脂の吸熱ピーク温度が10℃以上高いことの
意味が実証され、そしてB樹脂は、A樹脂の吸熱ピー
ク温度に対し10℃以上高い吸熱ピークを持つ樹脂(ポ
リプロピレン単独重合体、エチレンとのブロック共重合
ポリプロピレン樹脂、炭素数2〜20のα−オレフィン
とのランダム共重合ポリプロピレン樹脂)の中の1つ以
上の組合わせ樹脂を用いても良いことが、実験No.8〜
14の結果が実証しており、更に実験No.1,6,
7,15,16,17,18,19(吸熱ピーク140
℃の上記A樹脂と吸熱ピーク163℃の上記B樹脂の温
度差23℃の2種類の樹脂を用いて、混合比率を変えて
の実験)の結果から、上記A樹脂55〜95重量%と上
記B樹脂5〜45重量%とからなる混合樹脂を用いるこ
との意味が実証されている。逆にこの結果は、本発明に
用いた混合樹脂は夫々単独時の固有の吸熱ピークを表す
のでなく、混合融解相溶して互いに共有した結晶を作
り、混合比率によって変わるところの独自の結晶形態を
とることを示唆している。
According to Table 3 (corresponding to Example and Comparative Example 2), at least two endothermic peaks are shown, and the temperature at the apex of the low temperature side endothermic peak and the temperature at the apex of the high temperature side endothermic peak are shown. In order to develop a non-crosslinked highly foamed sheet having a difference of 5 ° C. or more, Experiment No. 8 (Endothermic peak 13 of resin A
Mixing 8 ° C. and 148 ° C. of endothermic peak of resin B, temperature difference 10 ° C.) and Experiment No. 20 (Endothermic peak 14 of resin A above 14
In comparison with the result of the mixture of 0 ° C. and the endothermic peak of 148 ° C. of the B resin, a temperature difference of 8 ° C.), it means that the endothermic peak temperature of the B resin is higher than the endothermic peak temperature of the A resin by 10 ° C. or more. The resin B has been proved to have a higher endothermic peak than that of the resin A by 10 ° C. (a polypropylene homopolymer, a block copolymer polypropylene resin with ethylene, an α-olefin having 2 to 20 carbon atoms). Experiment No. 1, one or more combination resins of random copolymer polypropylene resin of No. 1) may be used. 8 ~
The results of No. 14 are verified, and further, the experiment No. 1, 6,
7, 15, 16, 17, 18, 19 (Endothermic peak 140
From the results of experiments in which the mixing ratio was changed using two kinds of resins having a temperature difference of 23 ° C. between the A resin of C and the B resin having an endothermic peak of 163 ° C., the A resin of 55 to 95% by weight and the The significance of using a mixed resin consisting of 5-45 wt% B resin has been demonstrated. On the contrary, this result indicates that the mixed resins used in the present invention do not show the unique endothermic peaks when they are used alone, but they have a unique crystal morphology that changes depending on the mixing ratio by forming mixed crystals by mutual melting and compatibilization. Suggests to take.

【0046】また第3表(実施例、比較例2に対応)に
よると、2つ以上の吸熱ピークを140〜165℃の温
度範囲にある無架橋高発泡シートを出現するには、実験
No.11(上記A樹脂の吸熱ピーク137℃と上記B樹
脂の吸熱ピーク163℃の混合)と実験No.21(上記
A樹脂の吸熱ピーク131℃と上記B樹脂の吸熱ピーク
163℃の混合)との、しかもどちらもランダム共重合
ポリプロピレン樹脂(A樹脂)90重量%の厳しい混合
比での対比にて、135℃以上の吸熱ピークを有するラ
ンダム共重合ポリプロピレン樹脂を用いることの意味が
実証されている。
Further, according to Table 3 (corresponding to Example and Comparative Example 2), in order to develop a non-crosslinked highly foamed sheet having two or more endothermic peaks in the temperature range of 140 to 165 ° C., an experiment was conducted.
No. 11 (mixture of the endothermic peak 137 ° C. of the A resin and the endothermic peak 163 ° C. of the B resin) and Experiment No. 11 21 (a mixture of the endothermic peak 131 ° C. of the A resin and the endothermic peak 163 ° C. of the B resin), and both of them were in a strict mixing ratio of 90% by weight of the random copolymerized polypropylene resin (A resin), The significance of using a random copolymerized polypropylene resin having an endothermic peak above 135 ° C has been demonstrated.

【0047】また上記主要点(イ)の必要性は、独立気
泡率の高い(90%以上)ところの無架橋高発泡シート
を得ることである。このところの関係は、第4表に示し
てある。
Further, the necessity of the above-mentioned main point (a) is to obtain a non-crosslinked highly foamed sheet having a high closed cell rate (90% or more). The relationship between these is shown in Table 4.

【0048】第4表(実施例、比較例3に対応)は、後
述する「無架橋発泡シートの気泡内に空気を追添し、気
泡内の圧力が高い状態で加熱して高発泡化せしめる方
法」にて評価したものである。詳しくは、実施例、比較
例2の実験No.1,6,7,16,17,18にて得た
見かけ密度0.060g/cm3 の無架橋発泡シートを用
いて、この夫々を発泡比が約1.8倍になるように空気
追添量を調整した後加熱発泡し、見かけ密度0.033
g/cm3 の無架橋発泡シートを得ようとした評価であ
る。
Table 4 (corresponding to Example and Comparative Example 3) shows that "air is additionally added into the bubbles of the non-crosslinked foamed sheet, which will be described later, and heating is performed in a state where the pressure inside the bubbles is high to achieve high foaming. Method ”. For details, see Experiment Nos. Of Examples and Comparative Example 2. 1,6,7,16,17,18 using the non-crosslinked foamed sheet having an apparent density of 0.060 g / cm 3 and adding each of them with air so that the foaming ratio becomes about 1.8 times. After adjusting the amount, heat foaming, apparent density 0.033
This is an evaluation to obtain a non-crosslinked foamed sheet of g / cm 3 .

【0049】この第4表の結果は、上記主要点(イ)を
外れた樹脂組成は(実験No.2,5,28,27に対
応)においては、目標とする見かけ密度まで高発泡せ
ず、しかも独立気泡率が目標レベル(90%以上)に達
せずそして圧縮回復性に劣る発泡シートしか得られない
ことを示している。即ち独立気泡率の高い(90%以
上)ところの無架橋高発泡シートを得るには、上記主要
点(イ)の樹脂組成(樹脂混合比:上記A/B=95/
5〜55/45)が必要であることが実証されている。
更には第5表(実施例、比較例4に対応)の実験No.2
9にて、上記主要点(イ)の樹脂組成で見かけ密度0.
020g/cm3 の無架橋高発泡シートが得られることが
実証されている。
The results shown in Table 4 indicate that resin compositions deviating from the above-mentioned main point (a) (corresponding to Experiment Nos. 2, 5, 28, and 27) did not cause high foaming up to the target apparent density. Moreover, it is shown that the closed cell ratio does not reach the target level (90% or more) and only a foamed sheet having poor compression recovery is obtained. That is, in order to obtain a non-crosslinked highly foamed sheet having a high closed cell rate (90% or more), the resin composition (resin mixing ratio: A / B = 95 /
5 to 55/45) is required.
Furthermore, the experiment No. of Table 5 (corresponding to the example and the comparative example 4). Two
9, the apparent density of 0.
It has been demonstrated that an uncrosslinked, highly foamed sheet of 020 g / cm 3 is obtained.

【0050】上述の結果をまとめると、上記主要点
(イ)の樹脂組成を用いることは、前述の無架橋高発泡
シートの深絞り成形性の向上効果、及び後述する「表面
平滑な無架橋高発泡シートを産むところの上記主要点
(ロ),(ハ)の発泡方法」に最適な組成となり高発泡
性を発揮するということである。
To summarize the above results, the use of the resin composition having the above-mentioned main point (a) is effective in improving the deep drawing formability of the above-mentioned non-crosslinked high-foamed sheet, and the "surface-smooth non-crosslinked high-expansion sheet" described later. This means that the composition is optimal for the above-mentioned main points (b) and (c) of the method of producing a foamed sheet, and high foamability is exhibited.

【0051】例えば前記の特開昭62−192430公
報の、押出発泡法で無架橋高発泡シートを得る方法(但
し、熱成形性に関しては記載なし)は温度変化的に融液
状態からの降温発泡であり、熱成形する場合の常温から
結晶融解直前までの昇温加熱とは粘弾性挙動を異にする
為に高発泡性と深絞り熱成形性とを満足させた樹脂組成
とならない。これに対し、後述する上記主要点(ロ),
(ハ)の本発明の発泡方法は熱成形する場合と同じの昇
温加熱であることより、高発泡性と深絞り熱成形性の両
者を満足させる樹脂組成、即ち上記主要点(イ)の樹脂
組成が選出できるものと推察している。
For example, the method of obtaining a non-crosslinked highly foamed sheet by the extrusion foaming method described in the above-mentioned JP-A-62-192430 (however, the thermoformability is not described) is the temperature-dependent foaming from the melt state by temperature change. Since the viscoelastic behavior is different from the temperature-rise heating from room temperature to immediately before crystal melting in thermoforming, the resin composition does not satisfy high foamability and deep drawing thermoformability. On the other hand, the above-mentioned main point (b), which will be described later,
Since the foaming method of the present invention of (c) is the same heating and heating as in the case of thermoforming, a resin composition satisfying both high foaming property and deep drawing thermoformability, that is, the above-mentioned main point (a) It is assumed that the resin composition can be selected.

【0052】本発明で用いる示差走査熱量測定(昇温速
度10℃/分)による吸熱ピークを135〜150℃に
有する炭素数2〜20のα−オレフィンとのランダム共
重合ポリプロピレン樹脂(A)としては、エチレン−プ
ロピレンランダム共重合体或いはエチレン−プロピレン
−ブテンランダム共重合体がよく知られている。炭素数
2〜20のα−オレフィンの含有量は吸熱ピークが13
5〜150℃の範囲内にあればよく、特に指定はしな
い。MFR40g/10分以下であればよいが、発泡性
能の観点からは0.3〜15g/10分の範囲が好まし
い。
As a random copolymer polypropylene resin (A) with an α-olefin having 2 to 20 carbon atoms, which has an endothermic peak at 135 to 150 ° C. by differential scanning calorimetry (heating rate 10 ° C./min) used in the present invention. Are well known as ethylene-propylene random copolymers or ethylene-propylene-butene random copolymers. The content of the α-olefin having 2 to 20 carbon atoms has an endothermic peak of 13
It may be in the range of 5 to 150 ° C. and is not particularly specified. The MFR may be 40 g / 10 min or less, but from the viewpoint of foaming performance, the range of 0.3 to 15 g / 10 min is preferable.

【0053】また、ポリプロピレン単独重合体、エチレ
ンとのブロック共重合ポリプロピレン樹脂、炭素数2〜
20のα−オレフィンとのランダム共重合ポリプロピレ
ン樹脂の中の1つ以上の組合わせ樹脂(B)としては、
吸熱ピークが該ランダム共重合体(A)より10℃以上
高い樹脂あればよい。発泡性能の観点からは、MFR1
0g/10分以下のものが好ましい。
Further, polypropylene homopolymer, block copolymer polypropylene resin with ethylene, carbon number 2 to
As one or more combination resins (B) among 20 random copolymer polypropylene resins with α-olefins,
A resin having an endothermic peak higher than that of the random copolymer (A) by 10 ° C. or more may be used. From the perspective of foaming performance, MFR1
It is preferably 0 g / 10 minutes or less.

【0054】上記(A)樹脂のMFRと上記(S)樹脂
MFRは、近似しているか上記(A)樹脂のMFRの方
が高い値にあることが好ましい。一方、他の樹脂例え
ば、ポリスチレン樹脂、低密度ポリエチレン、中密度ポ
リエチレン、高密度ポリエチレン、線状低中密度ポリエ
チレンなどの20%以下の特性を悪化させない割合量
を、上記ポリプロピレン系樹脂と混合した樹脂組成であ
ってもよい。次に、上記主要点(イ)の樹脂組成の発泡
方法である主要点(ロ),(ハ)について説明する。
It is preferable that the MFR of the (A) resin and the MFR of the (S) resin are similar to each other or that the MFR of the (A) resin has a higher value. On the other hand, other resins such as polystyrene resin, low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-medium-density polyethylene and the like are mixed with a proportion of 20% or less with the above polypropylene resin. It may be a composition. Next, the main points (b) and (c), which are the foaming methods of the resin composition of the above-mentioned main point (a), will be described.

【0055】まず主要点(ロ),(ハ)の必要性は、例
えば公知の押出発泡法(特開昭58−49730及び特
開昭62−192430公報に記載)と区分したもの
で、従来の無架橋高発泡シートにはない優れた特性を産
み出すところの新規な無架橋ポリプロピレン系樹脂シー
トの発泡方法にある。即ち上記の押出発泡法は、 発泡前後の温度変化にて融液状態からの降温発泡であ
ることから、上記樹脂(B)より吸熱ピーク温度(融
点)の低い上記樹脂(A)が主成分である本発明の混合
樹脂組成においての高発泡化には不向きであること、た
とえば深絞り熱成形性に優れた上記主要点(イ)の樹脂
組成にて独立気泡率の高い無架橋高発泡シートを得よう
とした場合、融点以下の発泡温度条件が必要となるこ
と、この発泡条件は逆に、ダイ内で結晶化してしまうな
ど不安定な発泡であり、表面割れがなく可撓性を有し品
位のある発泡シートが造れない。
First, the necessity of the main points (b) and (c) is divided, for example, from the known extrusion foaming method (described in JP-A-58-49730 and JP-A-62-192430). This is a novel method for foaming a non-crosslinked polypropylene resin sheet, which produces excellent characteristics not found in non-crosslinked highly foamed sheets. That is, since the above-mentioned extrusion foaming method is the temperature-decreasing foaming from the melt state due to the temperature change before and after the foaming, the resin (A) having a lower endothermic peak temperature (melting point) than the resin (B) is the main component. It is unsuitable for high foaming in a certain mixed resin composition of the present invention, for example, a non-crosslinked high foam sheet having a high closed cell ratio is obtained by the resin composition of the above-mentioned main point (a) excellent in deep drawing thermoformability. When trying to obtain, it is necessary to have a foaming temperature condition below the melting point. On the contrary, this foaming condition is unstable foaming such as crystallizing in the die and has flexibility without surface cracking. I cannot make a quality foam sheet.

【0056】高温高圧状態で発泡剤を均質混合したあ
と融点近傍まで冷却し押出機先端に取り付けたダイより
大気中に押出し圧力差を利用して一瞬に高発泡させるこ
とから、発泡速度コントロールして発泡成形するのは極
めて難しいこと、その結果として本発明の無架橋高発泡
シートの如く表面平滑で美粧性のあるものは得られな
い、という問題点がある。
The foaming agent is homogeneously mixed in a high temperature and high pressure state, cooled to near the melting point, and extruded into the atmosphere from a die attached to the tip of the extruder to make high foaming instantaneously by utilizing the pressure difference. There is a problem that it is extremely difficult to carry out foam molding, and as a result, it is not possible to obtain a sheet having a smooth surface and good cosmetic properties such as the non-crosslinked high foam sheet of the present invention.

【0057】これに対して本発明の発泡方法である主要
点(ロ),(ハ)は、昇温加熱発泡であることより上記
(イ)樹脂組成の発泡方法に最適なものであり、発泡速
度コントロールし易いという利点がある。この発泡速度
コントロールという意味は、発泡という歪変化速度の制
御であり、歪変化速度を、これに対して反作用として働
く未発泡部の拘束力を充分に緩和できる速度に調整し、
表面平滑な発泡シートを成形しようということである。
On the other hand, the main points (b) and (c) of the foaming method of the present invention are optimum for the foaming method of the resin composition (a) above since they are foaming by heating at elevated temperature. There is an advantage that the speed can be easily controlled. The meaning of this foaming speed control is the control of the strain change speed of foaming, and the strain change speed is adjusted to a speed at which the restraining force of the unfoamed portion acting as a reaction against it can be sufficiently relaxed,
This is to form a foamed sheet with a smooth surface.

【0058】この場合の発泡挙動は、加熱発泡時のゲル
粘度(使用ポリマー及び含有発泡剤の種類、量に依存す
る)と発泡剤ガス圧力(発泡剤の種類及び含有量に依存
する)との力の差の大小によって、そしてこれらに関係
するところの加熱条件(スチーム昇圧速度、保圧時間、
降圧速度)によって決まる。これらを数値表現すること
は困難であり、よって要するに0.02〜1.0倍/秒
の発泡速度を指標に上記調節条件を設定することであ
る。
The foaming behavior in this case depends on the gel viscosity (depending on the polymer used and the type and amount of the foaming agent contained) and the foaming agent gas pressure (depending on the type and content of the foaming agent) during heat foaming. Depending on the magnitude of the force difference, and the heating conditions related to these (steam pressure rising speed, pressure holding time,
Step-down speed). It is difficult to express these values numerically, and in short, it is necessary to set the above-mentioned adjustment conditions with the foaming rate of 0.02 to 1.0 times / second as an index.

【0059】実施例、比較例1によると、発泡速度が
0.2倍/秒未満になる発泡条件では、昇温加熱発泡中
でのシートから外界雰囲気への、発泡に寄与しない発泡
剤の拡散が多くなる為に発泡効率が低下し、目標倍率の
発泡シートが得られなかったり、発泡ムラのある発泡シ
ートであったりしてしまう。逆に、発泡速度が1.0倍
/秒を越える発泡条件では、この歪変化速度に対して反
作用として働く未発泡部の拘束力を充分に緩和できる速
度でない為に、表面平滑度(平S)値が0.02を越え
る発泡シートになってしまう。
According to the example and the comparative example 1, under the foaming condition that the foaming rate is less than 0.2 times / sec, the diffusion of the foaming agent which does not contribute to the foaming from the sheet into the external atmosphere during the temperature-rise heating foaming. As a result, the foaming efficiency decreases, and a foamed sheet having a target magnification cannot be obtained, or the foamed sheet has uneven foaming. On the other hand, under the foaming condition in which the foaming rate exceeds 1.0 times / second, the surface smoothness (flat S ) A foamed sheet having a value exceeding 0.02 is obtained.

【0060】上記の現象結果からみて、発泡速度を0.
2〜1.0倍/秒で発泡管理せしめることが好ましく、
しかも必須要件であることが分かる。到達発泡倍率は、
発泡剤含有量、加熱条件(スチーム昇圧速度、保圧及び
その時間、降圧速度)に左右するが、この時留意する点
は発泡温度(=スチーム保圧力)を少なからず上記樹脂
(B)の融点より低い温度に設定することである。この
必要性は、樹脂の流動を防ぎ、図1の如く良好な独立気
泡構造の無架橋高発泡シートを得る為にある。
Judging from the result of the above phenomenon, the foaming rate was set to 0.
It is preferable to control foaming at 2 to 1.0 times / second,
Moreover, it turns out that it is an essential requirement. The ultimate expansion ratio is
It depends on the foaming agent content and heating conditions (steam pressurization rate, holding pressure and its time, pressure reduction rate), but the point to keep in mind at this time is not a small foaming temperature (= steam holding pressure) but the melting point of the resin (B). To set a lower temperature. This necessity is to prevent the resin from flowing and to obtain a non-crosslinked highly foamed sheet having a good closed cell structure as shown in FIG.

【0061】また他の留意点として、混合樹脂を押出
機に通してシート状に押出成形する際、樹脂(A),
(B)がミクロ分散均一相容状態となるように十分に溶
融混練すること、そして徐冷状態でシート成形すること
である。この必要性は、発泡剤含浸発泡前素シートのポ
リマー構造をできるだけ均質にしておく為にある。該
素シートに揮発性発泡剤または無機ガスを含浸する際、
その含浸温度は少なからず樹脂(A)の熱変形温度以下
で含浸することである。この必要性は、シートの粘着及
び変形を防止する為にある。
Another point to be noted is that when the mixed resin is extruded into a sheet through an extruder, the resin (A),
(B) is to be sufficiently melt-kneaded so that the microdispersion is in a uniform compatible state, and the sheet is formed in a slowly cooled state. This need is to keep the polymer structure of the blowing agent-impregnated foam sheet as homogeneous as possible. When impregnating the elemental sheet with a volatile foaming agent or an inorganic gas,
The impregnation temperature is not a little lower than the heat distortion temperature of the resin (A). This need is to prevent sticking and deformation of the sheet.

【0062】以上述べた本発明の製造方法において、混
合樹脂を押出機に通してシート状に押出成形する際に、
化学発泡剤を樹脂と一緒に供給し押出微発泡して得た発
泡倍率1.5倍以下のシートを採用することも可能であ
る。また、該素シートに揮発性発泡剤または無機ガスを
含浸し発泡して得た高発泡シートの気泡内に、更に無機
ガスを追添して加熱発泡する多段逐次発泡を採用するこ
とも可能である。
In the above-described production method of the present invention, when the mixed resin is extruded into a sheet shape by passing through an extruder,
It is also possible to employ a sheet having a foaming ratio of 1.5 times or less, which is obtained by supplying a chemical foaming agent together with a resin and performing extrusion microfoaming. Further, it is also possible to adopt a multi-step sequential foaming method in which the elemental sheet is impregnated with a volatile foaming agent or an inorganic gas and foamed to obtain a highly foamed sheet, in which the inorganic gas is further added to heat and foam. is there.

【0063】本発明で用いる揮発性発泡剤または無機ガ
スとしては、ポリプロピレン系樹脂の発泡に用いられる
通常の揮発性発泡剤または無機ガスを用いることができ
る。例えばプロパン、ブタン、ペンタンなどの脂肪族炭
化水素類;1,1,1,2−テトラフルオロエタン(F
−134a)、1,1−ジフルオロエタン(F−152
a)、1,1,2,2,2−ペンタフルオロエタン(F
−125)などのオゾン破壊係数ODP=0であるフッ
素化炭化水素類の揮発性発泡剤や窒素、空気、炭酸ガス
などの無機ガスが挙げられる。その中でも、ガス透過速
度が小さく不燃性ガスであるF−134aは特に好まし
い発泡剤である。
As the volatile foaming agent or inorganic gas used in the present invention, a usual volatile foaming agent or inorganic gas used for foaming polypropylene resin can be used. Aliphatic hydrocarbons such as propane, butane, pentane; 1,1,1,2-tetrafluoroethane (F
-134a), 1,1-difluoroethane (F-152
a), 1,1,2,2,2-pentafluoroethane (F
-125) and the like, volatile foaming agents of fluorinated hydrocarbons having an ozone depletion potential ODP = 0, and inorganic gases such as nitrogen, air and carbon dioxide. Among them, F-134a, which has a low gas permeation rate and is a nonflammable gas, is a particularly preferable foaming agent.

【0064】上述した本発明の製造方法に基づけば、従
来の無架橋高発泡シートでは持っ1いなかった、表皮材
との接着性、打抜き加工性、美粧性、熱真空成形性能、
断熱性能、可撓性などに優れた(第7表記載の実験No.
1,22と32,33との対比参照)処の、「示差走査
熱量測定によって得られる第2回目のDSC曲線に、少
なくとも2つ以上の吸熱ピークを140〜165℃の温
度範囲に示し、該低温側吸熱ピークの頂点の温度と該高
温側吸熱ピークの頂点の温度との差が5℃以上であり、
且つ表面平滑度(平S)が0.02以下」の本発明の無
架橋ポリプロピレン系樹脂高発泡シートを作ることがで
きる。
Based on the above-mentioned production method of the present invention, the adhesiveness with the skin material, the punching workability, the aesthetic property, the thermal vacuum forming performance, which the conventional non-crosslinked high-foaming sheet does not have, are available.
Excellent heat insulation performance and flexibility (Experiment No.
1, 22 and 32, 33)), "in the second DSC curve obtained by differential scanning calorimetry, at least two or more endothermic peaks are shown in the temperature range of 140 to 165 ° C. The difference between the temperature at the apex of the low temperature side endothermic peak and the temperature at the apex of the high temperature side endothermic peak is 5 ° C. or more,
In addition, the non-crosslinked polypropylene resin highly foamed sheet of the present invention having a surface smoothness (flat S) of 0.02 or less "can be produced.

【0065】また本発明の無架橋ポリプロピレン系樹脂
高発泡シートは、廃棄物問題を持つ架橋高発泡シートの
代替シートとなりえることからも、有用性に富んだ極め
て優れたものであると言える。そしてこの製造方法は、
従来その実現が不可能とされていた表面平滑で美粧性を
持つところの、無架橋ポリプロピレン系樹脂シートの高
発泡化を達成しており、しかも架橋工程を省略し省資源
省エネルギーに貢献しており、その技術的意義は極めて
高いものである。
Further, the non-crosslinked polypropylene resin highly foamed sheet of the present invention can be said to be an extremely superior sheet which is rich in usefulness because it can be a substitute sheet for the crosslinked highly foamed sheet having a waste problem. And this manufacturing method,
We have achieved high foaming of non-crosslinked polypropylene resin sheet, which has a smooth surface and beautiful appearance, which was previously impossible to achieve, and contributes to resource saving and energy saving by omitting the crosslinking step. , Its technical significance is extremely high.

【0066】評価方法: 1)見掛け密度(g/cc) 試験片から10×10cm角のサイズに正確に切り出し、
その重量と厚みを計測して、重量を体積で除した単位体
積当たりの重さで表した値である。 2)独立気泡率(%) ASTM−D2856に記載されているエアーピクノメ
ーター法(ベックマン製、モデル930)により測定し
た値である。(n=5の平均) 評価尺度
Evaluation Method: 1) Apparent Density (g / cc) Accurately cut from a test piece into a size of 10 × 10 cm square,
It is a value obtained by measuring the weight and thickness and dividing the weight by the volume, and expressing the weight per unit volume. 2) Closed cell ratio (%) It is a value measured by the air pycnometer method (manufactured by Beckman, model 930) described in ASTM-D2856. (Average of n = 5) Evaluation scale

【0067】[0067]

【表1】 [Table 1]

【0068】3)圧縮回復性 JIS K 6767に準じて、圧縮永久歪CS(%)
及び繰り返し圧縮永久歪RCS(%)を測定し、(C
S)×(RCS)の積値による評価したものである。 評価尺度
3) Compression recovery property According to JIS K 6767, compression set CS (%)
And repeated compression set RCS (%) was measured, and (C
It is evaluated by the product value of (S) × (RCS). Evaluation scale

【0069】[0069]

【表2】 [Table 2]

【0070】4)平均厚み(mm) 試験片の幅方向に約20mm間隔で、デジタル式ノギスを
用いて測定した平均の値である。
4) Average thickness (mm) It is an average value measured with a digital caliper at intervals of about 20 mm in the width direction of the test piece.

【0071】5)表皮材との接着状態 試験片の片面に熱可塑性オレフィンエラストマー(三井
石油化学製、ミラストマー5030N)0.3mmt シー
トの表皮材を載せて、この表皮材面から200℃の加熱
ロールで加熱圧着(2mmt 圧縮)させて熱貼りし、得ら
れた積層品についてつぎの評価を行ったものである。 常温時の表面状態 2m2 面積の積層シート表面状態を目視して、幅10〜
50mmの帯状の筋及びしわの有無により評価する。 評価尺度
5) Adhesion state with skin material A thermoplastic olefin elastomer (Mitsui Petrochemical Co., Ltd., Mirastomer 5030N) 0.3 mmt sheet skin material was placed on one surface of the test piece, and a heating roll at 200 ° C. was applied from this skin material surface. The resulting laminated product was subjected to the following evaluation by thermocompression bonding (2 mmt compression) and heat bonding. Surface condition at room temperature Visually check the surface condition of the laminated sheet with an area of 2m 2
It is evaluated by the presence or absence of band-shaped streaks of 50 mm and wrinkles. Evaluation scale

【0072】[0072]

【表3】 [Table 3]

【0073】高温時の表面状態 この評価は、加熱により積層シート面に生じる表面肌荒
れの状況を目視して評価するもので、140±1℃、5
分間の熱風加熱前後の変化(ハガレ、フクレ)で示す。 評価尺度
Surface Condition at High Temperature This evaluation is to visually evaluate the surface roughness of the laminated sheet surface caused by heating.
The change before and after heating with hot air for 1 minute (peeling, blister) is shown. Evaluation scale

【0074】[0074]

【表4】 [Table 4]

【0075】6)打抜き加工性(寸法精度) 試験片を厚み約40mmに積み重ね、刃高7mm、刃厚1.
2mm、直径15mmφの円形プレス刃の上に一番上のシー
ト表面が接するようにおき、油圧式のプレス機で瞬時に
85%圧縮し打抜き、各シート間に打抜き輪郭部の位置
ズレがなく寸法精度の良いことを評価する。 評価尺度
6) Punching Workability (Dimensional Accuracy) Test pieces were stacked in a thickness of about 40 mm, the blade height was 7 mm and the blade thickness was 1.
Place the uppermost sheet surface on a circular press blade with a diameter of 2 mm and a diameter of 15 mmφ so that the top surface of the sheet comes into contact with each other and is instantly compressed by 85% with a hydraulic press machine. Evaluate that the accuracy is good. Evaluation scale

【0076】[0076]

【表5】 [Table 5]

【0077】7)美粧性 表面くぼみ 1m2 シートの表裏両面を目視して、そこに生じている
くぼみ(外面径が約3〜10mmのすり鉢型の凹部)の数
をかぞえ評価する。 評価尺度
7) Cosmeticity Surface dents Both the front and back sides of a 1 m 2 sheet are visually inspected, and the number of dents (mortar-shaped recesses having an outer diameter of about 3 to 10 mm) formed therein are counted and evaluated. Evaluation scale

【0078】[0078]

【表6】 [Table 6]

【0079】表面光沢性 試験片の表皮部表面を日本電気工業製、Gloss M
ecer VC−10型に装着し、照射角度を45°に
調整し、その反射率を測定し以下の基準に従って評価す
る。 評価尺度
Surface glossiness The surface of the skin of the test piece was manufactured by Nippon Denki Kogyo, Gloss M
Ecer VC-10 type is mounted, the irradiation angle is adjusted to 45 °, and the reflectance is measured and evaluated according to the following criteria. Evaluation scale

【0080】[0080]

【表7】 [Table 7]

【0081】8)熱真空成形性能 加熱条件幅 上下20cmの間隔で面積250mm×250mmに5.4kW
のインフランスタインヒーターを上下両面に設けた真空
成形機(イーリッヒ(株)製)を用いて、開口部の縦1
50mm、横80mm、底部の縦120mm、横60mm、深さ
30mmの角状型の成形を行い、しわ、偏肉、表面肌荒れ
の現象が全く見られない品質の成形品であることを前提
に、各試験片において成形可能な加熱時間の長さによっ
て評価する。 評価尺度
8) Thermal vacuum forming performance Heating condition width: 5.4 kW in an area of 250 mm × 250 mm at intervals of 20 cm above and below
Using the vacuum forming machine (manufactured by Erich Co., Ltd.) equipped with the In France tine heaters on both the upper and lower sides, the vertical opening 1
50mm, width 80mm, bottom length 120mm, width 60mm, depth 30mm square mold is formed, and on the premise that it is a molded product of quality with no wrinkles, uneven thickness, or surface roughness. Evaluation is made based on the length of heating time during which each test piece can be molded. Evaluation scale

【0082】[0082]

【表8】 [Table 8]

【0083】深絞り性 前記の真空成形機を用いて、開口部150mm角、抜き勾
配6°、底コーナーR2.5の任意に深さ調節可能な金
型を使用して、成形可能な絞り比を評価した。絞り比は
次式によって与えられる。
Deep drawability Using the vacuum forming machine described above, a die having a 150 mm square opening, a draft of 6 °, and a bottom corner R2.5 of which the depth can be arbitrarily adjusted can be used to form a draw ratio. Was evaluated. The aperture ratio is given by the following equation.

【0084】[0084]

【数6】Q−H/W Q:絞り比 H:成形品の深さ(mm) W:成形品の開口部長さ100mm 良否の判定は成形によって、成形品表面にひび割れ、表
面荒れが全くない場合で、かつ成形金型の凹部の内寸法
(a)と成形品の外寸法(b)との比(a/b)が0.
95以上の場合を成形可能範囲とした。 評価尺度
[Equation 6] Q-H / W Q: Drawing ratio H: Depth of molded product (mm) W: Opening length of molded product 100 mm Judgment of quality is made by molding without any cracks or surface roughness on the molded product surface. And the ratio (a / b) of the inner dimension (a) of the recess of the molding die to the outer dimension (b) of the molded product is 0.
The case of 95 or more was defined as the moldable range. Evaluation scale

【0085】[0085]

【表9】 [Table 9]

【0086】9)耐熱性 JIS−K−6767に規定されている測定法に準じ
て、熱処理による縦、横及び厚さ方向のそれぞれの熱収
縮率をもって示した。具体的には、測定用試験片に縦、
横各10cmの正方形の印を付けて、厚さを測定した後、
120℃×22時間熱風オーブン中で熱処理する。室温
に冷却した後、縦、横及び厚さの寸法を測定し、この熱
処理による寸法変化(熱収縮率)の大きさにより次の評
価をする。 評価尺度
9) Heat resistance In accordance with the measuring method specified in JIS-K-6767, the heat shrinkage rate in each of the vertical, horizontal and thickness directions by heat treatment is shown. Specifically, vertically on the test piece for measurement,
After making a square mark of 10 cm on each side and measuring the thickness,
Heat treatment is performed in a hot air oven at 120 ° C. for 22 hours. After cooling to room temperature, the length, width, and thickness dimensions are measured, and the following evaluation is performed based on the magnitude of the dimensional change (heat shrinkage rate) due to this heat treatment. Evaluation scale

【0087】[0087]

【表10】 [Table 10]

【0088】10)総合評価 評価結果を総合するものとして、次の尺度の評価をす
る。 評価尺度
10) Comprehensive Evaluation The following scales are evaluated as a comprehensive evaluation result. Evaluation scale

【0089】[0089]

【表11】 [Table 11]

【0090】11)断熱性能(熱伝導率) ASTM−C−518に準拠し、kcal/m.hr.℃の単
位でかつ0℃の値で評価したものである。 評価尺度
11) Adiabatic performance (thermal conductivity) In accordance with ASTM-C-518, kcal / m. hr. It is evaluated in the unit of ° C and the value of 0 ° C. Evaluation scale

【0091】[0091]

【表12】 [Table 12]

【0092】12)可撓性 試験片を180°折り曲げた後の表面状態を目視して、
表面割れの有無により評価する。 評価尺度
12) Visual observation of the surface condition after bending the flexible test piece by 180 °
It is evaluated by the presence or absence of surface cracks. Evaluation scale

【0093】[0093]

【表13】 [Table 13]

【0094】13)成形天井基材としての適応試験 発泡シートの片面に熱可塑性オレフィンエラストマ(三
井石油化学製、ミラストマー5030N)0.3mmt シ
ートの表皮材を加熱圧着(2mmt 圧縮)させて熱貼り
し、得られた積層品を使って次の評価を行ったものであ
る。
13) Adaptation Test as Molded Ceiling Base Material Thermoplastic olefin elastomer (Mitsui Petrochemical Co., Ltd., Mirastomer 5030N) 0.3 mmt sheet skin material was thermocompression bonded (2 mmt compression) to one side of the foamed sheet and heat-bonded. The following evaluation was performed using the obtained laminated product.

【0095】実用耐熱性 上記積層品(長さ500mm、幅50mm)の発泡シートを
上向きにして、スパン長400mmの支持枠上におき、1
20℃±1℃に保たれた熱風循環恒温槽内で24時間加
熱し、室温放冷後、試験片の中央部の垂れ下がり量Lmm
を測定し、垂れ下がり率=(L/400)×100を求
める。 評価尺度
Practical heat resistance The laminated sheet (length: 500 mm, width: 50 mm) with the foamed sheet facing upward is placed on a supporting frame having a span length of 400 mm, and 1
After heating for 24 hours in a hot-air circulating thermostat maintained at 20 ° C ± 1 ° C and allowing to cool at room temperature, the amount of sagging Lmm of the center of the test piece Lmm
Is measured, and the sagging rate = (L / 400) × 100 is calculated. Evaluation scale

【0096】[0096]

【表14】 [Table 14]

【0097】熱成形性 1ショットの成形面積の広い大型真空成形機を用いて、
長さ800mm、幅600mmの開口部で60Rのコーナー
曲率で、中央部に口径50mmφ高さ40mmの凸部を持つ
深さ80mmの複雑形状の平型で、成形品の凸面に発泡シ
ートが出るようにして真空成形し、成形品の表面状態
(しわ、表面の荒れ)を目視にて評価する。 評価尺度
Thermoformability Using a large vacuum forming machine having a wide one-shot forming area,
It has a corner curvature of 60R with an opening of 800 mm in length and 600 mm in width, and a flat shape with a complex shape of 80 mm in depth having a convex part with a diameter of 50 mm and a height of 40 mm in the center, so that a foamed sheet appears on the convex surface of the molded product. Then, the surface condition (wrinkles, surface roughness) of the molded product is visually evaluated. Evaluation scale

【0098】[0098]

【表15】 [Table 15]

【0099】14)リペレット性 試験片を粉砕後、ベント付き押出機(40mmφ,L/D
=32)に投入し溶融脱泡させて、ダイスよりストラン
ド状(約2mmφ)に連続に押出し、水冷しペレタイザー
に通してペレットを得た。この時、安定してストランド
が引けるかどうかにて評価した。 評価尺度
14) Repelletability After crushing the test piece, a vented extruder (40 mmφ, L / D)
= 32), melted and degassed, continuously extruded in a strand form (about 2 mmφ) from a die, cooled with water and passed through a pelletizer to obtain pellets. At this time, it was evaluated whether or not the strand could be pulled stably. Evaluation scale

【0100】[0100]

【表16】 [Table 16]

【0101】[0101]

【実施例】以下本発明の内容を実施例を用いて詳述す
る。 実施例1、比較例1 この実験は、本発明でいう構造指標、即ち無架橋高発泡
シートが示す表面平滑度Sをシート品位、二次加工時の
管理指標として観ることの意義を示すためのものであ
る。換言すれば、本発明の方法条件で得た構造指標、表
面平滑度Sが満たされてなければシート品位及び二次加
工性能は発揮されるものでない事実の実証である。
EXAMPLES The contents of the present invention will be described in detail below with reference to examples. Example 1 and Comparative Example 1 This experiment is for showing the significance of viewing the structural index referred to in the present invention, that is, the surface smoothness S exhibited by the non-crosslinked high-foamed sheet, as a sheet quality and a management index during secondary processing. It is a thing. In other words, it is a proof of the fact that the sheet quality and the secondary processing performance cannot be exhibited unless the structural index and the surface smoothness S obtained under the method conditions of the present invention are satisfied.

【0102】エチレン−プロピレン−ブテンランダム共
重合体(第1表A樹脂)75重量%とエチレン−プロピ
レンブロック共重合体(第1表F樹脂)25重量%との
混合物を口径65mmの二軸押出機で溶融混練りし、この
押出機に連結しているコートハンガータイプのTダイか
ら押出し、次いでポリシングロールに通して表面平滑な
1.2mmt の発泡剤含浸発泡用素シートとした。
A mixture of 75% by weight of an ethylene-propylene-butene random copolymer (resin A in Table 1) and 25% by weight of an ethylene-propylene block copolymer (resin F in Table 1) was biaxially extruded with a diameter of 65 mm. Melt kneading with a machine, extruding from a coat hanger type T die connected to this extruder, and then passing through a polishing roll to obtain a foaming agent-impregnated foaming sheet having a smooth surface of 1.2 mmt.

【0103】この長尺の素シートを耐圧容器内に収容
し、1,1,1,2−テトラフルオロエタン(F−18
4a)液を注入し、圧力28.4kg/cm2 G、温度85
℃の条件下で2時間かけて該素シート中にF−134a
を含浸した。そして容器内を常温まで冷却した後容器内
から大気中に取り出し、取り出し後1分経過時、30分
経過時のF−134a含浸量を測定したところガス逃げ
はなくいずれも3.7重量%であった。
This long sheet was placed in a pressure resistant container, and 1,1,1,2-tetrafluoroethane (F-18
4a) liquid is injected, pressure 28.4 kg / cm 2 G, temperature 85
F-134a in the raw sheet for 2 hours under the condition of
Was impregnated. Then, after cooling the inside of the container to room temperature, it was taken out from the inside of the container into the atmosphere, and the amount of impregnated F-134a at 1 minute and 30 minutes after taking out was measured, and it was found that no gas escaped. there were.

【0104】次に含浸後直ちに、この長尺の発泡性樹脂
シートを連続発泡装置(シート走行方向にスチーム昇・
降圧制御できる加熱トンネル)に供給して、予熱ゾー
ン;スチーム圧2.0kg/cm2 G(137℃)、シート
走行滞流時間5秒間、昇温加熱発泡開始ゾーン;スチ
ーム圧2.0kg/cm2 G(137℃)から3.4kg/cm
2 G(147℃)にほぼ直線的な勾配圧、シート走行滞
流時間22秒間(スチーム加熱昇圧速度0.064kg/
cm2 G・秒)、発泡ゾーン;スチーム圧3.4kg/cm
2 G(147℃)、シート走行滞流時間18秒間、降
温冷却ゾーン;スチーム圧3.4kg/cm2 G(147
℃)から0.2kg/cm2 G(105℃)にほぼ直線的な
勾配圧、シート走行滞流時間5秒間となる加熱条件を与
えて連続発泡し、見かけ密度0.060g/cc(発泡倍
率15.2倍)、独立気泡率99%、平均厚み3.0mm
の高発泡シートを得た。
Immediately after the impregnation, the continuous foamable resin sheet was immediately expanded into a continuous foaming device (steam rising / lowering in the sheet running direction).
Supply to a heating tunnel capable of controlling the pressure reduction, preheating zone; steam pressure 2.0 kg / cm 2 G (137 ° C.), sheet running dwell time 5 seconds, heating heating foaming start zone; steam pressure 2.0 kg / cm 2 G (137 ° C) to 3.4 kg / cm
Almost linear gradient pressure at 2 G (147 ° C), seat running stagnant time 22 seconds (steam heating pressurization rate 0.064 kg /
cm 2 G ・ sec), foaming zone; steam pressure 3.4 kg / cm
2 G (147 ° C), sheet running dwell time 18 seconds, cooling / cooling zone; steam pressure 3.4 kg / cm 2 G (147
℃) to 0.2 kg / cm 2 G (105 ℃) with a substantially linear gradient pressure and heating conditions such that the sheet running stagnant time is 5 seconds to continuously foam, and an apparent density of 0.060 g / cc (foaming ratio) 15.2 times), closed cell rate 99%, average thickness 3.0 mm
A highly foamed sheet of

【0105】この高発泡シートができるまでの加熱時間
に対する発泡倍率の変化挙動を調べたところ、予熱ゾ
ーンの出口点=発泡倍率1.0倍(未発泡)、昇温加
熱発泡開始ゾーンの出口点=発泡倍率4.4倍、発泡
ゾーンの出口点=発泡倍率15.0倍、降温冷却ゾー
ンの出口点=発泡倍率15.2倍(最終発泡倍率)であ
って、その最高発泡速度は0.2倍/秒(=4.4倍/
22秒)を示した。これを実験No.1とする。
The change behavior of the foaming ratio with respect to the heating time until the formation of this highly foamed sheet was examined. The exit point of the preheating zone = foaming ratio of 1.0 times (non-foaming), the exit point of the temperature rising heating foaming initiation zone. = Expansion ratio 4.4 times, foaming zone exit point = foaming ratio 15.0 times, cooling / cooling zone exit point = foaming ratio 15.2 times (final foaming ratio), and the maximum foaming rate is 0. 2 times / second (= 4.4 times /
22 seconds). This is Experiment No. Set to 1.

【0106】この実験で得られた無架橋高発泡シートの
幅方向断面を拡大した局部の写生概念図を図1に示す。
図1によると、本発明の発泡シートは、幅方向の気泡径
が揃ったもので比較的平滑な表面状態を有していること
がよく分かる。
FIG. 1 shows a conceptual drawing of a local image obtained by enlarging the cross section in the width direction of the non-crosslinked highly foamed sheet obtained in this experiment.
From FIG. 1, it can be clearly seen that the foamed sheet of the present invention has uniform cell diameters in the width direction and has a relatively smooth surface state.

【0107】昇温加熱発泡開始ゾーン(スチーム圧
2.0kg/cm2 G(137℃)から3.4kg/cm2
(147℃)に直線的な勾配圧)のシート走行滞流時間
を8秒間(スチーム加熱昇圧速度0.175kg/cm2
・秒)、4秒間(スチーム加熱昇圧速度0.35kg/cm
2 G・秒)、2秒間(スチーム加熱昇圧速度0.70kg
/cm2 G・秒)、1秒間(スチーム加熱昇圧速度1.4
0kg/cm2 G・秒)に変更する以外は比較を簡単にする
目的で、その他の工程条件は実験No.1と同じに、そし
て見かけ密度(g/cc)、平均厚み(mm)は同じ水準に
なるように揃える努力をして実験を繰り返した。変更条
件点である上記昇温加熱発泡開始ゾーン出口点の発泡
倍率は大体、4.0倍,4.0倍,3.0倍,2.0倍
であり、その最高発泡速度は0.5倍/秒,1.0倍/
秒,1.5倍/秒,2.0倍/秒を示した。これを実験
No.2,3,4,5の一連番号を付した。
Temperature rising heating foaming start zone (steam pressure 2.0 kg / cm 2 G (137 ° C.) to 3.4 kg / cm 2 G
(Slope pressure linear to 147 ℃) sheet running dwell time for 8 seconds (steam heating pressurization rate 0.175 kg / cm 2 G
・ Second), 4 seconds (steam heating boost rate 0.35kg / cm
2 G ・ sec), 2 sec (steam heating boost rate 0.70 kg
/ Cm 2 G · second), 1 second (steam heating pressure rising speed 1.4)
0 kg / cm 2 G · sec) except for the purpose of simplifying the comparison, other process conditions are the same as those in Experiment No. The experiment was repeated in the same manner as in No. 1, but with an effort to align the apparent density (g / cc) and the average thickness (mm). The expansion ratio at the exit point of the temperature rising and heating foaming initiation zone, which is the change condition point, is about 4.0 times, 4.0 times, 3.0 times, 2.0 times, and the maximum foaming rate is 0.5. Times / second, 1.0 times /
Seconds, 1.5 times / second, and 2.0 times / second. Experiment this
No. The serial numbers 2, 3, 4, and 5 are attached.

【0108】得られた実験No.1〜5の発泡シートにつ
いて、本文記載の方法で表面平滑度Sを測定した結果を
第2表に示した。この結果によると、発泡速度が1.0
倍/秒を越える発泡条件では、この歪変化速度に対して
反作用として働く未発泡部の拘束力を充分に緩和できる
速度でない為に、表面平滑度(平S)値が0.02を越
える発泡シートになってしまうことが分かる。
The obtained experiment No. The results of measuring the surface smoothness S of the foamed sheets 1 to 5 by the method described in the text are shown in Table 2. According to this result, the foaming rate is 1.0
Under the foaming condition of more than twice / second, the surface smoothness (flat S) value exceeds 0.02 because the restraining force of the unfoamed portion acting as a reaction to the strain change speed is not sufficiently relaxed. You can see that it will be a sheet.

【0109】また、昇温加熱発泡開始ゾーン(スチー
ム圧2.0kg/cm2 G(137℃)から3.4kg/cm2
G(147℃)に直線的な勾配圧)のシート走行滞流時
間を30秒間(スチーム加熱昇圧速度0.047kg/cm
2 G・秒)に変更する以外は実験No.1と同じ条件で実
験をした。変更条件点である上記昇温加熱発泡開始ゾ
ーン出口点の発泡倍率は4.6倍であり、そして上記
降温冷却ゾーンの出口点=発泡倍率12.0倍(最終発
泡倍率)であって、その最高発泡速度は0.15倍/秒
(=4.6倍/30秒)を示した。得られた発泡シート
は、表面に所々くぼみをもつ外観が悪いものであった。
Further, the temperature rising heating foaming start zone (steam pressure 2.0 kg / cm 2 G (137 ° C.) to 3.4 kg / cm 2
G (147 ° C) linear gradient pressure) The sheet running dwell time is 30 seconds (steam heating pressurization rate 0.047 kg / cm
Experiment No. 2 except changing to 2 G ・ sec) The experiment was conducted under the same conditions as in 1. The expansion ratio at the exit point of the temperature rising and heating foaming start zone, which is a change condition point, is 4.6 times, and the exit point of the cooling and cooling zone = expansion ratio of 12.0 times (final expansion ratio), The maximum foaming rate was 0.15 times / second (= 4.6 times / 30 seconds). The foamed sheet obtained had an inferior appearance with depressions on the surface.

【0110】この結果から発泡速度が0.2倍/秒未満
になる発泡条件では、昇温加熱発泡中でのシートから外
界雰囲気への、発泡に寄与しない発泡剤の拡散が多くな
る為に発泡効率が低下し、目標倍率の発泡シートが得ら
れなかったり、発泡ムラのある発泡シートであったりし
てしまい、好ましくないことが分かる。上記の現象結果
からみて、発泡速度を0.2〜1.0倍/秒で発泡管理
せしめることが好ましく、しかも必須要件であることが
分かる。
From this result, under the foaming condition that the foaming rate is less than 0.2 times / sec, the foaming agent that does not contribute to foaming increases from the sheet to the external atmosphere during the temperature-rising heating foaming, and thus foaming occurs. It is understood that the efficiency is lowered, a foamed sheet having a target magnification cannot be obtained, or the foamed sheet has uneven foaming, which is not preferable. From the results of the above phenomena, it is understood that it is preferable to control the foaming at a foaming rate of 0.2 to 1.0 times / second, and it is an essential requirement.

【0111】上記実験No.1〜5の発泡シートについ
て、本文記載の方法で表皮材との接着状態(外観及び接
着強度)、打抜き加工性、熱真空成形性能(加熱条件幅
の広さ)、美粧性(発泡シート表面の光沢及びくぼみの
有無)を評価し、表面平滑度を示す指標Sと共に第2表
に示した。第2表によると、(平S)値は少なくとも
0.02以下でないと表皮材との接着、打抜き加工や熱
真空成形時の加熱条件幅の広さという二次加工性、そし
て表面のくぼみがなく光沢があるという美粧性のすべて
を満たす良質な無架橋高発泡シートとならないことが分
かる。
The above experiment No. For the foamed sheets 1 to 5, the state of adhesion to the skin material (appearance and adhesive strength), punching workability, thermal vacuum forming performance (wide range of heating conditions), and aesthetics (of the surface of the foamed sheet) by the methods described in the text The gloss and the presence / absence of dents were evaluated and are shown in Table 2 together with the index S indicating the surface smoothness. According to Table 2, if the (flat S) value is at least 0.02 or less, adhesion with the skin material, secondary workability such as wide range of heating conditions during punching and thermal vacuum forming, and surface depression It can be seen that a high-quality non-crosslinked high-foaming sheet that satisfies all the aesthetic requirements of being glossy without being obtained.

【0112】実施例2、比較例2 この実験は、本発明で言うポリマー構造特性、即ち無架
橋高発泡シートが示す結晶融解特性を熱真空成形性、耐
熱性の管理指標として観ることの意義を示すためのもの
である。換言すれば、本発明のポリマー組成、方法条件
で得た、この無架橋高発泡シートの融解特性が満たされ
てなければ熱真空成形時の深絞り性は発揮されるもので
はない事実の実証である。
Example 2 and Comparative Example 2 This experiment shows the significance of seeing the polymer structural characteristics referred to in the present invention, that is, the crystal melting characteristics of the non-crosslinked high-foamed sheet, as a control index of thermal vacuum moldability and heat resistance. It is for the purpose of showing. In other words, the fact that the deep drawability during hot vacuum forming cannot be exhibited unless the melting characteristics of the non-crosslinked high-foam sheet obtained by the polymer composition and process conditions of the present invention are satisfied is demonstrated. is there.

【0113】従って実験に共するシートは、見かけ密度
(0.060g/cc)、平均厚み(3.0mm)の総てを
同一水準のものになるように努力し、実施例、比較例1
の実験No.1と同じ工程、装置条件を用いて得た無架橋
高発泡シートを提供し、対比する関係を分かりやすくし
てある。
Therefore, the sheets used in the experiment were made so that the apparent density (0.060 g / cc) and the average thickness (3.0 mm) were all at the same level.
Experiment No. The non-crosslinked highly foamed sheet obtained by using the same process and apparatus conditions as in No. 1 is provided, and the comparison relationship is easily understood.

【0114】即ち、第1表に示す樹脂を第3表に示す組
成割合で混合するように変更することの他は、上記実験
No.1の実験方法の条件(最高発泡速度が0.2倍/秒
(=4.4倍/22秒)そして樹脂(B)の融点より低
い温度での発泡条件)を採用して行った繰り返しの実験
である。これに実験No.6〜21の一連番号を付した。
That is, except that the resins shown in Table 1 were mixed so as to have the composition ratios shown in Table 3, the above experiment was conducted.
No. Repeated using the conditions of 1 experimental method (maximum foaming rate 0.2 times / second (= 4.4 times / 22 seconds) and foaming conditions at a temperature lower than the melting point of the resin (B)). It is an experiment. Experiment No. The serial numbers from 6 to 21 are assigned.

【0115】得られた発泡シートの表面平滑度(平S)
を本文記載の方法で評価したところ、実施例1、比較例
1の実験No.1の場合と近似した値、0.005〜0.
007を示し、実験No.6〜21の発泡シートは総て成
形加工に供し得る高品位のシートであることを示した。
従ってこれらの無架橋高発泡シートの各々は第2回目の
DSC曲線を本文記載の方法で測定評価してみることに
した。そしてこの処の結果を第3表に示した。
Surface smoothness of obtained foamed sheet (flat S)
Was evaluated by the method described in the text, and Experiment No. 1 of Example 1 and Comparative Example 1 were evaluated. A value similar to the case of 1, 0.005 to 0.
No. 007, and the experiment No. It was shown that the foamed sheets of 6 to 21 were all high quality sheets that could be subjected to molding processing.
Therefore, it was decided to measure and evaluate the second DSC curve of each of these non-crosslinked highly foamed sheets by the method described in the text. The results of this treatment are shown in Table 3.

【0116】第3表の結果によると、少なくとも2つ
以上の吸熱ピークを示し、該低温側吸熱ピークの頂点の
温度と該高温側吸熱ピークの頂点の温度との差が5℃以
上にある無架橋高発泡シートを出現するには、実験No.
8(上記A樹脂の吸熱ピーク138℃と上記B樹脂の吸
熱ピーク148℃の場合、温度差10℃)と実験No.2
0(上記A樹脂の吸熱ピーク140℃と上記B樹脂の吸
熱ピーク148℃の混合、温度差8℃)との結果対比に
て、上記A樹脂の吸熱ピーク温度に対しB樹脂の吸熱ピ
ーク温度が10℃以上高いことの意味が実証され、そ
してB樹脂は、A樹脂の吸熱ピーク温度に対し10℃以
上高い吸熱ピークを持つ樹脂(ポリプロピレン単独重合
体、エチレンとのブロック共重合ポリプロピレン樹脂、
炭素数2〜20のα−オレフィンとのランダム共重合ポ
リプロピレン樹脂)の中の一つ以上の組合わせ樹脂を用
いても良いことが、実験No.8〜14の結果が実証して
おり、更に実験No.1,6,7,15,16,17,
18,19(吸熱ピーク140℃の上記A樹脂と吸熱ピ
ーク163℃の上記B樹脂の温度差23℃の2種類の樹
脂を用いて、混合比率を変えての実験)の結果から、上
記A樹脂55〜95重量%と上記B樹脂5〜45重量%
とからなる混合樹脂を用いることの意味が実証されてい
ることが分かる。
According to the results shown in Table 3, there are at least two endothermic peaks, and the difference between the temperature at the apex of the low temperature side endothermic peak and the temperature at the apex of the high temperature side endothermic peak is 5 ° C. or more. In order to develop a crosslinked high-foam sheet, Experiment No.
8 (in the case of the endothermic peak 138 ° C. of the A resin and the endothermic peak 148 ° C. of the B resin, a temperature difference of 10 ° C.) and Experiment No. Two
0 (mixing of the endothermic peak 140 ° C. of the A resin and 148 ° C. of the B resin, temperature difference 8 ° C.), the endothermic peak temperature of the B resin is compared with the endothermic peak temperature of the A resin. The meaning of being higher than 10 ° C is proved, and the B resin is a resin having an endothermic peak higher than the endothermic peak temperature of the A resin by 10 ° C or more (a polypropylene homopolymer, a block copolymer polypropylene resin with ethylene,
Experiment No. 1 may use one or more combination resins of (C2-20 random copolymerized polypropylene resin with α-olefin). The results of 8 to 14 have been proved, and further, the experiment No. 1, 6, 7, 15, 16, 17,
18 and 19 (experiments in which the mixing ratio was changed by using two kinds of resins having a temperature difference of 23 ° C. between the A resin having an endothermic peak of 140 ° C. and the B resin having an endothermic peak of 163 ° C.), 55 to 95% by weight and B resin 5 to 45% by weight
It can be seen that the meaning of using the mixed resin consisting of and has been proven.

【0117】逆にこの結果は、本発明に用いた混合樹脂
は夫々単独時の固有の吸熱ピークを表すのでなく、混合
融解相容して互いに共有した結晶を作り、混合比率によ
って変わるところの独自の結晶形態をとることを示唆し
ているものである。
On the contrary, the results show that the mixed resins used in the present invention do not show the endothermic peaks peculiar to each other alone, but they are mixed and melt compatible to form crystals shared with each other, and are unique to each other depending on the mixing ratio. It suggests that it takes the crystal form of.

【0118】また第3表によると、2つ以上の吸熱ピー
クを140〜165℃の温度範囲にある無架橋高発泡シ
ートを出現するには、実験No.11(上記A樹脂の吸熱
ピーク137℃と上記B樹脂の吸熱ピーク163℃の混
合)と実験No.21(上記A樹脂の吸熱ピーク131℃
と上記B樹脂の吸熱ピーク163℃の混合)との、しか
もどちらもランダム共重合ポリプロピレン樹脂(A樹
脂)90重量%の厳しい混合比での対比にて、135℃
以上の吸熱ピークを有するランダム共重合ポリプロピレ
ン樹脂を用いることの意味が実証されている。
Further, according to Table 3, in order to develop a non-crosslinked highly foamed sheet having two or more endothermic peaks in the temperature range of 140 to 165 ° C., Experiment No. 11 (mixture of the endothermic peak 137 ° C. of the A resin and the endothermic peak 163 ° C. of the B resin) and Experiment No. 11 21 (Endothermic peak of resin A above 131 ° C
And the endothermic peak of the above resin B is 163 ° C.), and both are 135 ° C. at a strict mixing ratio of 90% by weight of the random copolymerized polypropylene resin (A resin).
The significance of using the random copolymerized polypropylene resin having the above endothermic peaks has been verified.

【0119】更に第3表は実験No.1と共に実験No.6
〜21の発泡シートの各々について、本文記載の方法で
評価した深絞り成形性能、耐熱性の結果と該発泡シート
が示す指標との関係をまとめて示した表である。
Further, Table 3 shows the experiment No. Experiment No. 1 with 6
22 is a table showing a summary of the relationships between the results of deep-drawing molding performance and heat resistance evaluated by the methods described in the text and the indices of the foamed sheets for each of the foamed sheets of Nos. 21 to 21.

【0120】この第3表によると、自動車成形天井材な
どの複雑な熱真空成形に要求されるところの深絞り性を
付加する観点からは、無架橋高発泡シートの示差走査熱
量測定によって得られる第2回目のDSC曲線におい
て、少なくとも2つ以上の吸熱ピークと、該低温側吸熱
ピークの頂点の温度と該高温側吸熱ピークの頂点の温度
との差が5℃以上にあることの意味が実証されている
(実験No.1,6〜14,21と実験No.15〜20と
の関係)ことが分かる。そして耐熱寸法安定性を兼備さ
せる観点からは、該吸熱ピークが140〜165℃の温
度範囲にあることの意味が実証されている(実験No.
1,6〜20と実験No.21との関係)。
According to Table 3, from the viewpoint of adding the deep drawability required for complicated thermal vacuum forming of automobile molding ceiling materials, etc., it can be obtained by differential scanning calorimetry of uncrosslinked high-foamed sheet. In the second DSC curve, at least two or more endothermic peaks, and the difference between the temperature at the apex of the low temperature side endothermic peak and the temperature at the apex of the high temperature side endothermic peak was verified to be 5 ° C. or more. It is understood that the above is performed (relationship between Experiment Nos. 1, 6 to 14 and 21 and Experiment Nos. 15 to 20). From the viewpoint of having both heat-resistant dimensional stability, it has been proved that the endothermic peak is in the temperature range of 140 to 165 ° C (Experiment No.
1, 6 to 20 and the experiment No. 21 relationship).

【0121】即ち第3表の結果は、「該無架橋高発泡シ
ートの示差走査熱量測定によって得られる第2回目のD
SC曲線」が、(1)少なくとも2つ以上の吸熱ピーク
を(2)140〜165℃の温度範囲に示し(3)該低
温側吸熱ピークの頂点の温度と該高温側吸熱ピークの頂
点の温度との差が5℃以上であることは、シートの優れ
た深絞り成形性の向上効果及び耐熱性を示すところの、
シートの融解特性あるいは粘弾性特性を表現した発明の
構成の要件であることを実証している。
That is, the results shown in Table 3 are "the second D obtained by the differential scanning calorimetry of the uncrosslinked highly foamed sheet.
SC curve "shows (1) at least two or more endothermic peaks in the temperature range of (2) 140 to 165 ° C. (3) Temperature at the apex of the low temperature side endothermic peak and temperature at the apex of the high temperature side endothermic peak A difference of 5 ° C. or more indicates that the sheet has an excellent effect of improving deep drawability and heat resistance.
It has been proved that it is a requirement for the constitution of the invention that expresses the melting property or viscoelastic property of the sheet.

【0122】実施例3、比較例3 ここでの実験は、本発明のポリマー組成が対象とする処
の独立気泡率の高い高発泡倍率(−低い見かけ密度)の
発泡シートが得られるものであることを示すものであ
る。
Example 3, Comparative Example 3 The experiment here is to obtain a foamed sheet having a high closed cell ratio and a high expansion ratio (-low apparent density), which is the object of the polymer composition of the present invention. It means that.

【0123】実験に供するシートは、実施例2、比較例
2の実験No.1,6,7,16,17,18で得られた
発泡シート(見かけ密度0.060g/cc)を用いて、
この夫々の気泡内に発泡比が1.8倍になるように空気
を追添調整して、そして上記実施例2、比較例2の各実
験で行った一次発泡と同じ様な条件で二次発泡したもの
である。
The sheets to be used in the experiment are those of Experiment No. 2 of Example 2 and Comparative Example 2. Using the foamed sheets (apparent density 0.060 g / cc) obtained in 1, 6, 7, 16, 17, and 18,
Air was added and adjusted so that the foaming ratio was 1.8 times in each of the bubbles, and the secondary foaming was performed under the same conditions as the primary foaming performed in each experiment of Example 2 and Comparative Example 2 above. It is foamed.

【0124】得られた発泡シートは、本文記載の方法で
発泡シートの指標(表面平滑度、第2回目DSC曲
線)、表皮材との接着性、打抜き加工性、美粧性、熱真
空成形性能、耐熱性、圧縮回復性、到達した見かけ密度
及び独立気泡率を測定評価して、その結果を第4表にま
とめた。
The obtained foamed sheet was evaluated by the method described in the text, including the index of the foamed sheet (surface smoothness, second DSC curve), adhesiveness with the skin material, punching workability, aesthetics, thermal vacuum forming performance, The heat resistance, the compression recovery property, the apparent density reached and the closed cell ratio were measured and evaluated, and the results are summarized in Table 4.

【0125】第4表によると、本発明の樹脂組成を外れ
た組成(実験No.25,26,27に対応)において
は、目標とする見かけ密度まで高発泡せず、しかも独立
気泡率が目標レベル(90%以上)に達せずそして圧縮
回復性に劣る発泡シートしか得られないことが分かる。
この現象は、本発明の樹脂組成を外れた組成となると大
きな均質伸びを示す温度範囲が非常にな小さい為である
と推察される。換言すれば、独立気泡率の高い(90%
以上)ところの無架橋高発泡シートを得るには、本発明
の樹脂組成(樹脂混合比:上記A/B=95/5〜55
/45)であるという構成要件の必要性を裏付けるもの
である。
According to Table 4, in the compositions deviating from the resin composition of the present invention (corresponding to Experiment Nos. 25, 26 and 27), high foaming did not occur up to the target apparent density, and the closed cell ratio was the target. It can be seen that only a foamed sheet which does not reach the level (90% or more) and has poor compression recovery is obtained.
This phenomenon is presumed to be because the temperature range where the composition deviates from the resin composition of the present invention exhibits a large homogeneous elongation is extremely small. In other words, the closed cell ratio is high (90%
In order to obtain the above non-crosslinked highly foamed sheet, the resin composition of the present invention (resin mixing ratio: A / B = 95/5 to 55) is used.
/ 45) confirms the necessity of the constituent requirement.

【0126】実施例4 この実験は、本発明の発泡シートが対象とする「見かけ
密度」の適用範囲を示す為のものである。適用の関係を
単純明解にする目的でここでの発泡シートは、本発明樹
脂組成中の1つの組成を用いて第2回目DSC曲線そし
て表面平滑度Sの指標が一定水準の値に揃うように調整
してある。
Example 4 This experiment is to show the applicable range of "apparent density" targeted by the foamed sheet of the present invention. For the purpose of simplifying the application relationship, the foamed sheet here is designed so that the second DSC curve and the index of the surface smoothness S are aligned to a certain level by using one of the resin compositions of the present invention. It is adjusted.

【0127】即ち実験No.28は、実施例1、比較例1
の実験No.1に対してF−134a発泡剤含浸量を1.
5重量%に変更する他は実験No.1の実験をくりかえし
て完成させたものである。また実験No.29は、実施例
3、比較例3の実験No.22に対して空気の追添圧
(量)を発泡比が3.0倍になるように調整する他は、
実験No.22の実験を繰り返して完成させたものであ
る。
That is, Experiment No. 28 is Example 1 and Comparative Example 1
Experiment No. The F-134a foaming agent impregnation amount was 1.
Experiment No. except that the content was changed to 5% by weight. It is the one completed by repeating the first experiment. Experiment No. No. 29 is the experiment No. 29 of Example 3 and Comparative Example 3. Other than adjusting the additional pressure (amount) of air to 22 so that the foaming ratio becomes 3.0 times,
Experiment No. It was completed by repeating 22 experiments.

【0128】得られた発泡シートは、実施例3、比較例
3の場合と同様に実験評価し、シートの指標及び性能結
果を求め、実験No.1,22と共に第5表にまとめた。
第5表の結果によると、本発明の性能を満たすところの
本発明の無架橋発泡シートの見かけ密度は、少なくとも
0.020〜0.150g/ccの範囲にあるものは対象
になり得ることが分かる。
The foamed sheet thus obtained was experimentally evaluated in the same manner as in Example 3 and Comparative Example 3, and the index and performance result of the sheet were obtained. It is summarized in Table 5 together with 1, 22.
According to the results in Table 5, the apparent density of the non-crosslinked foamed sheet of the present invention that satisfies the performance of the present invention can be targeted if the apparent density is at least in the range of 0.020 to 0.150 g / cc. I understand.

【0129】実施例5 この実験は、本発明の発泡シートが対象とする「全体厚
み」の適用範囲を示す為のものである。適用の関係を単
純明解にする目的でここでの発泡シートは、本発明樹脂
組成中の1つの組成を用いて見かけ密度と、第2回目D
SC曲線そして表面平滑度Sの指標が一定水準の値に揃
うように調整してある。
Example 5 This experiment is intended to show the applicable range of "total thickness" targeted by the foamed sheet of the present invention. For the purpose of making the application relationship simple and clear, the foamed sheet here is prepared by using one composition in the resin composition of the present invention and the apparent density
The SC curve and the index of the surface smoothness S are adjusted so as to be aligned at a constant level.

【0130】即ち実験No.30は、実施例1、比較例1
の実験No.1に対して発泡剤含浸発泡用素シート厚みを
0.4mmt に、F−134a発泡剤含浸量を5.5重量
%に変更する他は実験No.1の実験を繰り返して完成さ
せたものである。また実験No.31は、実験No.1に対
して発泡剤含浸発泡用素シート厚みを4.0mmt に、F
−134a発泡剤含浸量を3.5重量%に変更する他は
実験No.1の実験を繰り返して完成させたものである。
That is, Experiment No. 30 is Example 1 and Comparative Example 1
Experiment No. In comparison with Experiment 1, the thickness of the foaming agent-impregnated foaming sheet was changed to 0.4 mmt, and the amount of the F-134a foaming agent impregnated was changed to 5.5% by weight. It was completed by repeating the first experiment. Experiment No. 31 is the experiment No. 1, the foaming agent impregnated foaming sheet thickness is 4.0 mmt,
-134a Experiment No. except that the impregnating amount of the blowing agent was changed to 3.5% by weight. It was completed by repeating the first experiment.

【0131】得られた発泡シートは、実施例3、比較例
3の場合と同様に実験評価し、シートの指標及び性能結
果を求め、実験No.1と共に第6表にまとめた。第6表
の結果によると、本発明の性能を満たすところの本発明
の無架橋発泡シートの厚みは、少なくとも1〜10mmの
範囲にあるものは対象になり得ることが分かる。
The foamed sheet thus obtained was experimentally evaluated in the same manner as in Example 3 and Comparative Example 3, and the index and performance result of the sheet were obtained. It is summarized in Table 6 together with 1. From the results of Table 6, it is understood that the non-crosslinked foamed sheet of the present invention which satisfies the performance of the present invention can be targeted if it has a thickness of at least 1 to 10 mm.

【0132】比較例4 この実験は、従来のポリプロピレン系樹脂高発泡シート
を公知の製法技術を用いて試作し、そして性能比較評価
して、本発明のポリプロピレン系樹脂高発泡シートの技
術レベル高さを示すものである。対比の関係を単純明解
にする目的でここでの発泡シートは、本発明樹脂組成中
の1つの組成を用いて第2回目DSC曲線の指標及び見
かけ密度、平均厚み、独立気泡率が一定水準の値に揃う
ように調整してある。
Comparative Example 4 In this experiment, a conventional polypropylene-based resin high-foamed sheet was prototyped using a known manufacturing method, and the performance was evaluated comparatively to show the technical level of the polypropylene-based resin high-foamed sheet of the present invention. Is shown. For the purpose of making the relationship of comparison simpler, the foamed sheet here uses one composition in the resin composition of the present invention, and the index of the second DSC curve and the apparent density, the average thickness, and the closed cell ratio are constant levels. Adjusted to match the values.

【0133】〈実験No.32,33(参考品押出発泡
シート)〉第1表に示す樹脂を第7表に示す割合で配合
し、これにタルクを0.03重量%添加した混合物を6
5mmφの押出機を用いて200℃で溶融混練りした後、
ジクロロテトラフロロエタンを前記樹脂混合物100重
量部に対して28重量部の割合で押出機の終端近くまで
圧入しよく混合した。次にこの混合融液を第2インライ
ン押出機に送り、第2の押出機において140℃まで冷
却し、150mmφの環状ダイリップより押出し発泡させ
た。形成される発泡体をサイジングマンドレル上で引っ
張りスリットしてロール巻きにした。得られた発泡シー
トは、見かけ密度0.033g/cc、厚み3mm、独立気
泡率95%の圧延回復性に富む発泡シートであった。こ
れを実験No.32とした。
<Experiment No. 32, 33 (reference extruded foamed sheet)> The resin shown in Table 1 was blended at the ratio shown in Table 7, and 0.03% by weight of talc was added to the mixture to give 6 mixture.
After melt-kneading at 200 ° C using a 5 mmφ extruder,
Dichlorotetrafluoroethane was pressed into the resin mixture at a ratio of 28 parts by weight with respect to 100 parts by weight of the resin mixture until the end of the extruder was mixed and well mixed. Next, this mixed melt was sent to a second in-line extruder, cooled to 140 ° C. in the second extruder, and extruded and foamed through a 150 mmφ annular die lip. The foam formed was pulled slit on a sizing mandrel and rolled. The obtained foamed sheet had an apparent density of 0.033 g / cc, a thickness of 3 mm, and a closed cell rate of 95%, and was a roll sheet having excellent rolling recoverability. This is Experiment No. It was set to 32.

【0134】またジクロロテトラフロロエタンを14重
量部の割合で圧入する他は、実験No.32と同様に操作
して、見かけ密度0.060g/cc、厚み3mm、独立気
泡率96%の圧縮回復性に富む発泡シートを得た。これ
を実験No.33とした。この実験で得られた無架橋高発
泡シートの幅方向断面を拡大した局部の写生概念図を図
2に示す。図2によると、この押出発泡シートは、幅方
向における表面付近の気泡径が小径の気泡群、大径の気
泡群という様にランダム配置されており、且つ表面が波
打っていて平滑性に欠ける状態であることがよく分か
る。
Experiment No. 1 was repeated except that 14 parts by weight of dichlorotetrafluoroethane was injected under pressure. By the same procedure as 32, a foamed sheet having an apparent density of 0.060 g / cc, a thickness of 3 mm and a closed cell ratio of 96% and having a high compression recovery property was obtained. This is Experiment No. 33. FIG. 2 shows a conceptual drawing of a local image obtained by enlarging the cross section in the width direction of the non-crosslinked highly foamed sheet obtained in this experiment. According to FIG. 2, this extruded foam sheet is randomly arranged such that the cell diameter near the surface in the width direction is a cell group having a small diameter and a cell group having a large diameter, and the surface is wavy and lacks smoothness. You can see that it is in a state.

【0135】〈実験No.34,35(参考品架橋発泡
シート)〉第1表に示す樹脂を第7表に示す割合で配合
し、これにアゾジカルボンアミド発泡剤25重量部添加
した混合物を、65mmφの二軸押出機を用いてアゾジカ
ルボンアミドが分解しない170℃の温度で溶融混練り
した後、この押出機に連結しているコートハンガータイ
プのTダイより押出し、次いでポリシングロールに通し
て表面活性な厚み0.86mmt の架橋発泡用シートを得
た。
<Experiment No. 34, 35 (reference article crosslinked foamed sheet)> The resin shown in Table 1 was blended in a ratio shown in Table 7, and 25 parts by weight of an azodicarbonamide foaming agent was added to the mixture to prepare a 65 mmφ twin-screw extruder. It was melt-kneaded at a temperature of 170 ° C. at which azodicarbonamide was not decomposed and then extruded from a coat hanger type T-die connected to this extruder, and then passed through a polishing roll to obtain a surface-active thickness of 0.86 mmt. A sheet for cross-linking and foaming was obtained.

【0136】このシートを電子線照射装置(日新ハイボ
ルテージ(株)製、加速電圧750kV)を用いて、10
Mradの線量を照射した。得られた架橋シートを270℃
の表面温度を持つ遠赤外加熱ヒーターで加熱発泡した。
この際得られた架橋発泡シートは、見かけ密度0.03
2g/cc、厚み3mm、独立気泡率97%の圧縮回復性に
富む表面平滑な架橋発泡シートであった。これを実験N
o.34とした。
This sheet was irradiated with an electron beam irradiation apparatus (Nisshin High Voltage Co., Ltd., accelerating voltage 750 kV) for 10
Irradiated with a dose of Mrad. The obtained crosslinked sheet is 270 ° C.
It was heated and foamed with a far infrared heater having a surface temperature of.
The crosslinked foamed sheet obtained at this time had an apparent density of 0.03.
It was a crosslinked foamed sheet having a smooth surface with a compression recovery property of 2 g / cc, a thickness of 3 mm and a closed cell ratio of 97%. Experiment this with N
o. 34.

【0137】またアゾジカルボンアミド添加量を10重
量部に、そして架橋発泡用シート厚みを1.1mmt に変
更する他は、実験No.34と同様に操作して、見かけ密
度0.060g/cc、厚み3mm、独立気泡率98%の圧
縮回復性に富む表面平滑な架橋発泡シートを得た。これ
を実験No.35とした。
In addition, except that the addition amount of azodicarbonamide was changed to 10 parts by weight and the thickness of the cross-linking and foaming sheet was changed to 1.1 mmt, Experiment No. A crosslinked foamed sheet having an apparent density of 0.060 g / cc, a thickness of 3 mm, and a closed cell ratio of 98% and having a smooth surface and a smooth surface was obtained in the same manner as in Example 34. This is Experiment No. 35.

【0138】上記実験No.32〜35で得られた発泡シ
ートは、実施例、比較例3の場合と同様に評価してシー
トの指標及び性能結果を求め、そして実験No.1,22
と共に本文記載の方法で断熱性能、可撓性、成形天井基
材としての適応性能(実用耐熱性及び熱成形性)、リペ
レット性を評価し、これらを総てまとめて第7表に示し
た。
The above experiment No. The foamed sheets obtained in Nos. 32 to 35 were evaluated in the same manner as in Example and Comparative Example 3 to obtain the index and performance result of the sheet, and the experiment No. 1, 22
In addition, heat insulation performance, flexibility, adaptability as a molded ceiling base material (practical heat resistance and thermoformability), and repelletability were evaluated by the method described in the text, and all of these are shown in Table 7.

【0139】第7表の結果によると、本発明の無架橋高
発泡シートは圧縮回復性、耐熱性が優れているばかり
か、表面外観上くぼみが無く光沢のある美粧性、可撓
性、断熱性能が、そして表皮材との接着性、打抜き加工
性、熱真空成形性という二次加工性能が従来よく知られ
ている無架橋押出高発泡シートより優れていることが分
かる。また、従来の無架橋押出高発泡シートでは不可能
であった、複雑な形状の熱成形が可能であり、成形天井
基材として適応できるという特徴を兼備している。そし
て、廃棄物問題を持つ架橋高発泡シートの代替シートと
なりえることからも、有用性に富んだ極めて優れたもの
であることが分かる。
According to the results shown in Table 7, the non-crosslinked high-foamed sheet of the present invention is not only excellent in compression recovery and heat resistance, but also has a aesthetic appearance with no dent on the surface appearance and gloss, flexibility and heat insulation. It can be seen that the performance and the secondary processing performance such as adhesiveness with the skin material, punching workability, and thermal vacuum formability are superior to those of the conventionally well-known non-crosslinked extruded highly foamed sheet. Further, it has a feature that thermoforming of a complicated shape is possible, which is not possible with a conventional non-crosslinked extruded highly foamed sheet, and that it can be applied as a molded ceiling base material. Also, since it can be used as a substitute sheet for the crosslinked high-foaming sheet having a waste problem, it can be seen that the sheet is extremely useful and extremely excellent.

【0140】[0140]

【表17】 [Table 17]

【0141】[0141]

【表18】 [Table 18]

【0142】[0142]

【表19】 [Table 19]

【0143】[0143]

【表20】 [Table 20]

【0144】[0144]

【表21】 [Table 21]

【0145】[0145]

【表22】 [Table 22]

【0146】[0146]

【表23】 [Table 23]

【0147】[0147]

【表24】 [Table 24]

【0148】[0148]

【表25】 [Table 25]

【0149】[0149]

【表26】 [Table 26]

【0150】[0150]

【表27】 [Table 27]

【0151】[0151]

【表28】 [Table 28]

【0152】[0152]

【発明の効果】以上、実施例、比較例を用いて記述し明
らかにしてきた通り、本発明の無架橋高発泡シートは上
述の構成を持つことにより、美粧性、可撓性、断熱性能
に富み、そして表皮材との接着性、打抜き加工性、熱真
空成形性という二次加工性能に優れた無架橋ポリプロピ
レン系樹脂高発泡シートを容易に得ることができる。そ
してこれらの特性が廃棄物問題を持つ架橋高発泡シート
に匹敵し業界の願望を満たすものであり、例えば自動車
などの車両の断熱、緩衝内装材或いは食品の調理ができ
る収納容器などの製造に広く活用でき有用であることに
より、その商品価値は極めて高いものである。
EFFECTS OF THE INVENTION As described and clarified by using Examples and Comparative Examples, the non-crosslinked high-foam sheet of the present invention has the above-mentioned constitution, thereby improving the cosmetic properties, flexibility and heat insulation performance. It is possible to easily obtain a non-crosslinked polypropylene resin highly foamed sheet which is rich and has excellent secondary processing performance such as adhesiveness with a skin material, punching workability, and thermal vacuum forming property. These properties are comparable to cross-linked high-foam sheets that have a waste problem and meet the wishes of the industry. For example, they are widely used in the insulation of vehicles such as automobiles, cushioning interior materials, and the production of storage containers that can cook food. The product value is extremely high because it can be utilized and useful.

【0153】また製造方法は、従来その実現が不可能と
されていた表面平滑で美粧性を持つところの、無架橋ポ
リプロピレン系樹脂シートの高発泡化を達成しており、
しかも架橋工程を省略し省資源省エネルギーに貢献して
おり、その技術的意義は極めて高いものである。以上、
本発明は産業界に果たす役割の大きい、極めて高い優れ
た発明であるといえる。
Further, the manufacturing method has achieved high foaming of the non-crosslinked polypropylene-based resin sheet, which has a smooth surface and is beautiful, which has been impossible to realize in the past.
Moreover, the cross-linking step is omitted and it contributes to resource and energy saving, and its technical significance is extremely high. that's all,
It can be said that the present invention is an extremely high and excellent invention that plays a large role in the industrial world.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の無架橋高発泡シートの幅方向断面を拡
大(×6倍)した局部の写生概念図である。
FIG. 1 is a conceptual drawing of a local image obtained by enlarging (× 6 times) a cross section in the width direction of a non-crosslinked highly foamed sheet of the present invention.

【図2】比較品の無架橋高発泡シートの幅方向断面を拡
大(×6倍)した局部の写生概念図である。
FIG. 2 is a conceptual drawing of a local image obtained by enlarging (× 6 times) a cross section in the width direction of a non-crosslinked highly foamed sheet of a comparative product.

【図3】代表的な第2回目のDSC分析結果を表したグ
ラフである。
FIG. 3 is a graph showing a representative second DSC analysis result.

【図4】表面平滑度測定(平S)測定箇所を示す無架橋
高発泡シートの平面図である。
FIG. 4 is a plan view of a non-crosslinked highly foamed sheet showing measurement points of surface smoothness measurement (flat S).

【図5】小片シートの厚みを計測してえられたデータ図
である。
FIG. 5 is a data diagram obtained by measuring the thickness of a small piece sheet.

【符号の説明】[Explanation of symbols]

I 本発明の無架橋高発泡シートDSC分析結果 II 比較品の無架橋高発泡シートのDSC分析結果 III 比較品の無架橋高発泡シートのDSC分析結果 I Results of DSC analysis of non-crosslinked high-foamed sheet of the present invention II Results of DSC analysis of non-crosslinked high-foamed sheet of comparative product III Results of DSC analysis of non-crosslinked high-foamed sheet of comparative product

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:04 B29L 7:00 4F C08L 23:10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B29K 105: 04 B29L 7:00 4F C08L 23:10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 独立気泡率が90%以上、見掛け密度が
0.020〜0.15g/cm3 で、厚み1〜10mmの無
架橋ポリプロピレン系樹脂高発泡シートにおいて、該発
泡シートが示差走査熱量測定によって得られる第2回目
のDSC曲線(但し発泡シート3〜5mgを示差走査熱量
計によって室温から200℃まで10℃/分の昇温速度
で昇温した時に得られる曲線を第1回目のDSC曲線と
し、次いで200℃から5℃/分の降温速度で40℃ま
で降温し、再度10℃/分の昇温速度で200℃まで昇
温した時に得られる曲線を第2回目のDSC曲線とす
る)に於いて、少なくとも2つ以上の吸熱ピークを14
0〜165℃の温度範囲に示し、該低温側吸熱ピークの
頂点の温度と該高温側吸熱ピークの頂点の温度との差が
5℃以上であり、且つ下記の方法で求めた表面平滑度平
Sの値が0.02以下にあることを特徴とする無架橋ポ
リプロピレン系樹脂高発泡シート。表面平滑度(平S)
は、該発泡シートのある幅方向全長当たり幅方向長さ1
50mmにわたる1箇所の測定割合で、流れ方向に100
mm間隔で幅方向の位置ランダムな10箇所について次の
計測を行い、求めた値Sの10箇所の平均値で示すもの
である。計測は、小片シート(幅方向長さ200mm×流
れ方向長さ50mm)を焼結金属でできた平滑な定盤を上
面に有するチャンバーの上に載せ、真空吸引しシート片
面を定盤に密着させ、定盤に付随した状態にあるローラ
ー(外径22mm、幅7mm)式厚みゲージを上記小片シー
トの両端25mmを除く150mm幅方向に走行させ、最小
読みとり0.01mm単位で厚みを連続して測定記録した
ものである。そしてこの測定記録した厚みデーター曲線
上で山から次の谷・その谷から次の山にと分割し、夫々
分割区分ごとに山と谷部の厚み差(△T:mm)及びその
スパン長(L:mm)を読みとり次式で算出した最大値を
採用する。 【数1】S=△T/L この操作を上記の10箇所にて繰り返し行ったものであ
る。
1. A non-crosslinked polypropylene resin high foam sheet having a closed cell ratio of 90% or more, an apparent density of 0.020 to 0.15 g / cm 3 , and a thickness of 1 to 10 mm, wherein the foam sheet has a differential scanning calorific value. The second DSC curve obtained by the measurement (however, the curve obtained when the foamed sheet 3 to 5 mg was heated from room temperature to 200 ° C. at a temperature rising rate of 10 ° C./min by the differential scanning calorimeter was used as the first DSC curve. A curve is obtained, and then the curve obtained when the temperature is decreased from 200 ° C. to 40 ° C. at a temperature decrease rate of 5 ° C./min, and the temperature is increased to 200 ° C. at a temperature increase rate of 10 ° C./min is the second DSC curve. ), At least two endothermic peaks
In the temperature range of 0 to 165 ° C., the difference between the temperature at the apex of the low temperature side endothermic peak and the temperature at the apex of the high temperature side endothermic peak is 5 ° C. or more, and the surface smoothness flatness obtained by the following method is A non-crosslinked polypropylene resin highly foamed sheet having a value of S of 0.02 or less. Surface smoothness (flat S)
Is the width-direction length 1 per width-direction total length of the foamed sheet
100 points in the flow direction at one measurement rate over 50 mm
The following measurement was performed at 10 random positions in the width direction at intervals of mm, and the obtained value S is shown as an average value at 10 positions. The measurement is performed by placing a small sheet (200 mm long in the width direction x 50 mm length in the flow direction) on a chamber that has a smooth surface plate made of sintered metal on the top surface, and vacuum suction to bring one side of the sheet into close contact with the surface plate. , A roller (outer diameter 22 mm, width 7 mm) type thickness gauge attached to the surface plate is run in the width direction of 150 mm except 25 mm at both ends of the small piece sheet, and the minimum reading is continuously measured in 0.01 mm units. It was recorded. Then, on this measured and recorded thickness data curve, the peak is divided into the next valley and the valley is divided into the next peak, and the thickness difference (ΔT: mm) between the peak and the valley and the span length ( L: mm) is read and the maximum value calculated by the following formula is adopted. ## EQU1 ## S = .DELTA.T / L This operation is repeated at the above 10 points.
【請求項2】 独立気泡率が90%以上、見掛け密度が
0.020〜0.15g/cm3 で、厚み1〜10mmの無
架橋ポリプロピレン系樹脂高発泡シートの製法におい
て、示差走査熱量測定(昇温速度10℃/分)による吸
熱ピークを135〜150℃に有する炭素数2〜20の
α−オレフィンとのランダム共重合ポリプロピレン樹脂
(A)55〜95重量%と、吸熱ピークが該ランダム共
重合体より10℃以上高いポリプロピレン単独重合体、
エチレンとのブロック共重合ポリプロピレン樹脂、炭素
数2〜20のα−オレフィンとのランダム共重合ポリプ
ロピレン樹脂の中の一つ以上の組合わせ樹脂(B)5〜
45重量%とからなる混合樹脂を、押出機に通して溶融
混練後シート状に押出成形し、該素シートに揮発性発泡
剤または無機ガスを含浸し、そして樹脂(B)の融点よ
り低い温度のスチームにより0.2〜1.0倍/秒の発
泡速度で発泡せしめ、下記の方法で求めた表面平滑度
(平S)が0.02以下にすることを特徴とする無架橋
ポリプロピレン系樹脂高発泡シートの製造方法。表面平
滑度(平S)は、該発泡シートのある幅方向全長当たり
幅方向長さ150mmにわたる1箇所の測定割合で、流れ
方向に100mm間隔で幅方向の位置ランダムに10箇所
について次の計測を行い、求めた値Sの10箇所の平均
値で示すものである。計測は、小片シート(幅方向長さ
200mm×流れ方向長さ50mm)を焼結金属でできた平
滑な定盤を上面に有するチャンバーの上に載せ、真空吸
引しシート片面を定盤に密着させ、定盤に付随した状態
にあるローラー(外径22mm、幅7mm)式厚みゲージを
上記小片シートの両端25mmを除く150mm幅方向に走
行させ、最小読みとり0.01mm単位で厚みを連続して
測定記録したものである。そしてこの測定記録した厚み
データー曲線上で山から次の谷・その谷から次の山にと
分割し、夫々分割区分ごとに山と谷部の厚み差(△T:
mm)及びそのスパン長(L:mm)を読みとり次式で算出
した最大値を採用する。 【数2】S=△T/L この操作を上記の10箇所にて繰り返し行ったものであ
る。
2. A differential scanning calorimetric measurement in a method for producing a non-crosslinked polypropylene resin highly foamed sheet having a closed cell ratio of 90% or more, an apparent density of 0.020 to 0.15 g / cm 3 , and a thickness of 1 to 10 mm. Random copolymerized polypropylene resin (A) 55 to 95% by weight with an α-olefin having 2 to 20 carbon atoms and having an endothermic peak at a temperature rising rate of 10 ° C./min) of 135 to 150 ° C. Polypropylene homopolymer, which is 10 ° C higher than the polymer,
One or more combination resins (B) of block copolymer polypropylene resin with ethylene and random copolymer polypropylene resin with α-olefin having 2 to 20 carbon atoms
45 wt% of a mixed resin is melt-kneaded through an extruder and extruded into a sheet, and the raw sheet is impregnated with a volatile foaming agent or an inorganic gas, and the temperature is lower than the melting point of the resin (B). Non-crosslinked polypropylene resin characterized by having a surface smoothness (flat S) determined by the following method of 0.02 or less by foaming with a steam of 0.2 to 1.0 times / second. Highly foamed sheet manufacturing method. The surface smoothness (flat S) is a measurement ratio at one location over the entire length in the width direction of the foamed sheet, which is 150 mm in the width direction, and the following measurement is performed at 10 locations at 100 mm intervals in the flow direction at random positions in the width direction. It is shown by the average value of the obtained value S at 10 points. The measurement is performed by placing a small sheet (200 mm long in the width direction x 50 mm length in the flow direction) on a chamber that has a smooth surface plate made of sintered metal on the top surface, and vacuum suction to bring one side of the sheet into close contact with the surface plate. , A roller (outer diameter 22 mm, width 7 mm) type thickness gauge attached to the surface plate is run in the width direction of 150 mm except 25 mm at both ends of the small piece sheet, and the minimum reading is continuously measured in 0.01 mm units. It was recorded. Then, on the measured and recorded thickness data curve, the peak is divided into the next valley and the valley is divided into the next peak, and the difference in thickness between the peak and the valley (ΔT:
mm) and its span length (L: mm) are read and the maximum value calculated by the following formula is adopted. ## EQU00002 ## S = .DELTA.T / L This operation is repeated at the above 10 points.
JP4125392A 1992-04-20 1992-04-20 Highly foamed sheet of non-crosslinked polypropylenebased resin and production thereof Withdrawn JPH05293903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4125392A JPH05293903A (en) 1992-04-20 1992-04-20 Highly foamed sheet of non-crosslinked polypropylenebased resin and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4125392A JPH05293903A (en) 1992-04-20 1992-04-20 Highly foamed sheet of non-crosslinked polypropylenebased resin and production thereof

Publications (1)

Publication Number Publication Date
JPH05293903A true JPH05293903A (en) 1993-11-09

Family

ID=14909008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4125392A Withdrawn JPH05293903A (en) 1992-04-20 1992-04-20 Highly foamed sheet of non-crosslinked polypropylenebased resin and production thereof

Country Status (1)

Country Link
JP (1) JPH05293903A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007781A (en) * 2001-05-23 2006-01-12 A San Chemicals Co Ltd Method for producing pellet type foamed article of low melting non-cross linked polypropylene resin and pellet type foamed article
JP2007516107A (en) * 2003-05-17 2007-06-21 マイクログリーン・ポリマーズ・インコーポレーテッド Production of fully reusable foamed polymer from recycled materials
CN100439433C (en) * 2000-09-20 2008-12-03 株式会社Jsp Expanded polypropylene resin bead and process of producing same
JP2010131811A (en) * 2008-12-03 2010-06-17 Kawakami Sangyo Co Ltd Method of manufacturing hollow member, hollow member and equipment for manufacturing the same
WO2021059944A1 (en) 2019-09-27 2021-04-01 積水化学工業株式会社 Foam and method for manufacturing foam
WO2021059945A1 (en) 2019-09-27 2021-04-01 積水化学工業株式会社 Foam and method for manufacturing foam
KR20220070423A (en) 2019-09-27 2022-05-31 세키스이가가쿠 고교가부시키가이샤 Foams and Methods for Making Foams
KR20220070422A (en) 2019-09-27 2022-05-31 세키스이가가쿠 고교가부시키가이샤 Foams and Methods for Making Foams

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439433C (en) * 2000-09-20 2008-12-03 株式会社Jsp Expanded polypropylene resin bead and process of producing same
JP2006007781A (en) * 2001-05-23 2006-01-12 A San Chemicals Co Ltd Method for producing pellet type foamed article of low melting non-cross linked polypropylene resin and pellet type foamed article
JP2007516107A (en) * 2003-05-17 2007-06-21 マイクログリーン・ポリマーズ・インコーポレーテッド Production of fully reusable foamed polymer from recycled materials
JP2010131811A (en) * 2008-12-03 2010-06-17 Kawakami Sangyo Co Ltd Method of manufacturing hollow member, hollow member and equipment for manufacturing the same
JP4739399B2 (en) * 2008-12-03 2011-08-03 川上産業株式会社 Hollow member manufacturing method, hollow member and manufacturing apparatus thereof
WO2021059944A1 (en) 2019-09-27 2021-04-01 積水化学工業株式会社 Foam and method for manufacturing foam
WO2021059945A1 (en) 2019-09-27 2021-04-01 積水化学工業株式会社 Foam and method for manufacturing foam
KR20220070423A (en) 2019-09-27 2022-05-31 세키스이가가쿠 고교가부시키가이샤 Foams and Methods for Making Foams
KR20220070422A (en) 2019-09-27 2022-05-31 세키스이가가쿠 고교가부시키가이샤 Foams and Methods for Making Foams

Similar Documents

Publication Publication Date Title
EP2246175B1 (en) Polyethylene-based resin foamed blow molded article
US5362436A (en) Polystyrene foam sheet useful for forming deep drawn articles, a process to produce those articles, and the deep drawn articles
JP5512672B2 (en) Polypropylene resin expanded particles and expanded molded articles
EP1449634B1 (en) Foam-molded article and manufacturing method thereof
EP2072207A1 (en) Expanded polypropylene resin beads and foamed molded article thereof
EP1870434B1 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
JP5190426B2 (en) Polyethylene for hollow foam molding
JP3995714B2 (en) Polyethylene pre-expanded particles
JPH05293903A (en) Highly foamed sheet of non-crosslinked polypropylenebased resin and production thereof
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
JP4700387B2 (en) Non-crosslinked polyethylene resin extruded foam and molded article thereof
JP4064754B2 (en) Polypropylene resin foam sheet
JP2907749B2 (en) Method for producing modified polypropylene resin foam, method for producing molded article, and foam and molded article obtained from those methods
JP7241645B2 (en) Polypropylene resin foam sheet and polypropylene resin foam container
JP3351967B2 (en) Non-crosslinked polypropylene resin foam sheet for thermoforming
JP3717376B2 (en) Non-crosslinked polyethylene resin foam, method for producing the same, and molded article using the same
JP4258769B2 (en) Polystyrene resin laminated foam sheet
JP3007943B2 (en) Extruded polycarbonate resin foam sheet
JPH06184346A (en) Highly expanded noncrosslinked polyethylene resin sheet and its production
JP2003231169A (en) Method for manufacturing foamed sheet of polystyrene resin for heat molding and foamed sheet of polystyrene resin
JP4111435B2 (en) Polypropylene resin foam molding
JP2004339498A (en) Polypropylene-based resin composition foamed sheet and multi-layer foamed sheet given by using the same
JP2000219766A (en) Foamed polypropylene resin molding and automotive interior furnishing material
JP3459177B2 (en) Method for producing polypropylene resin foam
JPH08259724A (en) Expanded polypropylene-based resin particle and its production

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706