JPH08259724A - Expanded polypropylene-based resin particle and its production - Google Patents

Expanded polypropylene-based resin particle and its production

Info

Publication number
JPH08259724A
JPH08259724A JP9197095A JP9197095A JPH08259724A JP H08259724 A JPH08259724 A JP H08259724A JP 9197095 A JP9197095 A JP 9197095A JP 9197095 A JP9197095 A JP 9197095A JP H08259724 A JPH08259724 A JP H08259724A
Authority
JP
Japan
Prior art keywords
resin
expanded
temperature
particles
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9197095A
Other languages
Japanese (ja)
Other versions
JP3537001B2 (en
Inventor
Hideki Kuwabara
英樹 桑原
Akira Shiotani
暁 塩谷
Kazuhiko Omori
和彦 大森
Kenichi Oshima
健一 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP9197095A priority Critical patent/JP3537001B2/en
Publication of JPH08259724A publication Critical patent/JPH08259724A/en
Application granted granted Critical
Publication of JP3537001B2 publication Critical patent/JP3537001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain high-quality expanded particles which have almost an invariable expansion ratio even when the expanding temperature somewhat varies, is excellent in moldability, etc., because the temperature control in the expansion step is easy and the expansion ratio is constant, and have a high expansion ratio. CONSTITUTION: In the expanded polypropylene resin particles, the resin contains 3-10wt.% ethylene and/or butene-1 as comonomer component, the ratio Mz/Mw is 1.5-2.5 (wherein Mz is the Z-average molecular weight of the resin, and Mw is its weight-average molecular weight, and the expanded resin particles have secondary crystals having a melting energy of 11-30J/g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリプロピレン系樹脂
発泡粒子及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to expanded polypropylene resin particles and a method for producing the same.

【0002】[0002]

【従来技術及びその問題点】従来、揮発性有機発泡剤を
含むポリプロピレン系樹脂粒子を水性媒体に分散させ、
容器内圧力を発泡剤の蒸気圧以上の圧力に保ちながら樹
脂の軟化温度以上に加熱した後、加圧容器内から低圧の
雰囲気に放出して発泡させる方法が知られている。この
場合の揮発性有機発泡剤は、プロパン、ブタン、ペンタ
ン、トリクロロフロロメタン、ジクロロジフロロメタン
等であるが、この様な有機発泡剤には毒性や可燃性を持
つ物が多く、危険性がほとんど無い有機発泡剤であつて
も高価で実用上の問題を含む場合が多い。また、該発泡
剤は大気に放散された時にオゾン層を破壊する等の環境
汚染問題を起す上に、樹脂粒子を膨潤させるから発泡時
の発泡適性温度範囲が狭くなり、そのため発泡温度によ
って発泡倍率が大きく変化する等の問題がある。そし
て、発泡倍率が大幅に違う発泡粒子を使うと発泡粒子の
成形性が低下するから、この点からも新規な発泡粒子や
新規な発泡粒子の製造方法が望まれている。
2. Description of the Related Art Conventionally, polypropylene resin particles containing a volatile organic foaming agent are dispersed in an aqueous medium,
A method is known in which the pressure in the container is heated to the softening temperature or higher of the resin while maintaining the pressure equal to or higher than the vapor pressure of the foaming agent, and then the resin is discharged from the pressurized container into a low-pressure atmosphere to foam. Volatile organic foaming agents in this case are propane, butane, pentane, trichlorofluoromethane, dichlorodifluoromethane, etc., but such organic foaming agents are often toxic or flammable, and therefore dangerous. Even organic foaming agents that are scarcely used are often expensive and have practical problems. In addition, the foaming agent causes environmental pollution problems such as destruction of the ozone layer when it is released into the atmosphere, and swells the resin particles, so that the foaming temperature range during foaming is narrowed. There is a problem such as a large change. Further, the use of expanded particles having a significantly different expansion ratio lowers the moldability of expanded particles. From this point as well, new expanded particles and a method for producing new expanded particles are desired.

【0003】前記の諸問題を解決するために各方面から
研究が進められており、本発明者らも発泡剤に無機ガス
を使用する方法や、揮発性有機発泡剤の使用量を減少さ
せる方法について提案した。例えば、二酸化炭素を発泡
剤とする樹脂発泡粒子の製造方法(特公昭62−612
27号公報);ジベンジリデンソルビトール等の結晶核
剤をポリプロピレン系樹脂粒子に添加し、これによって
該樹脂粒子を発泡させる際の揮発性有機発泡剤使用量を
減少させたり、或いは揮発性有機発泡剤と共に窒素等の
無機ガスを発泡剤とする方法(特公平5−10374号
公報);水酸化アルミニウムや炭酸カルシウム等の無機
物質をポリプロピレン系樹脂粒子に添加し、これによっ
て該樹脂粒子を発泡させる際の揮発性有機発泡剤の使用
量を減少させたり、或いは揮発性有機発泡剤と共に窒素
等の無機ガスを発泡剤とする方法(特開昭61−473
8号公報);等である。
Research has been conducted in various fields to solve the above-mentioned problems, and the inventors of the present invention have also used a method of using an inorganic gas as a foaming agent and a method of reducing the amount of a volatile organic foaming agent used. About. For example, a method for producing expanded resin particles using carbon dioxide as a blowing agent (Japanese Patent Publication No. 62-612).
No. 27); a crystal nucleating agent such as dibenzylidene sorbitol is added to polypropylene-based resin particles to reduce the amount of volatile organic foaming agent used when foaming the resin particles, or volatile organic foaming agent. Together with a method of using an inorganic gas such as nitrogen as a foaming agent (Japanese Patent Publication No. 5-10374); when an inorganic substance such as aluminum hydroxide or calcium carbonate is added to polypropylene resin particles, thereby foaming the resin particles The amount of the volatile organic foaming agent used is reduced, or an inorganic gas such as nitrogen is used as the foaming agent together with the volatile organic foaming agent (JP-A-61-473).
No. 8); and so on.

【0004】前記の無機ガス系発泡剤使用法、又は揮発
性有機発泡剤の使用量を減少させたり該発泡剤と無機ガ
ス系発泡剤の併用を可能にする方法は、環境保全上から
は利点が大きい上に樹脂粒子の膨潤が抑制されるから、
発泡時の発泡適正温度範囲も拡がるものと期待された。
しかしながら、揮発性有機発泡剤と無機ガスでは樹脂粒
子の可塑化効果や樹脂粒子内部へのガス浸透速度が大き
く異なるために、無機ガス系発泡剤等を使用する前記の
方法を採用しても僅かな発泡温度差による発泡倍率の変
動を排除することができず、高発泡倍率で発泡倍率が一
定している良質な発泡体を製造するためには問題が多い
ことが分った。
The above-mentioned method of using an inorganic gas-based foaming agent, or a method of reducing the amount of a volatile organic foaming agent or allowing the combined use of the foaming agent and an inorganic gas-based foaming agent is advantageous from the viewpoint of environmental protection. Is large and the swelling of the resin particles is suppressed,
It was expected that the proper foaming temperature range during foaming would be expanded.
However, since the plasticizing effect of the resin particles and the gas permeation rate into the resin particles are greatly different between the volatile organic foaming agent and the inorganic gas, even if the above-mentioned method using an inorganic gas-based foaming agent is adopted, it is slightly It has been found that there are many problems in producing a high-quality foam having a high expansion ratio and a constant expansion ratio because it is not possible to eliminate the fluctuation of the expansion ratio due to such a difference in foaming temperature.

【0005】[0005]

【発明が解決しようとする課題】本発明は、ポリプロピ
レン系樹脂発泡粒子を製造する際に見られる前記諸問題
を解決し、発泡温度が多少変動しても発泡倍率がほとん
ど変らず、そのために発泡工程の温度管理が容易な上に
発泡倍率が一定なので成形性等も優れると共に、発泡倍
率も高い高品質の発泡粒子、及びその製造方法を提供す
ることをその課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems encountered in the production of expanded polypropylene resin particles, and the expansion ratio hardly changes even if the expansion temperature slightly fluctuates. It is an object of the present invention to provide high-quality foamed particles which are easy to control in the process temperature and have a constant expansion ratio so that they have excellent moldability and a high expansion ratio, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。すなわち、本発明によれば、ポリプロピレン
系樹脂発泡粒子において、該樹脂中にコモノマー成分と
してエチレン及び/又はブテン−1を3〜10重量%含
有すると共に、該樹脂のZ平均分子量Mzと重量平均分
子量Mwの比Mz/Mwが1.5〜2.5の範囲にあり、
該樹脂発泡粒子は融解エネルギーが11〜30J/gの
二次結晶を有することを特徴とするポリプロピレン系樹
脂発泡粒子及びその製造方法が提供される。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the present invention, in the polypropylene resin expanded particles, ethylene and / or butene-1 as a comonomer component is contained in the resin in an amount of 3 to 10% by weight, and the Z average molecular weight Mz and the weight average molecular weight of the resin are also included. The ratio Mz / Mw of Mw is in the range of 1.5 to 2.5,
There is provided a polypropylene-based resin expanded particle having a melting energy of 11 to 30 J / g and a secondary crystal thereof, and a method for producing the same.

【0007】本発明者らが多数の市販ポリプロピレン系
樹脂について調べたところ、そのZ平均分子量Mzと重
量平均分子量Mwの比Mz/Mwが1.5〜2.5、特に
1.7〜2.4の樹脂では発泡温度が多少違っても発泡
倍率がほとんど変らないことが分り、この結果に基づい
て本発明を完成することができた。なお、MzとMwは下
記式(1)と(2)で定義される値であり、式中のMi
は樹脂中に含まれている分子量がi番目の分子の分子
量、Niはその分子数を表している。 Mz=ΣMi3Ni/ΣMi2Ni (1) Mw=ΣMi2Ni/ΣMiNi (2) 式(1)、(2)からも分るように、Mz/Mwは分子量
分布を示す指標と云って良く、一般に発泡粒子製造用の
ポリプロピレン系樹脂ではこの値が3以上である。従っ
て、この値が1.5〜2.5の本発明で使われるポリプ
ロピレン系樹脂は、図1に示すように一般品より高分子
量領域の分子量分布が狭い樹脂である。すなわち、図1
に示す斜線部分だけ一般品より高分子量領域の分子量分
布が狭くなっている。なお、図1の横軸は分子量の対数
値、縦軸は重量%である。
The inventors of the present invention investigated a large number of commercially available polypropylene resins, and found that the ratio Mz / Mw of the Z-average molecular weight Mz and the weight-average molecular weight Mw was 1.5 to 2.5, particularly 1.7 to 2. It was found that the resin of No. 4 had almost no change in the expansion ratio even if the expansion temperature was slightly different, and the present invention could be completed based on this result. Note that Mz and Mw are values defined by the following equations (1) and (2), and Mi in the equation
Represents the molecular weight of the i-th molecule contained in the resin, and Ni represents the number of molecules. Mz = ΣMi 3 Ni / ΣMi 2 Ni (1) Mw = ΣMi 2 Ni / ΣMiNi (2) As can be seen from the equations (1) and (2), Mz / Mw can be said to be an index showing the molecular weight distribution. Generally, this value is 3 or more in polypropylene-based resin for producing expanded beads. Therefore, the polypropylene resin used in the present invention having this value of 1.5 to 2.5 has a narrower molecular weight distribution in the high molecular weight region than general products as shown in FIG. That is, FIG.
The molecular weight distribution in the high molecular weight region is narrower than the general product only in the shaded area shown in. The horizontal axis of FIG. 1 is the logarithmic value of the molecular weight, and the vertical axis is the weight%.

【0008】Mz及びMwは前記のように定義されるが、
実際のMz及びMw測定はゲル滲透クロマトグラフィー
(GPC)によって行なわれる。そして、本明細書では
Waters社製GPC150C型を使用し、ポリプロ
ピレン系樹脂粒子の溶媒としo−ジクロロベンゼンを使
い、下記条件で測定したMz及びMwを採用する。 カラム GPC AT−807/S(昭和電
工社製Shodex) カラム温度 135℃ 注入温度 135℃ ポンプ温度 55℃ 感度 64 溶剤量 1.0ml/min 注入容量 100μl ランニング時間 30分 また、数平均分子量Mnも上記GPCによって同様に求
めることができる。
Mz and Mw are defined as above,
Actual Mz and Mw measurements are made by gel permeation chromatography (GPC). In this specification, GPC150C manufactured by Waters is used, o-dichlorobenzene is used as a solvent for polypropylene resin particles, and Mz and Mw measured under the following conditions are adopted. Column GPC AT-807 / S (Shodex manufactured by Showa Denko KK) Column temperature 135 ° C. Injection temperature 135 ° C. Pump temperature 55 ° C. Sensitivity 64 Solvent amount 1.0 ml / min Injection volume 100 μl Running time 30 minutes In addition, the number average molecular weight Mn is also above. It can be similarly determined by GPC.

【0009】前記のように、本発明の発泡粒子は二次結
晶を持つ発泡粒子であるが、二次結晶は特定の発泡条件
で製造された発泡粒子だけに形成され、すべての発泡粒
子に形成されるものではない。そして、本発明の発泡粒
子は後記する方法によって二次結晶が形成されている発
泡粒子である。二次結晶の有無は、発泡粒子の示差走査
熱量測定で得られるDSC曲線によって判定される。D
SC曲線は、例えばポリプロピレン系樹脂発泡粒子2〜
4mgを試料とし、これを示差走査熱量計によって10
℃/分の速度で室温から220℃まで昇温させる方法で
求められる。具体的には、試料を10℃/分の速度で室
温から220℃まで昇温させて図2に示す1回目のDS
C曲線を得、これを前記の速度で40℃付近まで降温さ
せてから、再度前記の速度で220℃まで昇温させて図
3に示す2回目のDSC曲線を得た場合、1回目のDS
C曲線だけに認められる高温側の吸熱ピーク(高温ピー
ク)があれば、二次結晶があると判定される。なお、図
2及び図3の両DSC曲線に認められる低温側のピーク
は固有ピークと云われ、これは樹脂固有の融解吸熱ピー
クである。
As described above, the expanded particles of the present invention are expanded particles having secondary crystals, but the secondary crystals are formed only in expanded particles produced under specific expansion conditions, and are formed in all expanded particles. It is not something that will be done. The expanded particles of the present invention are expanded particles in which secondary crystals are formed by the method described below. The presence or absence of secondary crystals is determined by the DSC curve obtained by differential scanning calorimetry of expanded particles. D
The SC curve shows, for example, polypropylene foamed resin particles 2 to
4 mg was used as a sample, which was measured by a differential scanning calorimeter to 10
It is determined by a method of raising the temperature from room temperature to 220 ° C. at a rate of ° C./min. Specifically, the sample was heated from room temperature to 220 ° C. at a rate of 10 ° C./min, and the first DS shown in FIG.
When the C curve was obtained, the temperature was lowered to about 40 ° C. at the above rate, and then the temperature was raised to 220 ° C. at the above rate again to obtain the second DSC curve shown in FIG.
If there is an endothermic peak on the high temperature side (high temperature peak) observed only in the C curve, it is determined that there is a secondary crystal. The peaks on the low temperature side observed in both DSC curves of FIG. 2 and FIG. 3 are called intrinsic peaks, which are melting endothermic peaks specific to the resin.

【0010】前記の方法で二次結晶の有無を判定する際
に、2回目のDSC曲線に高温ピークが存在しないの
は、試料の融解終了温度を超える220℃まで試料を昇
温させた為に試料中の全結晶が融解し、該融解試料の降
温速度が二次結晶形成に必要な降温速度の範囲を超えて
いるからである。また、二次結晶の融解エネルギー(以
下、該エネルギーをSCMEと略記する)は、高温ピー
クを形成しているDSC曲線から求められるエネルギー
であり、図2の斜線で示される面積に相当するエネルギ
ーである。すなわち、図2においてDSC曲線上の温度
80℃の点をAとし、DSC曲線上の融解終了点をBと
し、高温ピークと固有ピークとの間にある谷間部分Cか
ら線分ABに下した垂線と線分ABとの交点をDとした
場合、線分DB、線分DC及びDSC曲線によって囲ま
れている部分の面積に相当するエネルギーがSCMEで
ある。そして、本発明のポリプロピレン系樹脂発泡粒子
は、SCMEが11〜30J/g、好ましくは13〜2
5J/gのものであり、該SCMEは樹脂1g中に含ま
れている二次結晶の全部が融解するのに必要なエネルギ
ー量を表している。
When the presence or absence of secondary crystals is determined by the above method, the high temperature peak does not exist in the second DSC curve because the sample is heated to 220 ° C., which is higher than the melting end temperature of the sample. This is because all the crystals in the sample are melted, and the cooling rate of the melted sample exceeds the range of the cooling rate required for secondary crystal formation. Further, the melting energy of the secondary crystal (hereinafter, this energy is abbreviated as SCME) is the energy obtained from the DSC curve forming the high temperature peak, and is the energy corresponding to the area shown by the diagonal line in FIG. is there. That is, in FIG. 2, the point at the temperature of 80 ° C. on the DSC curve is A, the melting end point on the DSC curve is B, and the perpendicular line drawn from the valley portion C between the high temperature peak and the characteristic peak to the line segment AB. When the intersection between the line segment AB and the line segment AB is D, the energy corresponding to the area of the portion surrounded by the line segment DB, the line segment DC, and the DSC curve is SCME. The expanded polypropylene resin particles of the present invention have SCME of 11 to 30 J / g, preferably 13 to 2
The SCME represents the amount of energy required for melting all the secondary crystals contained in 1 g of the resin.

【0011】本発明で使われる高分子量領域の分子量分
布が狭い樹脂は、通常のポリプロピレン系共重合体樹脂
をパーオキサイド等の有機過酸化物で酸化分解し、これ
によって高分子量領域を狭くした樹脂であり、そして、
この分解量を適宜調整すれば高分子量領域を制御するこ
とが可能である。ポリプロピレン系樹脂をパーオキサイ
ドで分解してMzの値を小さくする事は、繊維工業分野
のポリプロピレン繊維原料として使用される際に行なわ
れることもあるようであるが、その際使用されるものは
メルトインデックス(MI)が80〔g/10min〕
程度と非常に大きなものであり、その様なものを発泡粒
子の原料樹脂粒子として使用した場合、連続気泡の発現
粒子となり、良好なものが得られない。また、本発明で
使われるポリプロピレン系共重合体樹脂はMzが3×1
5〜5×105、好ましくは3.5×105〜4.5×
105で、Mwと数平均分子量Mnとの比Mw/Mnが4.
5以下、好ましくは3.5以下の樹脂である。本発明の
発泡粒子原料に好適なポリプロピレン系共重合体樹脂
は、発泡させても、更に、それを成形して発泡粒子成形
体としても、その分子量分布等が誤差範囲しか変化しな
いから、発泡粒子又は発泡粒子成形体を形成している樹
脂のMz、MwやMnは原料樹脂のそれと同じと云える。
The resin having a narrow molecular weight distribution in the high molecular weight region used in the present invention is a resin in which a general polypropylene copolymer resin is oxidatively decomposed with an organic peroxide such as peroxide to thereby narrow the high molecular weight region. And, and
By appropriately adjusting the amount of decomposition, it is possible to control the high molecular weight region. It seems that decomposition of polypropylene resin with peroxide to reduce the value of Mz may be carried out when it is used as a raw material for polypropylene fiber in the field of textile industry. Index (MI) is 80 [g / 10min]
However, when such a material is used as the raw material resin particle of the expanded particle, it becomes a particle exhibiting open cells and a good particle cannot be obtained. Further, the polypropylene-based copolymer resin used in the present invention has Mz of 3 × 1.
0 5 to 5 × 10 5 , preferably 3.5 × 10 5 to 4.5 ×
The ratio Mw / Mn of Mw to the number average molecular weight Mn at 10 5 is 4.
The resin is 5 or less, preferably 3.5 or less. The polypropylene-based copolymer resin suitable for the expanded particle raw material of the present invention is a foamed particle because the molecular weight distribution and the like change only within an error range even when foamed, or even when it is molded into an expanded particle molded article. Alternatively, it can be said that Mz, Mw and Mn of the resin forming the expanded particle molded body are the same as those of the raw material resin.

【0012】本発明で発泡粒子の原料に使われるポリプ
ロピレン系共重合体樹脂は、メルトインデックス(以
下、MIと略記する)が3〜20g/10分、好ましく
は5〜14g/10分の樹脂である。MIがこの範囲に
あると発泡倍率や独立気泡率が高く、気泡径70〜35
0μmの良好な発泡粒子が容易に得られ、そのため発泡
粒子の成形性が向上する。そして、原料樹脂のMIが3
g/10分未満では発泡倍率が向上せず、MIが20g
/分を超えると気泡が細かくなって独立気泡率が低下
し、そのために発泡粒子の成形性が低下する。なお、本
明細書では、JISK−7210に規定されている試験
温度230℃、試験荷重2.16Kgfとする試験条件
によって求めたMI値を採用する。発泡倍率は、発泡に
よって基材樹脂のみかけの体積が増加した倍率であり、
本明細書ではメスシリンダーに発泡粒子を入れメスシリ
ンダーの目盛が示すみかけの体積で発泡粒子重量を割っ
て発泡粒子の嵩密度を求め、基材樹脂密度を該嵩密度で
割る方法で発泡倍率を算出する。
The polypropylene copolymer resin used as the raw material for the expanded beads in the present invention is a resin having a melt index (hereinafter abbreviated as MI) of 3 to 20 g / 10 min, preferably 5 to 14 g / 10 min. is there. When the MI is in this range, the expansion ratio and the closed cell ratio are high, and the cell diameter is 70 to 35.
A good expanded particle of 0 μm can be easily obtained, and therefore the moldability of the expanded particle is improved. And the MI of the raw material resin is 3
If it is less than g / 10 minutes, the expansion ratio does not improve and MI is 20 g.
If it exceeds / min, the cells become finer and the closed cell rate decreases, which reduces the moldability of the expanded beads. In this specification, the MI value obtained under the test conditions of the test temperature of 230 ° C. and the test load of 2.16 Kgf specified in JISK-7210 is adopted. The expansion ratio is the ratio by which the apparent volume of the base resin increases due to expansion,
In this specification, the expanded density is obtained by dividing the expanded resin weight by dividing the expanded particle weight by the apparent volume indicated by the scale of the graduated cylinder by inserting the expanded particles into the graduated cylinder, and dividing the base resin density by the bulk density to obtain the expansion ratio. calculate.

【0013】ポリプロピレン系樹脂は、Mz/Mw値を
1.5〜2.5、好ましくは1.7〜2.4にすると、
発泡温度の変動による発泡倍率の変動幅を小さくするこ
とができる。この理由は不明であるが、本発明者らの詳
細な研究によるとこの効果は驚くほど大きいものであ
り、効果の一例を示すと図4の通りである。この図は、
発泡剤等の発泡条件が同じ場合の発泡温度と発泡倍率と
の関係を示す図であり、1は原料樹脂として本発明で使
われるMz/Mwが2.3の樹脂を使った場合、2はMz
/Mwが3.3の樹脂を使った場合、3はMz/Mwが
3.2の樹脂を使った場合、4はMz/Mwが2.7の樹
脂を使った場合を示している。図から分かるように発泡
温度と発泡倍率とは比例しており、比例定数は樹脂の種
類で大幅に異なっている。そして、Mz/Mwが3.2の
ポリプロピレン系共重合体樹脂の発泡時は、発泡温度1
42℃及び145℃で発泡倍率がそれぞれ7.5及び1
7.5となるのに、Mz/Mwが2.3の本発明で使われ
る樹脂では前記発泡温度で発泡倍率がそれぞれ26及び
27となり、発泡倍率にほとんど差がない。
The polypropylene resin has an Mz / Mw value of 1.5 to 2.5, preferably 1.7 to 2.4.
It is possible to reduce the fluctuation range of the foaming ratio due to the fluctuation of the foaming temperature. The reason for this is unclear, but according to the detailed study by the present inventors, this effect is surprisingly large, and an example of the effect is shown in FIG. This figure is
FIG. 3 is a diagram showing a relationship between a foaming temperature and a foaming ratio when the foaming conditions such as a foaming agent are the same, where 1 is a resin used in the present invention having Mz / Mw of 2.3, and 2 is Mz
When a resin having a Mz / Mw of 3.3 is used, 3 is a resin having a Mz / Mw of 3.2, and 4 is a resin having a Mz / Mw of 2.7. As can be seen from the figure, the foaming temperature and the foaming ratio are in proportion to each other, and the constant of proportionality greatly differs depending on the type of resin. When the polypropylene-based copolymer resin having Mz / Mw of 3.2 is foamed, the foaming temperature is 1
Expansion ratios of 7.5 and 1 at 42 ° C and 145 ° C, respectively.
However, in the resin used in the present invention having Mz / Mw of 2.3, the expansion ratios are 26 and 27 at the foaming temperature, respectively, and there is almost no difference in the expansion ratio.

【0014】図4から分かるように、本発明で使われる
ポリプロピレン系共重合体樹脂は通常の同種樹脂より発
泡容易であり、通常樹脂では発泡倍率が15倍程度にす
ぎない144℃付近での発泡時に、本発明で使う樹脂で
は発泡倍率が25倍以上となる。従って、本発明によれ
ば、発泡温度が多少ばらついても安定した発泡倍率で発
泡樹脂が得られる上に、従来の発泡粒子製造用ポリプロ
ピレン樹脂の使用時より低温で発泡させても高発泡倍率
の粒子が得られることが分る。本発明者らは、Mz/Mw
が1.5〜2.5のポリプロピレン系共重合体樹脂につ
いて更に詳細に検討し、共重合体に含まれるコモノマー
成分の種類や量によって該共重合体樹脂から得られる発
泡粒子の物性が微妙に変ることを見出した。すなわち、
エチレン及び/又はブテン−1からなるコモノマー成分
の含有率が3〜10重量%、好ましくは3.5〜6重量
%の範囲にある前記ポリプロピレン系共重合体樹脂の使
用時は、発泡温度が多少ばらついても同じSCMEを持
つ二次結晶を含有する発泡粒子が得られる。そして、該
発泡粒子を金型内で加熟成形して成形品を製造すると、
加熟成形時の二次発泡性が良いため収縮が少なく、その
ために表面が平滑で高品質の成形品が得られる。
As can be seen from FIG. 4, the polypropylene-based copolymer resin used in the present invention is easier to foam than ordinary homogenous resins, and the foaming ratio of ordinary resin is about 15 times and around 144 ° C. At times, the resin used in the present invention has a foaming ratio of 25 times or more. Therefore, according to the present invention, it is possible to obtain a foamed resin with a stable expansion ratio even if the foaming temperature varies to some extent, and to obtain a high expansion ratio even when foamed at a lower temperature than when using a conventional polypropylene resin for producing expanded particles. It can be seen that particles are obtained. We have Mz / Mw
Of the polypropylene-based copolymer resin of 1.5 to 2.5, the physical properties of the expanded beads obtained from the copolymer resin are delicately varied depending on the kind and amount of the comonomer component contained in the copolymer. I found that it changed. That is,
When the polypropylene-based copolymer resin having a comonomer component content of ethylene and / or butene-1 in the range of 3 to 10% by weight, preferably 3.5 to 6% by weight is used, the foaming temperature may be slightly different. Expanded particles containing secondary crystals having the same SCME even if dispersed are obtained. Then, when the foamed particles are aged and molded in a mold to produce a molded article,
Since the secondary foaming property during aging molding is good, there is little shrinkage, and therefore the surface is smooth and high quality molded products can be obtained.

【0015】本発明の発泡粒子は、発泡倍率が5〜10
0倍で二次結晶のある発泡粒子である。そして、SCM
Eが11〜30J/g、好ましくは13〜25J/gの
発泡粒子であり、SCMEが過大の場合は発泡粒子の成
形加工時に二次発泡性が低下し、過少の場合は発泡粒子
が収縮する等の問題がある。また、本発明の発泡粒子は
SCME1J/g当りの発泡倍率変化量が好ましくは−
0.6〜−0.08g/J、更に好ましくは−0.3〜
−0.08g/Jの発泡粒子であり、この値が−0.6
g/J未満ではSCMEの僅かな差で発泡倍率が大きく
変動するために、得られる発泡粒子の発泡倍率のバラツ
キが大きくなる。なお、この値が−0.08g/Jを超
えて0に近づくと更に好ましいが、そのような発泡粒子
は得られない。二次結晶は、一次結晶の形成後に該結晶
面上に発生した二次該が生長して形成されると推定さ
れ、溶融状態の樹脂を融点〜融解終了温度(この温度域
を二次結晶化促進温度域と云う)で熱処理すると二次結
晶が形成される。従って、溶融樹脂を5℃/分以下の低
速度で冷却又は加熱したり、二次結晶のない樹脂を前記
温度域に5分以上、好ましくは5〜30分間保持すると
二次結晶が形成される。
The expanded particles of the present invention have an expansion ratio of 5 to 10.
The expanded particles have secondary crystals at 0 times. And SCM
E is 11 to 30 J / g, preferably 13 to 25 J / g of expanded particles, and when SCME is too large, the secondary foaming property is lowered during molding processing of the expanded particles, and when it is too small, the expanded particles shrink. There is a problem such as. Further, the expanded particles of the present invention preferably have an expansion ratio change amount per SCME of 1 J / g of −.
0.6 to -0.08 g / J, more preferably -0.3 to
-0.08 g / J of expanded particles, and this value was -0.6
If it is less than g / J, the expansion ratio greatly changes due to a slight difference in SCME, and thus the expansion ratio of the obtained expanded particles becomes large. It is more preferable that this value exceeds −0.08 g / J and approaches 0, but such expanded particles cannot be obtained. It is presumed that the secondary crystal is formed by the secondary growth generated on the crystal surface after the formation of the primary crystal, and the resin in the molten state is melted to the melting end temperature (the secondary crystallization in this temperature range). A secondary crystal is formed by heat treatment in the accelerated temperature range). Therefore, when the molten resin is cooled or heated at a low rate of 5 ° C./min or less, or when the resin without secondary crystals is kept in the temperature range for 5 minutes or more, preferably 5 to 30 minutes, secondary crystals are formed. .

【0016】SCMEは、二次結晶形成を目的とする
前記の加熱や冷却速度を遅くする;樹脂が二次結晶促
進温度に保持される時間を長くする;発泡温度を下げ
る;等の方法で大きくすることができる。一方、前記の
方法を逆に行えばSCMEが低下し、例えば発泡温度を
上げればSCMEが下がる。前記のように発泡温度が低
いとSCMEが増え、この両者は負の比例定数を持って
比例している。そして、両者間の比例定数は樹脂の種類
で大幅に変動し、本発明で使われる樹脂は従来品より比
例定数の絶対値(勾配)が大幅に小さい。また、図4か
ら分るように発泡温度と発泡倍率は正の比例定数を持っ
て比例しているから、SCMEと発泡倍率間も負の比較
例定数を持つ比例関係にあることが明らかであり、本発
明者等の研究によるとこの両者は負の傾きを持つ比例関
係にある。すなわち、発泡倍率の高い発泡粒子にはSC
MEの小さい二次結晶が形成され、発泡倍率の低い発泡
粒子にはSCMEの大きい二次結晶が形成される。な
お、SCMEと発泡倍率間の比例定数も発泡温度とSC
ME間の比例定数と同様に、本発明で使われる樹脂は従
来品より絶体値が大幅に小さい。
In SCME, the heating and cooling rates for the purpose of forming secondary crystals are slowed down; the time during which the resin is held at the secondary crystal accelerating temperature is prolonged; the foaming temperature is lowered; can do. On the other hand, if the above method is performed in reverse, SCME is lowered, and, for example, if the foaming temperature is raised, SCME is lowered. As described above, when the foaming temperature is low, SCME increases, and both are proportional with a negative proportional constant. The proportional constant between the two greatly varies depending on the type of resin, and the resin used in the present invention has a significantly smaller absolute value (gradient) of the proportional constant than the conventional product. Further, as can be seen from FIG. 4, since the foaming temperature and the foaming ratio are proportional with a positive proportional constant, it is clear that SCME and the foaming ratio also have a proportional relationship with a negative comparative example constant. According to the research conducted by the present inventors, the two have a proportional relationship with a negative slope. That is, SC is used for expanded particles with a high expansion ratio.
Secondary crystals with a small ME are formed, and secondary crystals with a large SCME are formed on the expanded beads having a low expansion ratio. Note that the proportional constant between SCME and the expansion ratio is also the expansion temperature and SC
Like the proportionality constant between MEs, the resin used in the present invention has a significantly smaller absolute value than conventional products.

【0017】以上に詳記したように、発泡温度とSCM
E間及びSCMEと発泡倍率間は負の比例定数を持つ比
例関係にあり、これを図に示すと図5、6の通りであ
る。これらの図は図4の場合と同じ樹脂を使い、図4の
場合と同様に発泡剤等の発泡条件を同じにして求めた図
である。そして、直線に記した符号も図4の場合と同じ
であり、直線1は本発明で使われるMz/Mwが2.3の
樹脂の場合である。また、基材樹脂が同じでも発泡剤の
種類や量等の発泡条件が異なると図4〜6に示す直線の
場所が異なってくるが、この場合も直線の勾配(比例定
数)はほぼ同じである。従って、図4〜6に示した直線
の勾配は樹脂発泡粒子の発泡性や成形性と樹脂の種類と
の関係を示す重要因子と云って良く、この勾配は0に近
い事が好ましい。図6から分るように、本発明の発泡倍
率はSCMEが大きくても発泡倍率が大きく低下せず、
SCMEと発泡倍率との相関が少ない発泡粒子である。
従って、本発明の発泡粒子では発泡倍率を上げてもSC
MEが高めに保たれ、SCMEが小さいと発生する発泡
粒子の収縮が少なくなるから、表面平滑な高品質成形体
を製造することができる。なお、SCMEが小さいと発
泡粒子が収縮し易い理由は正確には不明であるが、発泡
粒子の二次発泡性、収縮性と関連する高分子構造にSC
MEが影響するのであろう。
As described in detail above, the foaming temperature and the SCM
There is a proportional relationship with a negative proportional constant between E and between SCME and the expansion ratio, which is shown in FIGS. These figures are obtained by using the same resin as in FIG. 4 and using the same foaming conditions such as a foaming agent as in the case of FIG. The reference numerals on the straight lines are the same as those in FIG. 4, and the straight line 1 is the case where the resin used in the present invention has Mz / Mw of 2.3. Further, even if the base resin is the same, if the foaming conditions such as the type and amount of the foaming agent are different, the positions of the straight lines shown in FIGS. 4 to 6 are different, but in this case as well, the slopes (proportional constants) of the straight lines are almost the same. is there. Therefore, it can be said that the linear gradients shown in FIGS. 4 to 6 are important factors showing the relationship between the foamability and moldability of the resin expanded particles and the type of resin, and it is preferable that this gradient be close to zero. As can be seen from FIG. 6, the expansion ratio of the present invention does not decrease significantly even if SCME is large,
The expanded particles have little correlation between SCME and expansion ratio.
Therefore, in the expanded beads of the present invention, SC
ME is kept high, and when SCME is small, shrinkage of the foamed particles generated is small, so that a high-quality molded product having a smooth surface can be manufactured. The reason why the expanded particles tend to shrink when SCME is small is not exactly known, but the secondary structure of the expanded particles, and the polymer structure related to the shrinkability are SC.
The ME will influence.

【0018】SCME1J/g当りの発泡倍率変化量V
は、図6から求めることができる。すなわち、図6の直
線1におけるA点の発泡倍率とSCMEをB1及びG1
し、B点におけるそれをB2及びG2とすればV=(B2
−B1)/(G2−G2)で表される。そして、Vの測定
は発泡倍率の高い高品質発泡粒子について行うのが好ま
しいから、例えば下記条件で製造した発泡粒子から求め
れば良い。なお、発泡粒子を更に発泡させる二段発泡で
形成させた発泡粒子について測定する場合は、下記のほ
か二段発泡時の発泡条件も同じにして製造すれば良い。 〔I〕発泡倍率B1、SCMEG1J/gの発泡粒子製造条件 基材樹脂(無機物含有可) 100重量部 水(分散媒) 220重量部 カオリン(融着防止剤) 0.5重量部 ドデシルベンゼンスルホン酸ナト リウム(融着防止助剤) 0.006重量部 二酸化炭素(発泡剤) 8重量部 昇温速度 2℃/分 保持温度 141℃ 保持時間 15分 発泡温度 147℃ 発泡温度保持時間 15分 〔II〕発泡倍率B2、SCMEG2J/gの発泡粒子製
造条件 発泡温度を143℃とする以外は〔I〕と同じ
Change in foaming ratio V per SCME 1 J / g V
Can be obtained from FIG. That is, if the expansion ratio and SCME at point A on the straight line 1 in FIG. 6 are B 1 and G 1, and that at point B is B 2 and G 2 , then V = (B 2
Represented by -B 1) / (G 2 -G 2). Since it is preferable to measure V on high-quality expanded particles having a high expansion ratio, it may be determined from expanded particles produced under the following conditions, for example. In addition, in the case of measuring the expanded particles formed by the two-step expansion in which the expanded particles are further expanded, the following conditions may be applied in addition to the following conditions. [I] Foaming ratio B 1 and SCMEG 1 J / g foamed particle production conditions Base resin (can contain inorganic substances) 100 parts by weight Water (dispersion medium) 220 parts by weight Kaolin (anti-fusion agent) 0.5 parts by weight Dodecyl Sodium benzenesulfonate (adhesion-prevention aid) 0.006 parts by weight Carbon dioxide (foaming agent) 8 parts by weight Temperature rising rate 2 ° C / min Holding temperature 141 ° C Holding time 15 minutes Foaming temperature 147 ° C Foaming temperature holding time 15 Minute [II] Conditions for producing expanded particles with expansion ratio B 2 and SCMEG 2 J / g Same as [I] except that the expansion temperature is 143 ° C.

【0019】前記のように、本発明の発泡粒子は発泡温
度が高くても従来品のようにSCMEが大幅に減少する
ことのない発泡粒子であり、そのため高発泡の場合も収
縮することが少ない発泡粒子である。このような発泡粒
子は成形性が良いから、従来の樹脂を使って本発明の発
泡粒子と類似性能の発泡粒子を製造しようとしても、こ
の場合は発泡剤を大量に使う等のためコスト高になる上
に、発泡粒子の収縮問題を充分改善することが困難であ
る。従って、本発明の発泡粒子は従来品からは予想でき
ないほど高性能な発泡粒子と云うことができる。また、
2回目のDSC曲線に現われる固有ピークの頂点温度
(図3のa)が、1回目のDSC曲線に表れる高温ピー
クの頂点温度(図2のb)より5℃以上、特に10℃以
上低い発泡粒子では二次結晶が融解し難いことが認めら
れる。従って、この場合は発泡温度が高くても二次結晶
が融解し難いから、発泡倍率が高く成形性も良い発泡粒
子を得ることができる。
As described above, the foamed particles of the present invention are foamed particles which do not significantly reduce the SCME as in the conventional products even when the foaming temperature is high, and therefore, they do not shrink much even in the case of high foaming. It is an expanded particle. Since such expanded particles have good moldability, even if an attempt is made to produce expanded particles having similar performance to the expanded particles of the present invention using a conventional resin, in this case, a large amount of a foaming agent is used, resulting in high cost. In addition, it is difficult to sufficiently solve the problem of shrinkage of expanded particles. Therefore, it can be said that the expanded particles of the present invention are high-performance expanded particles that cannot be predicted from conventional products. Also,
Expanded particles in which the peak temperature of the unique peak appearing in the second DSC curve (a in FIG. 3) is lower than the peak temperature of the high temperature peak appearing in the first DSC curve by 5 ° C. or more, particularly 10 ° C. or more. Then, it is recognized that the secondary crystal is difficult to melt. Therefore, in this case, the secondary crystals are difficult to melt even if the foaming temperature is high, and thus foamed particles having a high expansion ratio and good moldability can be obtained.

【0020】本発明では、前記したMz/Mwやコモノマ
ー成分量等が特定範囲にあるポリプロピレン系共重合体
樹脂を基材樹脂とすれば良く、基材樹脂は架橋していて
も無架橋であっても良いが、循環使用等についても勘案
すると無架橋品を使うのが好ましい。本発明で基材樹脂
として好適な樹脂を具体的に示すと、プロピレン−エチ
レンランダム共重合体、プロピレン−エチレンブロック
共重合体、プロピレン−ブテンランダム共重合体、プロ
ピレン−ブテンブロック共重合体、プロピレン−エチレ
ン−ブテン三元共重合体等である。そして、これらのう
ちプロピレン−エチレンランダム共重合体、プロピレン
−ブテンランダム共重合体及びプロピレン−エチレン−
ブテン三元共重合体は、低温脆性や柔軟性等の成形体に
要求される物性が優れているから好ましく、特に3.5
〜6.0重量%のエチレン分を含む共重合体が良い。な
お、成形体の剛性が強く要求される際は、ブテン分含有
率が高くエチレン分含有率が3.0重量%以下の共重合
体を基材樹脂とするのが良い。次に、本発明の発泡粒子
を製造するのに必要な副材料や発泡方法等について具体
的に記述するが、これらは従来の発泡粒子製造時と同じ
である。
In the present invention, the polypropylene-based copolymer resin having the above-mentioned Mz / Mw and the amount of comonomer components in a specific range may be used as the base resin, and the base resin may be crosslinked or non-crosslinked. However, it is preferable to use a non-crosslinked product in consideration of the recycling and the like. Specific examples of the resin suitable as the base resin in the present invention include propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene random copolymer, propylene-butene block copolymer, and propylene. -Ethylene-butene terpolymer and the like. And among these, propylene-ethylene random copolymer, propylene-butene random copolymer and propylene-ethylene-
The butene terpolymer is preferable because it has excellent physical properties required for a molded article such as low-temperature brittleness and flexibility, and is particularly preferably 3.5.
Copolymers containing up to 6.0% by weight of ethylene are preferred. When the rigidity of the molded product is strongly required, a copolymer having a high butene content and an ethylene content of 3.0% by weight or less is preferably used as the base resin. Next, the auxiliary materials and the foaming method necessary for producing the expanded beads of the present invention will be specifically described, but these are the same as in the conventional production of expanded beads.

【0021】本発明では、前記ポリプロピレン系共重合
体樹脂を加熱する際に融着を防ぐ為に融着防止剤を使う
ことができる。融着防止剤は、実質的に加熱時に非溶融
性であれば有機系でも無機系でも使用可能であるが、通
常は無機系の物が好ましい。代表的融着防止剤として
は、酸化アルミニウム、酸化チタン、水酸化アルミニウ
ム、塩基性炭酸マグネシウム、塩基性炭酸亜鉛、炭酸カ
ルシウム、リン酸三カルシウム、ピロリン酸マグネシウ
ム、タルク、マイカ、カオリン等が挙げられる。これら
の融着防止剤は、一般に粒径0.001〜100μm、
好ましくは0.001〜30μmの微粒子状で用いられ
る。また、その添加量は樹脂粒子100重量部当たり
0.01〜10重量部の範囲とするのが一般的である。
以上に詳記した融着防止剤は、ドデシルベンゼンスルホ
ン酸ナトリウムやオレイン酸ナトリウム等の乳化剤と併
用すると更に効果を高めることができる。乳化剤として
はアニオン系界面活性剤が好ましく、その添加量は樹脂
粒子100重量部当たり0.001〜5重量部とするの
が一般的である。
In the present invention, an anti-fusing agent can be used to prevent fusion when heating the polypropylene copolymer resin. The anti-fusing agent may be organic or inorganic as long as it is substantially infusible when heated, but an inorganic material is usually preferable. Typical anti-fusing agents include aluminum oxide, titanium oxide, aluminum hydroxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, tricalcium phosphate, magnesium pyrophosphate, talc, mica, kaolin and the like. . These anti-fusion agents generally have a particle size of 0.001 to 100 μm,
It is preferably used in the form of fine particles of 0.001 to 30 μm. Further, the addition amount thereof is generally in the range of 0.01 to 10 parts by weight per 100 parts by weight of the resin particles.
The anti-fusion agent detailed above can further enhance the effect when used in combination with an emulsifier such as sodium dodecylbenzene sulfonate or sodium oleate. As the emulsifier, an anionic surfactant is preferable, and the addition amount thereof is generally 0.001 to 5 parts by weight per 100 parts by weight of the resin particles.

【0022】本発明では、発泡剤に揮発性有機発泡剤や
無機ガス発泡剤が用いられ、両者を併用しても良い。そ
して、有機発泡剤には、プロパン、ブタン、ペンタン、
ヘキサン、シクロブタン、シクロヘキサン、ジクロロジ
フロロメタン、トリクロロフロロメタン等の公知品を、
無機ガス発泡剤には、窒素、空気、炭酸ガス、アルゴ
ン、ヘリウム等の種々の常温ガス状無機物を使うことが
できる。また、有機発泡剤の使用量は重量比で樹脂10
0部当り2〜25部、好ましくは3〜20部である。無
機ガスを発泡剤にする場合は、窒素、空気を除く上記発
泡剤の使用量は重量比で樹脂100部当り2〜50部で
あり、又、窒素、空気は容器内圧力が15〜70kg/
cm2G、好ましくは20〜50kg/cm2Gとなるよ
うに容器内に供給するのが望ましい。上記のうち、無機
ガス又は無機ガスと揮発性有機発泡剤との混合物を発泡
剤にすると、揮発性有機発泡剤の使用量が減少するから
安全面から好ましい。また、無機ガスと揮発性有機発泡
剤との混合物を発泡剤にすると、無機ガスだけを発泡剤
とした場合より発泡倍率が高くなる利点がある。そし
て、無機ガスだけを発泡剤にすると発泡倍率の変動幅が
小さくなり、そのため揮発性有機発泡剤使用の際に見ら
れる発泡工程後期に得られる発泡粒子の発泡倍率低下が
抑制される。
In the present invention, a volatile organic foaming agent or an inorganic gas foaming agent is used as the foaming agent, and both may be used together. And, as the organic foaming agent, propane, butane, pentane,
Known products such as hexane, cyclobutane, cyclohexane, dichlorodifluoromethane, trichlorofluoromethane,
As the inorganic gas foaming agent, various room temperature gaseous inorganic substances such as nitrogen, air, carbon dioxide, argon and helium can be used. The amount of the organic foaming agent used is 10% by weight of the resin.
It is 2 to 25 parts, preferably 3 to 20 parts per 0 part. When the inorganic gas is used as the foaming agent, the amount of the above-mentioned foaming agent except nitrogen and air is 2 to 50 parts per 100 parts by weight of the resin, and nitrogen and air have a container internal pressure of 15 to 70 kg /
It is desirable to supply into the container so as to be cm 2 G, preferably 20 to 50 kg / cm 2 G. Of the above, the use of a blowing agent made of an inorganic gas or a mixture of an inorganic gas and a volatile organic blowing agent reduces the amount of the volatile organic blowing agent used, which is preferable in terms of safety. Further, when a mixture of an inorganic gas and a volatile organic foaming agent is used as the foaming agent, there is an advantage that the expansion ratio becomes higher than when only the inorganic gas is used as the foaming agent. Further, when only the inorganic gas is used as the foaming agent, the fluctuation range of the foaming ratio becomes small, so that the reduction of the foaming ratio of the foamed particles obtained in the latter stage of the foaming process, which is observed when using the volatile organic foaming agent, is suppressed.

【0023】無機ガス又は無機ガスと揮発性有機発泡剤
との混合物を樹脂粒子に含浸させる場合、樹脂粒子に該
発泡剤を含浸させる時間は温度や圧力によっても異なる
が、樹脂の融点以上で行う場合は数10秒〜1時間で良
く、通常は5〜30分間とするのが望ましい。そして、
前記発泡剤を樹脂粒子に含浸させるのは任意の時期に行
えば良いから、容器内に樹脂粒子等を充填した直後、容
器内容物の昇温中又は容器内容物が発泡温度に到達した
時点等に行うことができる。揮発性有機化合物を発泡剤
にする場合、樹脂粒子への有機発泡剤含浸工程は該樹脂
粒子を分散媒に分散させる工程の前でも後でも良いが、
通常は樹脂粒子を分散媒に分散させる際に同時に行われ
る。そして、該方法によると有機発泡剤は分散媒に一旦
溶解又は分散後に樹脂粒子に含浸されると考えられる。
具体的には、耐圧容器内に所望量の樹脂粒子と分散媒と
有機発泡剤を入れ、容器を密閉後に加熱・撹拌して樹脂
粒子に有機発泡剤を含浸させれば良く、含浸に必要な時
間は含浸温度等によっても異なるが、通常1〜60分、
好ましくは5〜30分である。
When resin particles are impregnated with an inorganic gas or a mixture of an inorganic gas and a volatile organic foaming agent, the time for impregnating the resin particles with the foaming agent varies depending on the temperature and the pressure, but is higher than the melting point of the resin. In this case, it may be several tens of seconds to one hour, and usually 5 to 30 minutes is desirable. And
Since it is sufficient to impregnate the resin particles with the foaming agent at any time, immediately after filling the resin particles and the like into the container, during the temperature rise of the container contents or when the container contents reach the foaming temperature, etc. Can be done. When the volatile organic compound is used as the foaming agent, the step of impregnating the resin particles with the organic foaming agent may be performed before or after the step of dispersing the resin particles in the dispersion medium.
Usually, it is performed at the same time when the resin particles are dispersed in the dispersion medium. Then, according to this method, it is considered that the organic foaming agent is once dissolved or dispersed in the dispersion medium and then impregnated into the resin particles.
Specifically, it is sufficient to put a desired amount of resin particles, a dispersion medium, and an organic foaming agent in a pressure-resistant container, heat and stir the container after sealing the container to impregnate the resin particles with the organic foaming agent. The time varies depending on the impregnation temperature and the like, but usually 1 to 60 minutes,
It is preferably 5 to 30 minutes.

【0024】本発明で使われる分散媒は、ポリプロピレ
ン系樹脂粒子を溶解しない液体であれば良く、水、エチ
レングリコール、グリセリン、メタノール、エタノール
等の水性媒体が使用可能であるが、通常は水が使われ
る。分散媒の使用量は特に限定されないが、通常は樹脂
粒子の1.5〜3重量倍である。本発明で使われるポリ
プロピレン系共重合体樹脂粒子は、前記のようにMz/
Mwが1.5〜2.5で、コモノマー成分としてエチレ
ン及び/又はブテン−1を3〜10重量%含有する樹脂
粒子である。そして、その形状は粒径0.3〜5mm、
好ましくは0.5〜3mmの粒子状である。また、該樹
脂粒子には無機物の微粉やジベンジリデンソルビトール
等の結晶核剤等を添加しても良く、これらの添加で発泡
性や発泡粒子の成形性等が向上する場合もある。
The dispersion medium used in the present invention may be any liquid which does not dissolve the polypropylene resin particles, and an aqueous medium such as water, ethylene glycol, glycerin, methanol or ethanol can be used, but usually water is used. used. The amount of the dispersion medium used is not particularly limited, but is usually 1.5 to 3 times the weight of the resin particles. The polypropylene-based copolymer resin particles used in the present invention have Mz /
Resin particles having Mw of 1.5 to 2.5 and containing 3 to 10% by weight of ethylene and / or butene-1 as a comonomer component. And its shape is a particle size of 0.3-5 mm,
It is preferably 0.5 to 3 mm in particle form. Further, fine particles of an inorganic substance, a crystal nucleating agent such as dibenzylidene sorbitol, or the like may be added to the resin particles, and the addition of these may improve the foamability and the moldability of the foamed particles.

【0025】本発明において、樹脂粒子に添加するのに
好適な無機物の微粉を例示すると、水酸化アルミニウ
ム、水酸化カルシウム、水酸化マグネシウム等の水酸化
物;炭酸カルシウム、炭酸マグネシウム、炭酸バリウム
等の炭酸塩;亜硫酸カルシウムや亜硫酸マグネシウム等
の亜硫酸塩;硫酸カルシウム、硫酸アルミニウム、硫酸
マンガン、硫酸ニッケル等の硫酸塩;酸化カルシウム、
酸化アルミニウム、酸化ケイ素等の酸化物;塩化ナトリ
ウム、塩化マグネシウム、塩化カルシウム等の塩化物;
ホウ砂、タルク、クレー、カオリン、ゼオライト等の粘
土又は天然鉱物;等の微粉である。これらは、粒径0.
1〜100μm、好ましくは1〜15μmの微粉状であ
るのが望ましく、該無機微粉は単独でも2種以上混合し
て添加しても良い。また、これらの無機微粉はポリプロ
ピレン系共重合体樹脂粒子の造粒時に添加すれば良く、
添加はマスターバッチで行うのが好ましい。
In the present invention, fine powders of inorganic substances suitable for addition to resin particles are exemplified by hydroxides such as aluminum hydroxide, calcium hydroxide and magnesium hydroxide; calcium carbonate, magnesium carbonate, barium carbonate and the like. Carbonate; Sulfite such as calcium sulfite and magnesium sulfite; Sulfate such as calcium sulfate, aluminum sulfate, manganese sulfate and nickel sulfate; calcium oxide,
Oxides such as aluminum oxide and silicon oxide; chlorides such as sodium chloride, magnesium chloride, calcium chloride;
Fine powder of borax, talc, clay, kaolin, clay such as zeolite or natural minerals; These have a particle size of 0.
It is desirable that it is in the form of fine powder having a size of 1 to 100 μm, preferably 1 to 15 μm, and the inorganic fine powder may be added alone or as a mixture of two or more kinds. Further, these inorganic fine powders may be added at the time of granulating the polypropylene-based copolymer resin particles,
The addition is preferably done in a masterbatch.

【0026】無機微粉の添加量は、無機微粉の種類によ
っても異なるが一般的には樹脂重量の0.001〜5%、好ま
しくは0.002〜3%である。そして、無機微粉がタルク微
粉の場合は0.003〜0.5重量%;ホウ砂、水酸化アルミニ
ウム及びゼオライト微粉の場合は0.1〜2重量%とするの
が特に好ましい。上記の無機微粉の添加によって、前記
のように発泡粒子を製造する際の発泡性能が向上するほ
か、気泡径の均一化や発泡粒子を所望気泡径とすること
による発泡粒子の成形性向上が期待できる。しかし、無
機微粉が5重量%を超えて添加されると発泡粒子の成形
性が低下し、添加量0.001重量%未満では前記の効果が
充分に発現しない。
The amount of the inorganic fine powder added varies depending on the type of the inorganic fine powder, but is generally 0.001 to 5%, preferably 0.002 to 3% by weight of the resin. And, when the inorganic fine powder is talc fine powder, 0.003 to 0.5 wt% is particularly preferable; when it is borax, aluminum hydroxide and zeolite fine powder, 0.1 to 2 wt% is particularly preferable. By the addition of the above-mentioned inorganic fine powder, in addition to improving the foaming performance in the production of foamed particles as described above, it is expected that the foamability of the foamed particles will be improved by making the foamed particles uniform and having the desired foamed diameter. it can. However, if the inorganic fine powder is added in an amount of more than 5% by weight, the moldability of the expanded beads is deteriorated, and if the addition amount is less than 0.001% by weight, the above effect is not sufficiently exhibited.

【0027】本発明のポリプロピレン系樹脂発泡粒子
は、耐圧容器内に前記ポリプロピレン系共重合体樹脂粒
子と融着防止剤と水性媒体(通常は水)を仕込み、発泡
剤の存在下に発泡温度まで加熱してから容器内容物を該
加圧帯域から低圧帯域(通常は大気圧)に放出させ、こ
れによって発泡剤が含浸されている樹脂粒子を発泡させ
て製造される。発泡温度は一般に樹脂の軟化点以上の温
度であり、前記高温ピーク(図2のb)の頂点温度以下
の温度であれば成形性の良い発泡粒子が容易に得られ
る。なお、高温ピークの頂点温度は一般に図3のaで示
される融点より5〜20℃高温である。また、前記の軟
化温度はASTM−D648に準拠し、荷重4.6kg
/cm2で測定される温度である。好適な発泡温度範囲
は、樹脂の種類や発泡剤の種類によっても異なるが樹脂
の融点付近が良く、無架橋ポリプロピレン系共重合体樹
脂では融点より5℃低温から15℃高温の範囲、好まし
くは3℃低温から10℃高温の範囲である。容器内容物
を室温から発泡温度まで上昇させる際の昇温速度は特に
限定されないが、1〜10℃/分程度、特に2〜5℃/
分が好ましい。そして、昇温速度が5℃/分を超える場
合は二次結晶化促進温度で容器内容物を5分以上保持す
ることが必要であり、昇温速度が5℃/分以下の場合も
二次結晶を安定的に形成させるために、二次結晶化促進
温度で容器内容物を5分以上保持するのが好ましい。
The expanded polypropylene resin particles of the present invention are prepared by charging the polypropylene copolymer resin particles, the anti-fusing agent and an aqueous medium (usually water) in a pressure resistant container, and in the presence of the expansion agent, up to the expansion temperature. After heating, the contents of the container are discharged from the pressure zone to the low pressure zone (usually atmospheric pressure), thereby foaming the resin particles impregnated with the blowing agent. The foaming temperature is generally a temperature above the softening point of the resin, and if the temperature is below the apex temperature of the high temperature peak (b in FIG. 2), foamed particles with good moldability can be easily obtained. The peak temperature of the high temperature peak is generally 5 to 20 ° C. higher than the melting point shown in FIG. The softening temperature is based on ASTM-D648 and the load is 4.6 kg.
Temperature measured in / cm 2 . Although a suitable foaming temperature range varies depending on the type of resin and the type of foaming agent, it is preferably close to the melting point of the resin, and in the case of the non-crosslinked polypropylene copolymer resin, it is in the range of 5 ° C to 15 ° C higher than the melting point, preferably 3 ° C. It is in the range of ℃ low temperature to 10 ℃ high temperature. The rate of temperature increase when raising the contents of the container from room temperature to the foaming temperature is not particularly limited, but is about 1 to 10 ° C./minute, particularly 2 to 5 ° C./minute.
Minutes are preferred. When the temperature rising rate exceeds 5 ° C / minute, it is necessary to hold the contents of the container at the secondary crystallization promoting temperature for 5 minutes or more. In order to stably form crystals, it is preferable to hold the contents of the container at the secondary crystallization promoting temperature for 5 minutes or more.

【0028】[0028]

【実施例】次に、本発明を実施例及び比較例で更に具体
的に説明するが、本発明はこの実施例で限定されるもの
ではない。なお、以下の部及び%は重量基準である。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The following parts and% are based on weight.

【0029】実施例1、比較例1〜5 押出機内に、下記表1に示すエチレン−プロピレンラン
ダム共重合体樹脂100部と平均粒径3μmの水酸化ア
ルミニウム0.05部を仕込み、これを溶融混練後に押
出機先端のダイスからストランド状に押出し、水中で急
冷後に切断して長さ2.5mm、断面の直径1mmのペ
レットを作製した。なお、水酸化アルミニウムの添加は
マスターバッチによって行った。
Example 1 and Comparative Examples 1 to 5 100 parts of ethylene-propylene random copolymer resin shown in Table 1 below and 0.05 part of aluminum hydroxide having an average particle size of 3 μm were charged in an extruder and melted. After kneading, the mixture was extruded in a strand form from a die at the tip of the extruder, rapidly cooled in water and then cut to prepare pellets having a length of 2.5 mm and a cross-sectional diameter of 1 mm. The addition of aluminum hydroxide was performed by a masterbatch.

【表1】 [Table 1]

【0030】前記ペレット100kgと水200リット
ルとカオリン300gと二酸化炭素7kgとを、内容積
400リットルの密閉容器内に仕込んで攪拌しながら2
℃/分の速度で表2に示す保持温度まで昇温させ、この
温度で15分間保持した。次に、2℃/分の速度で表2
に示す発泡温まで昇温させ、この温度で15分間保持し
た。以上のようにして得られた密閉容器内容物を発泡温
度に保持したまま、二酸化炭素で40kg/cm2(G)
に背圧をかけて密閉容器内圧力が急激に低下しないよう
にしてから、該容器の一端を開放して内容物を大気圧下
に放出する方法で発泡粒子を作製した。得られた発泡粒
子の平均発泡倍率(嵩倍率)、二次結晶の融解エネルギ
ー(SCME)、平均気泡径及び発泡粒子の成形性を表
2に示す。又、前述の方法により求めたSCME 1
J/g当りの発泡倍率変化量V〔(B2−B1)/(G2
−G1)で表される量〕を表2に併せて示す。なお、発
泡粒子の成形性評価は下記基準によって行った。
100 kg of the pellets, 200 liters of water, 300 g of kaolin, and 7 kg of carbon dioxide were placed in a closed container having an internal volume of 400 liters, and the mixture was stirred.
The temperature was raised to the holding temperature shown in Table 2 at a rate of ° C / min, and this temperature was held for 15 minutes. Then, in Table 2 at a rate of 2 ° C / min.
The temperature was raised to the bubbling temperature shown in (1) and held at this temperature for 15 minutes. 40 kg / cm 2 (G) of carbon dioxide was added to the contents of the closed container obtained as described above while maintaining the foaming temperature.
A back pressure was applied to prevent the pressure inside the closed container from dropping sharply, and then one end of the container was opened to release the contents under atmospheric pressure to produce expanded particles. Table 2 shows the average expansion ratio (bulk ratio) of the obtained expanded particles, the melting energy (SCME) of the secondary crystal, the average cell diameter, and the moldability of the expanded particles. In addition, SCME 1 obtained by the above method
Amount of change in foaming ratio per J / g V [(B 2 −B 1 ) / (G 2
-Amount represented by G 1 )] is also shown in Table 2. The moldability of the expanded beads was evaluated according to the following criteria.

【0031】1.寸法精度 発泡粒子を金型に仕込み、これを3.2kg/cm
2(G)のスチームにより加熱成形し、縦30cm、横
30cm、厚み5cmの板状成形体を作製した。この板
状成形体を60℃のオーブン中で24時間養生し、養生
前後の縦及び横方向の中心線長さの変化の平均により面
方向の収縮率を測定し、収縮率3%未満を○;収縮率3
%以上で4%未満を△、収縮率4%以上を×で表した。 2.融着性 前記の方法で作製した板状成形体を、幅方向の垂直断面
が厚み1cmで幅5cmとなるように切断して試料を作
製し、この試料を東洋ボールドウィン社製UTMIII
引張試験機によってチャック間距離50mm、引張速度
500mm/minで破断するまで長手方向に引張り、
破断面を目視で観察して破断面の材質破壊が60%以上
の場合を○;破断面の材質破壊が40%以上で60%未
満の場合を△;破断面の材質破壊が40%未満の場合を
Xで表した。 3.二次発泡性 前記の方法で作製した板状成形体の表面状態を目視で観
察し、表面にほとんど凹凸のない場合を○;表面に部分
的な凹凸のある場合を△;表面の全部に凹凸がある場合
をXで表した。 4.総合評価 種々の発泡温度で発泡させた発泡粒子を原料とし、これ
を前記のようにして成形体とした試料について前記の評
価を行い、発泡温度が変化しても得られる成形体が全評
価項目とも好ましい場合をO;多少でも問題のある場合
をXで表した。
1. Dimensional accuracy Charge the foamed particles into a mold and use 3.2 kg / cm
2 (G) was heat-molded by steam to prepare a plate-shaped molded body having a length of 30 cm, a width of 30 cm and a thickness of 5 cm. This plate-shaped molded body is aged in an oven at 60 ° C. for 24 hours, and the shrinkage rate in the surface direction is measured by averaging the changes in the centerline lengths in the longitudinal and transverse directions before and after the curing. Contraction rate 3
% And less than 4% are represented by Δ, and shrinkage ratio of 4% or more are represented by X. 2. Fusing Property The plate-shaped formed body produced by the above method is cut so that the vertical cross section in the width direction has a thickness of 1 cm and a width of 5 cm to produce a sample, and this sample is manufactured by Toyo Baldwin UTMIII.
With a tensile tester, pull in the longitudinal direction at a chuck distance of 50 mm and a pulling speed of 500 mm / min until it breaks,
When the fracture surface is visually observed and the material destruction of the fracture surface is 60% or more, ○; when the material fracture of the fracture surface is 40% or more and less than 60%, Δ: the material fracture of the fracture surface is less than 40% The case is represented by X. 3. Secondary foaming property The surface condition of the plate-shaped molded product produced by the above method is visually observed, and ○ when the surface has little unevenness; Δ when the surface has partial unevenness; unevenness on the entire surface The case where there is is represented by X. 4. Comprehensive evaluation The above evaluation was performed on a sample of foamed particles that were foamed at various foaming temperatures as a raw material, and this was used as a molded product. The case where both are preferable is represented by O; the case where there is some problem is represented by X.

【0032】[0032]

【表2】 [Table 2]

【0033】表2から、本発明の発泡粒子は保持温度や
発泡温度が多少異なっても発泡倍率の変動は小さく良好
な成形性を示すが、比較例の発泡粒子では保持温度や発
泡温度が2〜3℃変化するだけで発泡倍率が大きく変動
し成形性が大幅に低下することが分かる。そして、この
変動はSCMEの値が上記温度によって大きく変動する
ためと考えられる。また、エチレン含有率がほぼ同じで
もMz/Mwが2.5を超すると寸法精度、融着性、二
次発泡性共に良好な発泡粒子における到達発泡倍率の最
大値が本発明のものよりも劣ることが認められる。これ
らの現象は、成形性と関係の深い高分子構造が僅に変化
するだけで成形性が大幅に変るが、高分子物性は成形性
と関係の少ない構造の一部が変化しても異なるから、高
分子物性から一義的に発泡粒子の成形性を評価するのが
困難なことを示している。従って、本発明の請求項に示
したように、発泡粒子の原料となる基材樹脂を化学組成
や物性等の種々の面から絞り込むことによって、始めて
成形性や発泡性の良い発泡粒子の原料樹脂に到達するこ
とができると云える。
It can be seen from Table 2 that the expanded particles of the present invention have a small change in expansion ratio and exhibit good moldability even if the holding temperature or the expanding temperature is slightly different, but the expanded particles of the comparative example have a holding temperature or an expanding temperature of 2 or more. It can be seen that the foaming ratio fluctuates greatly and the moldability is significantly reduced only by a change of 3 ° C. It is considered that this variation is because the value of SCME varies greatly depending on the temperature. Further, even if the ethylene contents are almost the same, if Mz / Mw exceeds 2.5, the maximum value of the ultimate expansion ratio in the expanded particles having good dimensional accuracy, fusion property, and secondary expandability is inferior to that of the present invention. Is recognized. These phenomena show that the moldability changes drastically with a slight change in the polymer structure, which is closely related to the moldability, but the polymer physical properties are different even if a part of the structure that is less related to the moldability changes. , It is difficult to uniquely evaluate the moldability of expanded beads from the physical properties of polymers. Therefore, as shown in the claims of the present invention, by narrowing down the base resin as the raw material of the expanded particles from various aspects such as chemical composition and physical properties, the raw material resin of the expanded particles having good moldability and expandability can be obtained for the first time. Can be reached.

【0034】[0034]

【発明の効果】請求項1の発泡粒子は、発泡温度等が多
少変動しても発泡倍率がほとんど変わらず、従来のもの
に比べてより高い発泡倍率を有するポリプロピレン系樹
脂発泡粒子である。この発泡粒子は二次発泡性の良い発
泡粒子であり、表面平滑な高品質の成形体を容易に製造
することができる発泡粒子である。また、発泡温度が低
くても高い発泡倍率で得られる発泡粒子である。従っ
て、発泡温度が多少変動しても比較的低温下に高い発泡
倍率で得ることができるから、発泡工程の温度管理が容
易なために発泡コストが従来品より低い発泡粒子であ
り、そのうえ従来品より高品質の成形体を容易に製造す
ることができる高品質の発泡粒子である。請求項2の発
泡粒子製造方法は、前記した高品質発泡粒子の製造方法
であり、従来の発泡粒子より製造コストの低い発泡粒子
の製造方法である。
EFFECT OF THE INVENTION The expanded beads of claim 1 are expanded polypropylene resin particles having a higher expansion ratio than conventional ones even if the expansion temperature or the like changes to some extent. The foamed particles are foamed particles having a good secondary foaming property and capable of easily producing a high-quality molded product having a smooth surface. Further, the expanded particles can be obtained with a high expansion ratio even if the expansion temperature is low. Therefore, even if the foaming temperature fluctuates to some extent, it can be obtained at a relatively low temperature with a high expansion ratio, and the foaming cost is lower than conventional products because the temperature control in the foaming process is easy. It is a high-quality expanded particle that can easily produce a higher-quality molded body. The method for producing expanded beads of claim 2 is the method for producing high-quality expanded beads as described above, which is a method for producing expanded beads having a lower production cost than conventional expanded beads.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の発泡粒子に使われる基材樹脂と、従来
品のそれとの分子量分布の比較図である。
FIG. 1 is a comparison diagram of a molecular weight distribution between a base resin used for the expanded beads of the present invention and that of a conventional product.

【図2】樹脂発泡粒子の1回目のDSC曲線である。FIG. 2 is a first DSC curve of expanded resin particles.

【図3】樹脂発泡粒子の2回目のDSC曲線である。FIG. 3 is a second DSC curve of expanded resin particles.

【図4】樹脂粒子の発泡温度と発泡倍率との関係を示す
図である。
FIG. 4 is a diagram showing a relationship between a foaming temperature of resin particles and a foaming ratio.

【図5】樹脂粒子の発泡温度と該発泡粒子に形成される
二次結晶の融解エネルギーとの関係を示す図である。
FIG. 5 is a diagram showing the relationship between the foaming temperature of resin particles and the melting energy of secondary crystals formed in the foamed particles.

【図6】発泡粒子に形成される二次結晶の融解エネルギ
ーと該発泡粒子の発泡倍率との関係を示す図である。
FIG. 6 is a diagram showing the relationship between the melting energy of secondary crystals formed in expanded beads and the expansion ratio of the expanded particles.

【符号の説明】[Explanation of symbols]

a 固有ピークの頂点温度 b 高温ピークの頂点温度 a Peak temperature of unique peak b Peak temperature of high temperature peak

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大島 健一 栃木県宇都宮市御幸町2−5 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Oshima 2-5 Miyukicho, Utsunomiya City, Tochigi Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポリプロピレン系樹脂発泡粒子におい
て、該樹脂中にコモノマー成分としてエチレン及び/又
はブテン−1を3〜10重量%含有すると共に、該樹脂
のZ平均分子量Mzと重量平均分子量Mwの比Mz/Mwが
1.5〜2.5の範囲にあり、該樹脂発泡粒子は融解エ
ネルギーが11〜30J/gの二次結晶を有することを
特徴とするポリプロピレン系樹脂発泡粒子。
1. A polypropylene-based resin expanded particle comprising ethylene and / or butene-1 as a comonomer component in the resin in an amount of 3 to 10% by weight, and a ratio of the Z-average molecular weight Mz to the weight-average molecular weight Mw of the resin. Mz / Mw is in the range of 1.5 to 2.5, and the expanded resin particles have secondary crystals with a melting energy of 11 to 30 J / g.
【請求項2】 発泡剤とエチレン及び/又はブテン−1
とプロピレンとの共重合体樹脂粒子と水性媒体との混合
物を耐圧容器内に仕込み、該混合物を該樹脂粒子の軟化
点以上の温度で前記耐圧容器内より低圧域に放出して二
次結晶を有する樹脂発泡粒子を得るに当り、該樹脂粒子
の原料樹脂としてコモノマー含有率が3〜10重量%で
Z平均分子量Mzと重量平均分子量Mwの比Mz/Mwが
1.5〜2.5の範囲にある樹脂を使用することを特徴
とするポリプロピレン系樹脂発泡粒子の製造方法。
2. A blowing agent and ethylene and / or butene-1.
A mixture of copolymer resin particles of propylene and propylene and an aqueous medium is charged into a pressure vessel, and the mixture is discharged to a low pressure region from the pressure vessel at a temperature equal to or higher than the softening point of the resin particles to form secondary crystals. In obtaining the expanded resin particles, a comonomer content as a raw material resin for the resin particles is 3 to 10% by weight, and a ratio Mz / Mw of Z average molecular weight Mz and weight average molecular weight Mw is in the range of 1.5 to 2.5. A method for producing expanded polypropylene resin particles, which comprises using the resin according to 1.
【請求項3】 発泡剤が無機ガス系発泡剤であることを
特徴とする請求項2に記載したポリプロピレン系樹脂発
泡粒子の製造方法。
3. The method for producing expanded polypropylene resin particles according to claim 2, wherein the foaming agent is an inorganic gas type foaming agent.
JP9197095A 1995-03-27 1995-03-27 Expanded polypropylene resin particles and method for producing the same Expired - Fee Related JP3537001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9197095A JP3537001B2 (en) 1995-03-27 1995-03-27 Expanded polypropylene resin particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9197095A JP3537001B2 (en) 1995-03-27 1995-03-27 Expanded polypropylene resin particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08259724A true JPH08259724A (en) 1996-10-08
JP3537001B2 JP3537001B2 (en) 2004-06-14

Family

ID=14041401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9197095A Expired - Fee Related JP3537001B2 (en) 1995-03-27 1995-03-27 Expanded polypropylene resin particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3537001B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220825A (en) * 2008-03-13 2009-10-01 Kaneka Corp Foamed shock-absorbing member for assembly package
WO2012121163A1 (en) 2011-03-08 2012-09-13 株式会社カネカ Polyethylene resin foam particles, polyethylene resin in-mold foam molded body, and method for producing polyethylene resin foam particles
WO2014084165A1 (en) 2012-11-27 2014-06-05 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220825A (en) * 2008-03-13 2009-10-01 Kaneka Corp Foamed shock-absorbing member for assembly package
WO2012121163A1 (en) 2011-03-08 2012-09-13 株式会社カネカ Polyethylene resin foam particles, polyethylene resin in-mold foam molded body, and method for producing polyethylene resin foam particles
US9309384B2 (en) 2011-03-08 2016-04-12 Kaneka Corporation Polyethylene resin foamed particles, polyethylene resin in-mold foam molded article, and method for producing polyethylene resin foamed particles
WO2014084165A1 (en) 2012-11-27 2014-06-05 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
US9493622B2 (en) 2012-11-27 2016-11-15 Kaneka Corporation Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same

Also Published As

Publication number Publication date
JP3537001B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
EP2653283B1 (en) Process for producing molded body of expanded polyolefin resin particles, and molded body of expanded polyolefin resin particles
CA2106180C (en) Process for the preparation of foamed propylene polymer articles
US5527573A (en) Extruded closed-cell polypropylene foam
US5116881A (en) Polypropylene foam sheets
JP4669301B2 (en) Conductive thermoplastic resin foam particles and foamed moldings thereof
JP3314358B2 (en) Polystyrene foam and method for producing the same
JPH0381346A (en) Polystyrene foam manufactured using only carbon dioxide as foam- ing agent and its manufacture
EP1790683B1 (en) Process for producing polypropylene resin foam molding
US6077875A (en) Foamed and expanded beads of polypropylene resin for molding
EP1625174A1 (en) High temperature resistant, flexible, low density polypropylene foams
US20120214886A1 (en) Extruded propylene resin foam and process for production thereof
JP3195674B2 (en) Method for producing non-crosslinked ethylene polymer expanded particles
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
JPH09509975A (en) Plastic foam and method of manufacturing the same
JP2004529231A (en) Blends of ethylene polymers with improved modulus and melt strength and articles made from these blends
EP0933389B1 (en) Polypropylene resin pre-expanded particles
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
JP5503123B2 (en) Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles
JP3537001B2 (en) Expanded polypropylene resin particles and method for producing the same
CA2150722C (en) Extruded closed-cell propylene polymer foam and methods of making the same
EP1031602B9 (en) Pre-expanded polypropylene resin beads and process for producing molded object therefrom by in-mold foaming
JP2777429B2 (en) Pre-expanded polypropylene resin particles and method for producing the same
EP0575958B1 (en) Pre-expanded particles of LLDPE
US4894191A (en) Preparation of polyolefin foams
JP3514046B2 (en) Pre-expanded particles of polypropylene resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040311

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees