JPH05291755A - Ceramic multilayer circuit board and multichip module using it - Google Patents

Ceramic multilayer circuit board and multichip module using it

Info

Publication number
JPH05291755A
JPH05291755A JP4118513A JP11851392A JPH05291755A JP H05291755 A JPH05291755 A JP H05291755A JP 4118513 A JP4118513 A JP 4118513A JP 11851392 A JP11851392 A JP 11851392A JP H05291755 A JPH05291755 A JP H05291755A
Authority
JP
Japan
Prior art keywords
resistor
thick film
concentration
film resistor
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4118513A
Other languages
Japanese (ja)
Inventor
Shuji Kato
修治 加藤
Toshio Ogawa
敏夫 小川
Mitsuru Hasegawa
長谷川  満
Tadamichi Asai
忠道 浅井
Noritaka Kamimura
典孝 神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4118513A priority Critical patent/JPH05291755A/en
Publication of JPH05291755A publication Critical patent/JPH05291755A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To get a ceramic multilayer circuit, which has a highly accurate thick film resistor within, by equalizing the distribution of Ag inside the built-in resistor. CONSTITUTION:In a ceramic multilayer circuit board, where a thick resistor 3 is arranged between the layers of the ceramic board and the thick resistor is electrically connected by Ag or a conductor material 1 partially including Ag, the ratio of the concentration of Ag within the thick resistor in the section 10mum apart from the interface between the thick resistor 3 made inside the ceramic board and the electrode constituted of a conductor material 1 to the concentration of Ag within the thick film resistor in the section most part from the electrode is two or less. This is a thick resistor, where the average concentration of Ag within itself is not more than 0.2wt. or not less than 1.5wt.%, within the board.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス多層回路
基板に係り、特に高精度抵抗素子を内蔵した高密度セラ
ミックス多層回路基板とそれを用いたマルチチップモジ
ュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic multi-layer circuit board, and more particularly to a high-density ceramic multi-layer circuit board with a built-in high-precision resistor element and a multi-chip module using the same.

【0002】[0002]

【従来の技術】近年のハイブリッドICは、より小型、
高密度の要求から、グリーンシート上に電極パターンを
印刷形成し、これらを積層、焼結することによって、も
しくは、スクリーン印刷の繰返しによって多層化し、焼
結することによって得られる基板内部に配線パターンを
持つセラミックス多層回路基板が用いられてきた。しか
し、この基板内部に形成する回路として、導線配線のみ
でなく、従来基板表面上に実装していた抵抗体等の受動
素子をも含める技術開発が進められている。この一つと
して、特開平2−5448号公報に開示される技術があ
る。即ち、抵抗体を基板の層間に内蔵することによっ
て、より高密度の多層回路基板を実現するものである。
2. Description of the Related Art Recent hybrid ICs are smaller,
Due to the demand for high density, an electrode pattern is formed by printing on a green sheet, and these are laminated and sintered, or a wiring pattern is formed inside the substrate obtained by multilayering and sintering by repeating screen printing. Ceramic multi-layer circuit boards have been used. However, as circuits to be formed inside the substrate, technological development is being promoted that includes not only conductor wiring but also passive elements such as resistors that are conventionally mounted on the surface of the substrate. As one of them, there is a technique disclosed in JP-A-2-5448. That is, by incorporating a resistor between the layers of the board, a higher density multilayer circuit board is realized.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これま
での技術では基板内部に抵抗体を包括しようとした場
合、抵抗体長さと抵抗値の両者の関係が直線関係から大
きくはずれ、任意の抵抗値を持った抵抗体の形状設計が
極めて難しく、精度の良い抵抗体を内蔵することは困難
であった。本発明はこうした問題点を解決し、抵抗体長
さと抵抗値との直線関係が容易に得られる高精度な厚膜
抵抗体を内部に包括したセラミックス多層回路基板とそ
れを用いるマルチチップモジュールを提供することを目
的とする。
However, according to the conventional techniques, when an attempt is made to include a resistor inside the substrate, the relationship between the resistor length and the resistance value largely deviates from the linear relationship, and an arbitrary resistance value is obtained. It is extremely difficult to design the shape of the resistor, and it is difficult to incorporate the resistor with high precision. The present invention solves these problems, and provides a ceramics multilayer circuit board including a highly accurate thick film resistor in which a linear relationship between a resistor length and a resistance value can be easily obtained, and a multichip module using the same. The purpose is to

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、セラミックス基板の層間に厚膜抵抗体
が配置され、該厚膜抵抗体がAg又はAgを一部含む導
体材料によって電気的に接続されたセラミックス多層回
路基板において、前記セラミックス基板内部に形成され
た厚膜抵抗体と前記導体材料で構成される電極との界面
からの距離が10μmの部分における該厚膜抵抗体中の
Agの濃度と、電極から最もはなれた部分における該厚
膜抵抗体中のAgの濃度との比が、2倍以内である厚膜
抵抗体を基板内部に有することとしたことにより、抵抗
体長さと抵抗値との比例関係が容易に得られる高精度な
厚膜抵抗体を基板内部に有するセラミックス多層回路基
板を得たものである。また、前記セラミックス多層回路
基板において、前記セラミックス基板内部に形成された
厚膜抵抗体は、該厚膜抵抗体中のAgの平均濃度を0.
2wt%以下、又は1.5wt%以上にすることによ
り、抵抗体長さと抵抗値との比例関係が容易に得られる
高精度な厚膜抵抗体を基板内部に有するセラミックス多
層回路基板とすることができる。
In order to achieve the above object, according to the present invention, a thick film resistor is arranged between layers of a ceramic substrate, and the thick film resistor is made of Ag or a conductor material partially containing Ag. In a ceramic multilayer circuit board electrically connected, in the thick film resistor in a portion where the distance from the interface between the thick film resistor formed inside the ceramic substrate and the electrode made of the conductive material is 10 μm The ratio of the Ag concentration in the thick film resistor to the Ag concentration in the thick film resistor in the portion farthest from the electrode is within 2 times. And a ceramic multi-layer circuit board having a highly accurate thick film resistor inside the substrate, which makes it possible to easily obtain a proportional relationship between the resistance value and the resistance value. In the ceramic multilayer circuit board, the thick film resistor formed inside the ceramic substrate has an average Ag concentration of 0.
By setting the content to 2 wt% or less, or 1.5 wt% or more, it is possible to obtain a ceramics multilayer circuit board having a highly accurate thick film resistor in which the proportional relationship between the resistor length and the resistance value can be easily obtained. ..

【0005】前記セラミックス多層回路基板において、
厚膜抵抗体中のAgの平均濃度を0.2wt%以下にす
るには、前記厚膜抵抗体をAg又はAgを一部含む前記
導体に直接接触しないようAgを除く貴金属系の端子を
介して接続することにより得られ、また前記セラミック
ス多層回路基板の製造工程に含まれる脱脂工程におい
て、大気中の酸素濃度の少なくとも2倍の酸素を有する
雰囲気中で前記脱脂工程を行うことにより、基板中の残
留カーボン量を0.005wt%以下としても得られ、
こうすることにより抵抗体長さと抵抗値との比例関係が
容易に得られる高精度な厚膜抵抗体を基板内部に有する
セラミックス多層回路基板を実現できる。
In the ceramic multilayer circuit board,
In order to reduce the average concentration of Ag in the thick film resistor to 0.2 wt% or less, a noble metal-based terminal other than Ag is used so as not to directly contact the thick film resistor with Ag or the conductor partially containing Ag. In the degreasing step, which is obtained by connecting the substrates in the ceramic multi-layer circuit board, and by performing the degreasing step in an atmosphere containing oxygen at least twice the oxygen concentration in the atmosphere, Is obtained even if the residual carbon amount of 0.005 wt% or less,
By doing so, it is possible to realize a ceramics multilayer circuit board having a highly accurate thick film resistor in which the proportional relationship between the resistor length and the resistance value can be easily obtained.

【0006】また、厚膜抵抗体中のAgの平均濃度を
0.2wt%以下にするには、前記導体材料中のAgの
濃度を50wt%以下にすることによっても達成でき、
こうすることで抵抗体長さと抵抗値との比例関係が容易
に得られる高精度な厚膜抵抗体を基板内部に有するセラ
ミックス多層回路基板を実現できる。そして、本発明で
得られる多層回路基板は、多数のチップと終端抵抗とを
搭載した高周波対応マルチチップモジュールにおける終
端抵抗として使用できるとともに、小型、高密度であ
り、携帯用のカメラ一体型ビデオ装置並びに移動通信用
電子機器、電話交換機、ワークステーション、パーソナ
ルコンピューター、ワードプロセッサー、電話交換機等
を構成する電子回路基板として有効に使用できる。
The average concentration of Ag in the thick film resistor can be set to 0.2 wt% or less by setting the concentration of Ag in the conductive material to 50 wt% or less.
By doing so, it is possible to realize a ceramics multilayer circuit board having a highly accurate thick film resistor in which the proportional relationship between the resistor length and the resistance value can be easily obtained. The multi-layer circuit board obtained by the present invention can be used as a termination resistor in a high-frequency compatible multi-chip module equipped with a large number of chips and a termination resistor, and is small in size and high in density, and is a portable camera-integrated video device. In addition, it can be effectively used as an electronic circuit board constituting electronic equipment for mobile communication, telephone exchanges, workstations, personal computers, word processors, telephone exchanges, and the like.

【0007】[0007]

【作用】従来の技術において、抵抗体長さと抵抗値の関
係が直線関係から大きくはずれるのは、電極からのAg
抵抗体中への拡散が原因である。図2は実用的な抵抗体
である0.3mmから3mmの抵抗体長さの抵抗体につ
いてのAgの濃度比(電極との界面からの距離が10μ
mの部分と最も離れた部分のAg量の比)の最大値をそ
の抵抗体中のAg濃度に対してプロットしたものであ
る。図2からわかるように、濃度勾配を小さくするに
は、Agの平均濃度を小さくするか、多くするか、2つ
の方法があることがわかる。特に実用域の抵抗体につい
て請求項1の条件を満たすには、Agの濃度が0.2w
t%以下か、1.5wt%以上にすれば良い。
In the prior art, the relationship between the resistance length and the resistance value deviates greatly from the linear relationship because the Ag from the electrode
This is due to diffusion into the resistor. FIG. 2 shows the Ag concentration ratio (the distance from the interface with the electrode is 10 μm) for a resistor having a resistor length of 0.3 mm to 3 mm, which is a practical resistor.
It is a plot of the maximum value of the ratio (Ag amount ratio of the portion m and the portion farthest away) against the Ag concentration in the resistor. As can be seen from FIG. 2, there are two methods for reducing the concentration gradient: decreasing the average concentration of Ag or increasing it. In particular, for the resistor in the practical range, in order to satisfy the condition of claim 1, the Ag concentration is 0.2 w.
It should be t% or less or 1.5 wt% or more.

【0008】従来の技術では、抵抗体をAg系の導体と
接触して形成するため導体中のAgが抵抗体へ拡散す
る。すると、導体付近はAg濃度が大きく、導体から離
れたところではAg濃度が小さくなる。つまり、抵抗体
中のAg濃度が不均一となる。しかし、表層に形成する
抵抗体もAg系の導体と直接接触しているが、そのよう
な問題は生じない。これは、Agの拡散のメカニズムに
関係する。厚膜ペースト及びグリーンシートは有機物と
無機物の混合物であり、焼成することにより導体、抵抗
体、絶縁層等を形成するが、焼成中に有機物が脱脂され
ないと残留カーボンが抵抗体に存在することになる。A
gの拡散は、抵抗体内及び抵抗体の付近に残留カーボン
が存在すると極めて加速される。表層抵抗体の場合、空
気と直接触れるので脱脂が充分行われ、残留カーボンが
少なく、Agの拡散は、さほど大きな問題とはならな
い。しかし、基板内部に形成される抵抗体では脱脂が不
十分となり、残留カーボンが多く、Agの拡散が抵抗値
に深刻な影響を与える。
In the prior art, since the resistor is formed in contact with the Ag-based conductor, Ag in the conductor diffuses into the resistor. Then, the Ag concentration is high in the vicinity of the conductor, and the Ag concentration is low in the place away from the conductor. That is, the Ag concentration in the resistor becomes non-uniform. However, although the resistor formed on the surface layer is also in direct contact with the Ag-based conductor, such a problem does not occur. This is related to the mechanism of Ag diffusion. Thick film paste and green sheets are a mixture of organic and inorganic substances, and they form conductors, resistors, insulation layers, etc. by firing, but if organic substances are not degreased during firing, residual carbon will be present in the resistors. Become. A
The diffusion of g is greatly accelerated by the presence of residual carbon in and near the resistor. In the case of the surface layer resistor, since it is in direct contact with air, it is sufficiently degreased, the amount of residual carbon is small, and the diffusion of Ag is not a big problem. However, degreasing is insufficient in the resistor formed inside the substrate, a large amount of residual carbon is present, and Ag diffusion seriously affects the resistance value.

【0009】抵抗体中のAg濃度を均一にするには、電
極からのAgの拡散を抑制すればよい。そのためには導
体と抵抗体の接触部の構造を工夫することにより、Ag
の抵抗体への拡散を抑制できる。又は、基板中の残留カ
ーボン量を減らすことにより、抵抗体中へのAgの拡散
を抑制できる。この場合どちらの方法でも結果的には抵
抗体中のAg濃度は極めて微量となり、抵抗体内におけ
るAgの濃度勾配は極めて小さくできる。つまり、厚膜
抵抗体中の平均Ag濃度を0.2wt%以下とし、且
つ、厚膜抵抗体と導体材料で構成される電極との界面か
らの距離が10μmの距離の部分における前記厚膜抵抗
体中のAgの濃度と電極から最もはなれた部分における
前記厚膜抵抗体中のAg濃度との比を2倍以内とするこ
とが可能である。この条件に見合う抵抗体では、抵抗体
長さと抵抗値との直線関係が容易に得られる。つまり、
高精度な厚膜抵抗体を内部に包括したハイブリッドIC
用多層回路基板を実現できる。
In order to make the Ag concentration in the resistor uniform, it is sufficient to suppress the diffusion of Ag from the electrodes. For that purpose, by devising the structure of the contact portion of the conductor and the resistor, Ag
Can be suppressed from diffusing into the resistor. Alternatively, by reducing the amount of residual carbon in the substrate, it is possible to suppress the diffusion of Ag into the resistor. In this case, whichever method is used, as a result, the Ag concentration in the resistor becomes extremely small, and the concentration gradient of Ag in the resistor can be made extremely small. That is, the average Ag concentration in the thick film resistor is set to 0.2 wt% or less, and the thick film resistor is located at a distance of 10 μm from the interface between the thick film resistor and the electrode made of the conductive material. It is possible to set the ratio of the Ag concentration in the body to the Ag concentration in the thick film resistor at the portion farthest from the electrode to within 2 times. With a resistor satisfying this condition, a linear relationship between the resistor length and the resistance value can be easily obtained. That is,
Hybrid IC with high precision thick film resistor inside
It is possible to realize a multilayer circuit board.

【0010】また、抵抗ペースト中のAg濃度をあらか
じめ多くしておくことにより、電極から抵抗体へのAg
の拡散の駆動力を減らし、Agの拡散を抑制できる。こ
の場合、抵抗体中のAgは濃度が全体的に高くなり、結
果的には濃度勾配は抑制される。抵抗ペースト中のAg
濃度を増やしておく方法としては抵抗ペースト中にAg
粉末を混合しておけばよい。もしくはあらかじめ抵抗ペ
ーストのガラスにAgを飽和濃度近く溶解しておけば、
電極から抵抗体へのAgの溶解は抑制され、抵抗値の不
安定要素となるAgの濃度勾配は小さく抑えられる。つ
まり、厚膜抵抗体中の平均Ag濃度が1.5wt%以上
で、且つ、厚膜抵抗体と導体材料で構成される電極との
界面からの距離が10μmの距離の部分における前記厚
膜抵抗体中の平均Agの濃度と電極から最もはなれた部
分における前記厚膜抵抗体中のAgの濃度との比を2倍
以内とすることが可能である。この条件に見合う抵抗体
では、抵抗体長さと抵抗値との直線関係が容易に得られ
る。つまり、高精度な厚膜抵抗体を内部に包括したハイ
ブリッドIC用多層回路基板を実現できる。
Further, by increasing the Ag concentration in the resistance paste in advance, the Ag from the electrode to the resistor is increased.
The driving force for the diffusion of Ag can be reduced and the diffusion of Ag can be suppressed. In this case, the concentration of Ag in the resistor is generally high, and as a result, the concentration gradient is suppressed. Ag in resistance paste
The method of increasing the concentration is to add Ag to the resistance paste.
Just mix the powders. Or, if Ag is dissolved in the resistance paste glass near the saturation concentration in advance,
The dissolution of Ag from the electrode to the resistor is suppressed, and the concentration gradient of Ag, which is an unstable element of the resistance value, is suppressed to a small value. That is, the thick film resistor has an average Ag concentration of 1.5 wt% or more and a distance of 10 μm from the interface between the thick film resistor and an electrode made of a conductive material. It is possible to set the ratio of the average Ag concentration in the body to the Ag concentration in the thick film resistor in the portion farthest from the electrode to within 2 times. With a resistor satisfying this condition, a linear relationship between the resistor length and the resistance value can be easily obtained. That is, it is possible to realize a multi-layer circuit board for a hybrid IC that includes a highly accurate thick film resistor inside.

【0011】上記の発明について具体的に説明する。ま
ず、電極・抵抗体接触部の構造についてである。Agの
拡散は電極と抵抗体が直接接触しているために生じるの
で、より具体的には、図1の様に電極1と抵抗体3の間
に、端子2を設けて、抵抗体とAgを含む電極が直接接
触しないようにする。この端子用材料は、Au,Pt,
Pdなどが好ましい。これにより、Agの拡散が防止さ
れる。つまり、厚膜抵抗体中の平均Ag濃度を0.2w
t%以下とし、且つ、厚膜抵抗体と導体材料で構成され
る電極との界面からの距離が10μmの距離の部分にお
ける前記厚膜抵抗体中のAgの濃度と電極から最もはな
れた部分における前記厚膜抵抗体中のAgの濃度との比
を2倍以内とすることが可能である。この条件に見合う
抵抗体では、抵抗体長さと抵抗値との直線関係が容易に
得られる。つまり、高精度な厚膜抵抗体を内部に包括し
たハイブリッドIC用多層回路基板を実現できる。
The above invention will be specifically described. First, the structure of the electrode / resistor contact portion will be described. Since the diffusion of Ag occurs because the electrode and the resistor are in direct contact, more specifically, a terminal 2 is provided between the electrode 1 and the resistor 3 as shown in FIG. Do not directly contact the electrodes including. The material for this terminal is Au, Pt,
Pd and the like are preferable. This prevents Ag diffusion. That is, the average Ag concentration in the thick film resistor is 0.2 w
t% or less, and at a portion where the distance from the interface between the thick film resistor and the electrode made of a conductive material is 10 μm, the Ag concentration in the thick film resistor and the portion farthest from the electrode It is possible to make the ratio with the concentration of Ag in the thick film resistor within twice. With a resistor satisfying this condition, a linear relationship between the resistor length and the resistance value can be easily obtained. That is, it is possible to realize a multi-layer circuit board for a hybrid IC that includes a highly accurate thick film resistor inside.

【0012】つぎに、Agの拡散メカニズムに関する対
策であるが、残留カーボンがAgの拡散を促進するの
で、残留カーボンの量をできるだけ少なくすることによ
りAgの拡散を防止できる。より具体的には、基板を脱
脂する際の酸素濃度を大気中の酸素濃度の2倍以上にす
れば基板中の残留カーボン量が0.005wt%以下と
なり、Agの拡散を抑制できる。つまり、厚膜抵抗体中
の平均Ag濃度を0.2wt%以下とし、且つ、厚膜抵
抗体と導体材料で構成される電極との界面からの距離が
10μmの距離の部分における前記厚膜抵抗体中のAg
の濃度と電極から最もはなれた部分における前記厚膜抵
抗体中のAgの濃度との比を2倍以内とすることが可能
である。この条件に見合う抵抗体では、抵抗体長さと抵
抗値との直線関係が容易に得られる。つまり、高精度な
厚膜抵抗体を内部に包括したハイブリッドIC用多層回
路基板を実現できる。
[0012] Next, regarding the mechanism of Ag diffusion mechanism, since residual carbon promotes Ag diffusion, it is possible to prevent Ag diffusion by reducing the amount of residual carbon as much as possible. More specifically, if the oxygen concentration at the time of degreasing the substrate is set to be at least twice the oxygen concentration in the atmosphere, the residual carbon amount in the substrate becomes 0.005 wt% or less, and Ag diffusion can be suppressed. That is, the average Ag concentration in the thick film resistor is set to 0.2 wt% or less, and the thick film resistor is located at a distance of 10 μm from the interface between the thick film resistor and the electrode made of the conductive material. Ag in the body
It is possible to set the ratio of the concentration of Ag to the concentration of Ag in the thick film resistor in the portion farthest from the electrode within 2 times. With a resistor satisfying this condition, a linear relationship between the resistor length and the resistance value can be easily obtained. That is, it is possible to realize a multi-layer circuit board for a hybrid IC that includes a highly accurate thick film resistor inside.

【0013】また、導体材料中のAg濃度を低くするこ
とによってもAgの拡散を抑えられる。具体的には、導
体材料中のAgの濃度を50wt%以下にするとAgの
拡散を抑制できる。つまり、厚膜抵抗体中の平均Ag濃
度を0.2wt%以下とし、且つ、厚膜抵抗体と導体材
料で構成される電極との界面からの距離が10μmの距
離の部分における前記厚膜抵抗体中のAgの濃度と電極
から最もはなれた部分における前記厚膜抵抗体中のAg
の濃度との比を2倍以内とすることが可能である。この
条件に見合う抵抗体では、抵抗体長さと抵抗値との直線
関係が容易に得られる。つまり、高精度な厚膜抵抗体を
内部に包括したハイブリッドIC用多層回路基板を実現
できる。
The diffusion of Ag can also be suppressed by lowering the Ag concentration in the conductor material. Specifically, when the Ag concentration in the conductor material is 50 wt% or less, Ag diffusion can be suppressed. That is, the average Ag concentration in the thick film resistor is set to 0.2 wt% or less, and the thick film resistor is located at a distance of 10 μm from the interface between the thick film resistor and the electrode made of the conductive material. Ag concentration in the body and Ag in the thick film resistor at the part farthest from the electrodes
It is possible to make the ratio with the concentration of 2 or less. With a resistor satisfying this condition, a linear relationship between the resistor length and the resistance value can be easily obtained. That is, it is possible to realize a multi-layer circuit board for a hybrid IC that includes a highly accurate thick film resistor inside.

【0014】[0014]

【実施例】以下、本発明を実施例によって更に詳細に説
明するが、本発明はこれらに限定されない。 実施例1 図1に本発明の1実施例を示す。この図は本発明による
多層回路基板・抵抗体接続部分の断面図を示している。
まず、硼硅酸鉛ガラス粉とフリットとしてのアルミナ粉
末に、ポリビニルブチラール等の有機溶剤を加えて攪拌
し、泥漿化状態にした。この泥漿を、ドクターブレード
を用いたキャスティング成膜法によって未焼成の誘電グ
リーンシートを複数枚形成した。次に、ステンレス等か
ら成る金型で外形と複数個の孔部(ビアホール)とを同
時にパンチングして形成した。このグリーンシート上に
まずAg等を主成分とする導体ペーストを塗布し、ビア
ホールを充填した。次に同じく金等を主成分とする導体
ペーストをスクリーン印刷し、端子2を形成した。次に
同じくAgを主成分とする導体ペーストをスクリーン印
刷し、導体1を形成した。次に、酸化ルテニウム、ガラ
スを主成分とする抵抗ペーストを、スクリーン印刷法に
よって塗布して、抵抗体3を形成した。同様に形成した
複数のグリーンシートを用いて順次積み重ねる。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited thereto. Embodiment 1 FIG. 1 shows an embodiment of the present invention. This figure shows a cross-sectional view of a multilayer circuit board / resistor connection portion according to the present invention.
First, an organic solvent such as polyvinyl butyral was added to lead borosilicate glass powder and alumina powder serving as a frit, and the mixture was stirred to form a sludge. A plurality of unfired dielectric green sheets were formed from this slurry by a casting film forming method using a doctor blade. Next, the outer shape and a plurality of holes (via holes) were formed by punching at the same time with a mold made of stainless steel or the like. First, a conductor paste containing Ag or the like as a main component was applied to the green sheet to fill the via holes. Next, a conductor paste containing gold or the like as a main component was also screen-printed to form the terminal 2. Next, a conductor paste containing Ag as a main component was also screen-printed to form a conductor 1. Next, a resistance paste containing ruthenium oxide and glass as main components was applied by a screen printing method to form a resistor 3. A plurality of similarly formed green sheets are used to sequentially stack.

【0015】次いで、熱プレス機などを用いて温度12
0℃、圧力200kg/cm2 の条件で上下面から熱圧
着して、積層体を得た。この成形体を、空気中、温度3
50℃で約1時間脱脂した後、やはり空気中で850℃
約10分の焼成により、厚膜抵抗体中の平均Ag濃度が
0.1wt%である厚膜抵抗体を得ることができた。こ
の時、抵抗体長さと抵抗値の関係は、直線関係に近くな
り、且つ、抵抗値バラツキは8wt%以下であった。つ
まり、高精度な厚膜抵抗体を内部に包括したハイブリッ
ドIC用多層回路基板を実現できた。しかし、従来の技
術を用いて、厚膜抵抗体中の平均Ag濃度が0.2wt
%を超える、かつ、厚膜抵抗体と導体材料で構成される
電極との界面からの距離が10μmの距離の部分におけ
る前記厚膜抵抗体中のAgの濃度と電極から最もはなれ
た部分における前記厚膜抵抗体中のAgの濃度との比を
2倍を超える厚膜抵抗体を内部に包括するセラミック多
層基板を作製して特性を調べたところ、抵抗体長さと抵
抗値の関係は、直線関係からはずれ、且つ、抵抗値バラ
ツキは20%以上になってしまった。
Then, using a heat press or the like, a temperature of 12
Thermocompression bonding was performed from the upper and lower surfaces under the conditions of 0 ° C. and a pressure of 200 kg / cm 2 to obtain a laminate. This molded body was placed in air at a temperature of 3
After degreasing at 50 ° C for about 1 hour, still in air at 850 ° C
By firing for about 10 minutes, it was possible to obtain a thick film resistor having an average Ag concentration of 0.1 wt% in the thick film resistor. At this time, the relationship between the resistor length and the resistance value was close to a linear relationship, and the resistance value variation was 8 wt% or less. In other words, it was possible to realize a multilayer circuit board for a hybrid IC that includes a highly accurate thick film resistor inside. However, using the conventional technique, the average Ag concentration in the thick film resistor is 0.2 wt.
%, And the concentration of Ag in the thick film resistor at a portion at a distance of 10 μm from the interface between the thick film resistor and the electrode made of a conductive material and the portion farthest from the electrode. When the characteristics of the ceramic multi-layered substrate containing the thick film resistor that exceeds the ratio of the concentration of Ag in the thick film resistor is more than doubled and the characteristics are investigated, the relation between the resistor length and the resistance value is linear. And the resistance variation was 20% or more.

【0016】実施例2 実施例1と同じ方法で誘電体グリーンシートを作製し
た。次に、ステンレス等から成る金型で外形と複数個の
孔部(ビアホール)とを同時にパンチングして形成し
た。このグリーンシート上にまずAg等を主成分とする
導体ペーストを塗布し、ビアホールを充填する。次に同
じくAgを主成分とする導体ペーストをスクリーン印刷
し、導体2を形成する。次に、酸化ルテニウム、ガラス
を主成分としてAg粉末を1.8wt%含んだ抵抗ペー
ストを、スクリーン印刷法によって塗布して、抵抗体3
を形成した。ここでは実施例1と違い抵抗体と導体を接
触して形成した。同様に形成した複数のグリーンシート
を用いて順次積み重ねた。次いで、熱プレス機などを用
いて温度120℃、圧力200kgf/cm2 の条件で
上下面から熱圧着して、積層体を得た。
Example 2 A dielectric green sheet was produced in the same manner as in Example 1. Next, the outer shape and a plurality of holes (via holes) were formed by punching at the same time with a mold made of stainless steel or the like. First, a conductor paste containing Ag or the like as a main component is applied to the green sheet to fill the via holes. Next, a conductor paste containing Ag as a main component is similarly screen-printed to form the conductor 2. Next, a resistor paste containing ruthenium oxide and glass as a main component and containing 1.8 wt% of Ag powder was applied by a screen printing method to form a resistor 3
Formed. Here, unlike Example 1, the resistor and the conductor were formed in contact with each other. A plurality of similarly formed green sheets were used and sequentially stacked. Then, using a hot press or the like, thermocompression bonding was performed from the upper and lower surfaces under the conditions of a temperature of 120 ° C. and a pressure of 200 kgf / cm 2 to obtain a laminate.

【0017】この成形体を、空気中、温度350℃で約
1時間脱脂した後、やはり空気中で850℃約10分の
焼成により、厚膜抵抗体中の平均Ag濃度が1.8wt
%で、且つ、厚膜抵抗体と導体材料で構成される電極と
の界面からの距離が10μmの距離の部分における前記
厚膜抵抗体中のAg濃度と電極から最もはなれた部分に
おける前記厚膜抵抗体中のAgの濃度との比が1.4倍
である厚膜抵抗体を得ることができた。この時、抵抗体
長さと抵抗値の関係は、直線関係に近くなり、且つ、抵
抗値バラツキは8%以下であった。つまり、高精度な厚
膜抵抗体を内部に包括したハイブリッドIC用多層回路
基板を実現できた。しかし、従来の技術を用いて、厚膜
抵抗体中の平均Ag濃度が1.5wt%を下回る、か
つ、厚膜抵抗体と導体材料で構成される電極との界面か
らの距離が10μmの距離の部分における前記厚膜抵抗
体中のAgの濃度と電極から最もはなれた部分における
前記厚膜抵抗体中のAgの濃度との比が2倍を超える厚
膜抵抗体を内部に包括するセラミック多層基板を作製し
て特性を調べたところ、抵抗体長さと抵抗値の関係は、
直線関係からはずれ、且つ、抵抗値バラツキは20%以
上になってしまった。
The molded body was degreased in air at a temperature of 350 ° C. for about 1 hour and then baked in air at 850 ° C. for about 10 minutes, so that the average Ag concentration in the thick film resistor was 1.8 wt.
%, And the Ag concentration in the thick film resistor at a portion where the distance from the interface between the thick film resistor and the electrode made of a conductive material is 10 μm and the thick film at the portion farthest from the electrode. A thick film resistor having a ratio of 1.4 times the Ag concentration in the resistor could be obtained. At this time, the relationship between the resistor length and the resistance value was close to a linear relationship, and the resistance value variation was 8% or less. In other words, it was possible to realize a multilayer circuit board for a hybrid IC that includes a highly accurate thick film resistor inside. However, using the conventional technique, the average Ag concentration in the thick film resistor is less than 1.5 wt%, and the distance from the interface between the thick film resistor and the electrode made of the conductive material is 10 μm. Of the thick film resistor in which the ratio of the concentration of Ag in the thick film resistor in the portion of [1] to the concentration of Ag in the thick film resistor in the portion farthest from the electrode exceeds twice, When the substrate was manufactured and the characteristics were examined, the relationship between the resistor length and the resistance value was
It deviated from the linear relationship, and the variation in resistance value became 20% or more.

【0018】実施例3 実施例1と同じ方法で誘電体グリーンシートを作製し
た。次に、ステンレス等から成る金型で外形と複数個の
孔部(ビアホール)とを同時にパンチングして形成し
た。このグリーンシート上にまずAg等を主成分とする
導体ペーストを塗布し、ビアホールを充填した。次に同
じくAgを主成分とする導体ペーストをスクリーン印刷
し、導体2を形成した。次に、酸化ルテニウム、ガラス
を主成分とした抵抗ペーストを、スクリーン印刷法によ
って塗布して、抵抗体3を形成した。ここでは実施例1
と違い抵抗体と導体を接触して形成した。同様に形成し
た複数のグリーンシートを用いて順次積み重ねた。次い
で、熱プレス機などを用いて温度120℃、圧力200
kgf/cm2 の条件で上下面から熱圧着して、積層体
を得た。
Example 3 A dielectric green sheet was produced in the same manner as in Example 1. Next, the outer shape and a plurality of holes (via holes) were formed by punching at the same time with a mold made of stainless steel or the like. First, a conductor paste containing Ag or the like as a main component was applied to the green sheet to fill the via holes. Next, a conductor paste containing Ag as a main component was screen-printed to form a conductor 2. Next, a resistance paste mainly composed of ruthenium oxide and glass was applied by a screen printing method to form a resistor 3. Example 1 here
Unlike the resistor and the conductor were formed in contact with each other. A plurality of similarly formed green sheets were used and sequentially stacked. Then, using a heat press or the like, the temperature is 120 ° C. and the pressure is 200.
A laminate was obtained by thermocompression bonding from the upper and lower surfaces under the condition of kgf / cm 2 .

【0019】この成形体を、酸素濃度55%、温度35
0℃で約1時間脱脂した後、やはり空気中で850℃約
10分の焼成により、基板中の残留カーボン量は0.0
02wt%となり、厚膜抵抗体中の平均Ag濃度が0.
16wt%で、且つ、厚膜抵抗体と導体材料で構成され
る電極との界面からの距離が10μmの距離の部分にお
ける前記厚膜抵抗体中のAgの濃度と電極から最もはな
れた部分における前記厚膜抵抗体中のAgの濃度との比
が1.7倍である厚膜抵抗体を得ることができた。この
時、抵抗体長さと抵抗値の関係は、直線関係に近くな
り、且つ、抵抗値バラツキは8%以下であった。つま
り、高精度な厚膜抵抗体を内部に包括したハイブリッド
IC用多層回路基板を実現できた。しかし、酸素濃度が
大気の2倍より低い雰囲気で脱脂を行い、基板中の残留
カーボン量0.005wt%を超える様な従来の技術を
用いて、厚膜抵抗体中の平均Ag濃度が0.2wt%を
超える、且つ、厚膜抵抗体と導体材料で構成される電極
との界面からの距離が10μmの距離の部分における前
記厚膜抵抗体中のAgの濃度と電極から最もはなれた部
分における前記厚膜抵抗体中のAgの濃度との比が2倍
を超える厚膜抵抗体を内部に包括するセラミック多層基
板を作製して特性を調べたところ、抵抗体長さと抵抗値
の関係は、直線関係からはずれ、且つ、抵抗値バラツキ
は20%以上になってしまった。
This molded product was subjected to an oxygen concentration of 55% and a temperature of 35.
After degreasing at 0 ° C for about 1 hour, the amount of residual carbon in the substrate is 0.0 by baking at 850 ° C for about 10 minutes in air.
02 wt% and the average Ag concentration in the thick film resistor is 0.
The concentration of Ag in the thick film resistor is 16 wt% and the distance from the interface between the thick film resistor and the electrode made of a conductive material is 10 μm. A thick film resistor having a ratio with the concentration of Ag in the thick film resistor of 1.7 times could be obtained. At this time, the relationship between the resistor length and the resistance value was close to a linear relationship, and the resistance value variation was 8% or less. In other words, it was possible to realize a multilayer circuit board for a hybrid IC that includes a highly accurate thick film resistor inside. However, degreasing is performed in an atmosphere in which the oxygen concentration is lower than twice that in the atmosphere, and the average Ag concentration in the thick film resistor is set to 0.50 by using the conventional technique in which the residual carbon amount in the substrate exceeds 0.005 wt%. The concentration of Ag in the thick film resistor at a portion exceeding 2 wt% and the distance from the interface between the thick film resistor and the electrode made of a conductive material being 10 μm and the portion farthest from the electrode A ceramic multilayer substrate having a thick film resistor whose ratio to the Ag concentration in the thick film resistor exceeds 2 times was manufactured and its characteristics were examined. The relationship between the resistor length and the resistance value was found to be linear. It was out of the relationship, and the resistance variation was 20% or more.

【0020】実施例4 実施例1と同じ方法で誘電体グリーンシートを作製し
た。次に、ステンレス等から成る金型で外形と複数個の
孔部(ビアホール)とを同時にパンチングして形成し
た。このグリーンシート上にまずAg等を主成分とする
導体ペーストを塗布し、ビアホールを充填した。次に金
属成分の比率がAg50wt%、Pd50wt%からな
る導体ペーストをスクリーン印刷し、導体2を形成し
た。次に、酸化ルテニウム、ガラスを主成分とした抵抗
ペーストを、スクリーン印刷法によって塗布して、抵抗
体3を形成した。ここでは実施例1と違い抵抗体と導体
を接触して形成した。同様に形成した複数のグリーンシ
ートを用いて順次積み重ねた。次いで、熱プレス機など
を用いて温度120℃、圧力200kgf/cm2 のの
条件で上下面から熱圧着して、積層体を得た。
Example 4 A dielectric green sheet was produced in the same manner as in Example 1. Next, the outer shape and a plurality of holes (via holes) were formed by punching at the same time with a mold made of stainless steel or the like. First, a conductor paste containing Ag or the like as a main component was applied to the green sheet to fill the via holes. Next, a conductor paste having a metal component ratio of Ag 50 wt% and Pd 50 wt% was screen-printed to form a conductor 2. Next, a resistance paste mainly composed of ruthenium oxide and glass was applied by a screen printing method to form a resistor 3. Here, unlike Example 1, the resistor and the conductor were formed in contact with each other. A plurality of similarly formed green sheets were used and sequentially stacked. Then, using a hot press or the like, thermocompression bonding was performed from the upper and lower surfaces under the conditions of a temperature of 120 ° C. and a pressure of 200 kgf / cm 2 , to obtain a laminate.

【0021】この成形体を、大気中、温度350℃で約
1時間脱脂した後、空気中で850℃約10分の焼成に
より、厚膜抵抗体中の平均Ag濃度が0.12wt%
で、且つ、厚膜抵抗体と導体材料で構成される電極との
界面からの距離がの距離が10μmの距離の部分におけ
る前記厚膜抵抗体中のAgの濃度と電極から最もはなれ
た部分における前記厚膜抵抗体中のAgの濃度との比が
1.5倍である厚膜抵抗体を得ることができた。この
時、抵抗体長さと抵抗値の関係は、直線関係に近くな
り、且つ、抵抗値バラツキは8%以下であった。つま
り、高精度な厚膜抵抗体を内部に包括したハイブリッド
IC用多層回路基板を実現できた。しかし、導体中の平
均Ag濃度が60wt%を超える様な従来の技術を用い
て、厚膜抵抗体中の平均Ag濃度が0.2wt%を超え
る、且つ、厚膜抵抗体と導体材料で構成される電極との
界面からの距離が10μmの距離の部分における前記厚
膜抵抗体中のAgの濃度と電極から最もはなれた部分に
おける前記厚膜抵抗体中のAgの濃度との比が2倍を超
える厚膜抵抗体を内部に包括するセラミック多層基板を
作製して特性を調べたところ、抵抗体長さと抵抗値の関
係は、直線関係からはずれ、且つ、抵抗値バラツキは2
0%以上になってしまった。
The molded body was degreased in the air at a temperature of 350 ° C. for about 1 hour and then baked in air at 850 ° C. for about 10 minutes, so that the average Ag concentration in the thick film resistor was 0.12 wt%.
And in the portion where the distance from the interface between the thick film resistor and the electrode made of a conductive material is 10 μm, the Ag concentration in the thick film resistor and the portion farthest from the electrode A thick film resistor having a ratio to the Ag concentration in the thick film resistor of 1.5 times could be obtained. At this time, the relationship between the resistor length and the resistance value was close to a linear relationship, and the resistance value variation was 8% or less. In other words, it was possible to realize a multilayer circuit board for a hybrid IC that includes a highly accurate thick film resistor inside. However, using a conventional technique in which the average Ag concentration in the conductor exceeds 60 wt%, the average Ag concentration in the thick film resistor exceeds 0.2 wt% and the thick film resistor and the conductor material are used. The ratio of the concentration of Ag in the thick film resistor at a portion at a distance of 10 μm from the interface with the electrode to the concentration of Ag in the thick film resistor at the portion farthest from the electrode is doubled. When a ceramic multi-layered substrate including a thick film resistor exceeding 100 μm was manufactured and its characteristics were examined, the relation between the resistor length and the resistance value deviated from the linear relation, and the resistance value variation was 2
It has exceeded 0%.

【0022】実施例5 10mm□のQFP7個、平均サイズmm□のチップ部
品40個、終端抵抗80個を搭載した高周波対応マルチ
チップモジュールを次の2種類作製した。 終端抵抗を表層に形成したもの。 実施例2の方法で終端抵抗を基板内部に形成したも
の。 の場合、基板面積が1400mm2 となった。の場
合、終端抵抗を搭載するのに必要な面積が減るので、基
板面積は1250mm2 におさまった。高周波マルチチ
ップモジュールでは信号の伝送速度が重要であり、その
為、配線長さが短い方が好ましい。配線長さを短くする
ためには、基板が小さい方が好ましい。つまり、の方
法で作製したマルチチップモジュールは、信号の伝送遅
れが小さいという優れた特性を持つ。
Example 5 The following two types of high-frequency compatible multi-chip modules were prepared, each having 7 QFPs of 10 mm □, 40 chip parts having an average size of mm □, and 80 terminating resistors. A terminating resistor formed on the surface. A terminating resistor is formed inside the substrate by the method of the second embodiment. In the case of, the substrate area was 1400 mm 2 . In this case, since the area required to mount the terminating resistor is reduced, the substrate area was reduced to 1250 mm 2 . In the high frequency multi-chip module, the signal transmission speed is important, and therefore the shorter wiring length is preferable. In order to shorten the wiring length, it is preferable that the substrate is small. That is, the multi-chip module manufactured by the method has the excellent characteristic that the signal transmission delay is small.

【0023】[0023]

【発明の効果】本発明によれば、セラミックス基板内の
抵抗体のAgの濃度勾配を小さくすることにより、抵抗
値と抵抗長さが直線関係に近く、且つ、精度の高い抵抗
体を内蔵したセラミックス多層回路基板が得られた。ま
た、前記多層回路基板は各種用途に提供できる。
According to the present invention, by reducing the concentration gradient of Ag of the resistor in the ceramic substrate, a resistor having a resistance value and a resistance length close to a linear relationship and having a high accuracy is built in. A ceramic multilayer circuit board was obtained. In addition, the multilayer circuit board can be provided for various uses.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による多層回路基板の断面構
成図。
FIG. 1 is a cross-sectional configuration diagram of a multilayer circuit board according to an embodiment of the present invention.

【図2】抵抗体中のAg含有量と抵抗値の関係を示すグ
ラフ。
FIG. 2 is a graph showing the relationship between the Ag content in a resistor and the resistance value.

【符号の説明】[Explanation of symbols]

1:Ag系導体、2:端子、3:抵抗体、4:グリーン
シート
1: Ag-based conductor, 2: Terminal, 3: Resistor, 4: Green sheet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/15 H05K 3/46 H 6921−4E S 6921−4E (72)発明者 浅井 忠道 茨城県日立市久慈町4026番地 株式会社日 立製作所内 (72)発明者 神村 典孝 茨城県日立市久慈町4026番地 株式会社日 立製作所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI Technical indication location H01L 23/15 H05K 3/46 H 6921-4E S 6921-4E (72) Inventor Tadada Asai Ibaraki Prefecture 4026 Kuji-machi, Hitachi City, inside Hitate Works Co., Ltd. (72) Noritaka Kamimura 4026, Kuji-cho, Hitachi City, Ibaraki Prefecture Hitate Works Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス基板の層間に厚膜抵抗体が
配置され、該厚膜抵抗体がAg又はAgを一部含む導体
材料によって電気的に接続されたセラミックス多層回路
基板において、前記セラミックス基板内部に形成された
厚膜抵抗体と前記導体材料で構成される電極との界面か
らの距離が10μmの部分における該厚膜抵抗体中のA
gの濃度と、電極から最もはなれた部分における該厚膜
抵抗体中のAgの濃度との比が、2倍以内である厚膜抵
抗体を基板内部に有することを特徴とするセラミックス
多層回路基板。
1. A ceramic multilayer circuit board in which a thick film resistor is arranged between layers of a ceramic substrate, and the thick film resistor is electrically connected by Ag or a conductor material containing a part of Ag, in the ceramic substrate. A in the thick film resistor at a distance of 10 μm from the interface between the thick film resistor formed on the substrate and the electrode made of the conductive material.
A ceramics multilayer circuit board having a thick film resistor in which the ratio of the concentration of g and the concentration of Ag in the thick film resistor in the portion farthest from the electrode is within 2 times. ..
【請求項2】 前記セラミックス基板内部に形成された
厚膜抵抗体は、該厚膜抵抗体中のAgの平均濃度が0.
2wt%以下であることを特徴とする請求項1記載のセ
ラミックス多層回路基板。
2. The thick film resistor formed inside the ceramic substrate has an average Ag concentration of 0.
The ceramic multilayer circuit board according to claim 1, wherein the content is 2 wt% or less.
【請求項3】 前記セラミックス基板内部に形成された
厚膜抵抗体は、該厚膜抵抗体中のAgの平均濃度が1.
5wt%以上であることを特徴とする請求項1記載のセ
ラミックス多層回路基板。
3. The thick film resistor formed inside the ceramic substrate has an average Ag concentration of 1.
The ceramic multilayer circuit board according to claim 1, wherein the content is 5 wt% or more.
【請求項4】 前記厚膜抵抗体は、Agを除く貴金属系
の端子を介してAg又はAgを一部含む前記導体に接続
されていることを特徴とする請求項2記載のセラミック
ス多層回路基板。
4. The ceramic multilayer circuit board according to claim 2, wherein the thick film resistor is connected to the conductor containing Ag or a part of Ag through a noble metal-based terminal other than Ag. ..
【請求項5】 前記Agを一部含む導体材料は、導体材
料中のAgの濃度が50wt%以下であることを特徴と
する請求項2記載のセラミックス多層回路基板。
5. The ceramic multilayer circuit board according to claim 2, wherein the conductor material partially containing Ag has an Ag concentration of 50 wt% or less in the conductor material.
【請求項6】 前記セラミックス多層回路基板は、基板
中の残留カーボン量が0.005wt%以下であること
を特徴とする請求項2記載のセラミックス多層回路基
板。
6. The ceramic multilayer circuit board according to claim 2, wherein the residual carbon amount in the ceramic multilayer circuit board is 0.005 wt% or less.
【請求項7】 多数のチップと終端抵抗とを搭載した高
周波対応マルチチップモジュールにおいて、前記終端抵
抗として請求項1、2又は3記載のセラミックス多層回
路基板を用いることを特徴とする高周波対応マルチチッ
プモジュール。
7. A high frequency compatible multi-chip module, comprising a large number of chips and a terminating resistor, wherein the ceramic multilayer circuit board according to claim 1, 2 or 3 is used as the terminating resistor. module.
JP4118513A 1992-04-13 1992-04-13 Ceramic multilayer circuit board and multichip module using it Pending JPH05291755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4118513A JPH05291755A (en) 1992-04-13 1992-04-13 Ceramic multilayer circuit board and multichip module using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4118513A JPH05291755A (en) 1992-04-13 1992-04-13 Ceramic multilayer circuit board and multichip module using it

Publications (1)

Publication Number Publication Date
JPH05291755A true JPH05291755A (en) 1993-11-05

Family

ID=14738496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4118513A Pending JPH05291755A (en) 1992-04-13 1992-04-13 Ceramic multilayer circuit board and multichip module using it

Country Status (1)

Country Link
JP (1) JPH05291755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016027692A1 (en) * 2014-08-18 2017-04-27 株式会社村田製作所 Electronic component and method for manufacturing electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016027692A1 (en) * 2014-08-18 2017-04-27 株式会社村田製作所 Electronic component and method for manufacturing electronic component

Similar Documents

Publication Publication Date Title
US6468640B2 (en) Monolithic ceramic substrate, manufacturing and designing methods therefor, and electronic device
JP2001060767A (en) Method for manufacturing ceramic board and unfired ceramic board
JP3528037B2 (en) Manufacturing method of glass ceramic substrate
CN101268725A (en) Ceramic multilayer substrate and method for manufacturing the same
KR20010043936A (en) Conductive paste, Ceramic multilayer substrate, and Method for manufacturing ceramic multilayer substrate
JP3882500B2 (en) Thick film insulating composition, ceramic electronic component using the same, and electronic device
US5292574A (en) Ceramic substrate having wiring of silver series
JP2002353624A (en) Multilayer ceramic board and method of manufacturing the same, unsintered ceramic laminate, and electronic device
US7009114B2 (en) Wiring substrate, method of producing the same, and electronic device using the same
JPH025315B2 (en)
US9307649B2 (en) Mixed-metal system conductors for use in low-temperature co-fired ceramic circuits and devices
JP4038602B2 (en) Conductive paste and ceramic multilayer substrate
JPH11312417A (en) Conductive paste for multilayer ceramic board formation
JPH0613755A (en) Ceramic multilayer wiring board and manufacture thereof
JPH05291755A (en) Ceramic multilayer circuit board and multichip module using it
JP2002043758A (en) Multilayer board and manufacturing method
JP2001291959A (en) Manufacturing method for multilayer ceramic substrate and copper conductive paste
JPH06283380A (en) Manufacture of ceramic multilayer circuit board incorporating capacitor
JP2598706B2 (en) Carrier board with built-in capacitor
JP2002084051A (en) Metallized copper composition, low-temperature sintered ceramic wiring board, and method of manufacturing the same
JP2001143527A (en) Conductive paste and ceramic wiring substrate using the same
JPH11251700A (en) Copper-metallized composition and glass ceramic wiring board using the composition
JP2004031699A (en) Ceramic circuit board and method for manufacturing the same
JPH10256730A (en) Multilayer ceramic board
JPH09260853A (en) Ceramic circuit board and its manufacture