JPH05291571A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH05291571A
JPH05291571A JP8674192A JP8674192A JPH05291571A JP H05291571 A JPH05291571 A JP H05291571A JP 8674192 A JP8674192 A JP 8674192A JP 8674192 A JP8674192 A JP 8674192A JP H05291571 A JPH05291571 A JP H05291571A
Authority
JP
Japan
Prior art keywords
source
region
transistor
diode
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8674192A
Other languages
Japanese (ja)
Other versions
JP3211351B2 (en
Inventor
Naoki Matsuura
直樹 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP8674192A priority Critical patent/JP3211351B2/en
Publication of JPH05291571A publication Critical patent/JPH05291571A/en
Application granted granted Critical
Publication of JP3211351B2 publication Critical patent/JP3211351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • H01L2924/13033TRIAC - Triode for Alternating Current - A bidirectional switching device containing two thyristor structures with common gate contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

PURPOSE:To prevent breakdown to surge from a source or an emitter of a transistor. CONSTITUTION:A region of a reverse conductivity of a substrate 12 is formed inside a region 14 which is isolated excepting a surface by a buried diffusion part 10 of a reverse conductivity of a substrate 12 and an epitaxial layer 11 which work as a drain (a collector in case of a bipolar transistor) below a bonding region of a source (or an emitter) wire 6 of a transistor. Thereby, a diode is formed, an anode 13 and a source electrode 15 of the diode are connected and the cathode 14 is connected to the bonding wire 6. Since a transistor main body is protected against surge from a reverse direction by providing withstand voltage by the diode in a reverse direction of the transistor, it is hardly broken down.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】この発明はトランジスタに関し、特にバイ
ポーラトランジスタまたはMOS型電界効果トランジス
タの構造に関する。
The present invention relates to a transistor, and more particularly to the structure of a bipolar transistor or a MOS type field effect transistor.

【0002】[0002]

【従来の技術】従来、トランジスタは図4に断面図とし
て示すMOS型電界効果トランジスタのようにドレイン
(バイポーラトランジスタの場合はコレクタ)として作
用する基板の上のエピタキシャル層11の表面に逆導電
型の層20を設け、ソースアルミ電極(バイポーラトラ
ンジスタ場合はエミッタ電極)15を前記逆導電型の層
20まで引き出し、ボンデングワイヤ6を接続するボン
ディングパッドとしている。
2. Description of the Related Art Conventionally, a transistor has a reverse conductivity type on the surface of an epitaxial layer 11 on a substrate which acts as a drain (collector in the case of a bipolar transistor) like a MOS field effect transistor shown in a sectional view in FIG. A layer 20 is provided, a source aluminum electrode (emitter electrode in the case of a bipolar transistor) 15 is led out to the layer 20 of the opposite conductivity type, and it is used as a bonding pad for connecting the bonding wire 6.

【0003】なお、上記のような構成とする主な理由は
ドレイン(コレクタ)領域表面に酸化膜を介して、設け
たボンディングパッドにワイヤボンディングを行うと
(特にパワートランジスタの場合はワイヤが太いので)
酸化膜にクラックが入りがちであり、クラックが入ると
ソース−ドレイン間(エミッタ−コレクタ間)がショー
トまたは耐圧不良となるのでそれをさけるためである。
The main reason for adopting the above-mentioned structure is to perform wire bonding on a bonding pad provided on the surface of the drain (collector) region through an oxide film (especially in the case of a power transistor, the wire is thick). )
This is because cracks tend to occur in the oxide film, and if cracks occur, a short circuit occurs between the source and drain (between the emitter and collector) or a withstand voltage defect, and this is avoided.

【0004】したがって、ドレイン−ソース間(コレク
タ−エミッタ間)は逆方向に電圧が引加されるとショー
ト状態となっている。
Therefore, the drain-source (collector-emitter) is short-circuited when a voltage is applied in the opposite direction.

【0005】なお,図4に示すトランジスタのボンディ
ングパッドではなく、酸化膜上にボンディングパッドを
設けるものについても、MOS型電界効果トランジスタ
はやはり逆方向はショートとなっており、バイポーラト
ランジスタの場合は比較的低い耐圧のエミッタ接合の逆
耐圧を有しており、いずれも逆方向に電圧が与えられる
と電流が流れる構造となっている。
Even in the case where the bonding pad is provided on the oxide film instead of the bonding pad of the transistor shown in FIG. 4, the MOS field effect transistor is also short-circuited in the opposite direction. It has a reverse breakdown voltage of the emitter junction with a relatively low breakdown voltage, and each has a structure in which a current flows when a voltage is applied in the opposite direction.

【0006】[0006]

【発明が解決しようとする課題】ところで上記の従来の
トランジスタは逆方向にはON状態となっているので、
突発的な電気的パルス、つまりサージに対して過大な電
流が流れ、ダメージを受け易いという欠点があった。
By the way, since the above-mentioned conventional transistor is turned on in the opposite direction,
There is a drawback in that excessive current flows due to a sudden electric pulse, that is, a surge, and is easily damaged.

【0007】[0007]

【課題を解決するための手段】この発明のトランジスタ
は、基板となるウェーハに、基板とは逆の導電型で表面
をのぞき取り囲まれた基板と同じ導電型ボンディング領
域を形成し、その表面に選択的に基板とは逆の導電型の
ソース(エミッタ)電極接続領域を形成し、前記電極接
続領域にソース電極(エミッタ電極)を接続し、前記ボ
ンディング領域表面にボンディングパッドを設けたこと
を特徴とする。
According to the transistor of the present invention, a bonding region having the same conductivity type as that of a substrate having a conductivity type opposite to that of the substrate except the surface is formed on a wafer serving as a substrate, and the bonding region is selected on the surface. A source (emitter) electrode connection region having a conductivity type opposite to that of the substrate is formed, a source electrode (emitter electrode) is connected to the electrode connection region, and a bonding pad is provided on the surface of the bonding region. To do.

【0008】[0008]

【作用】上記の構成によると、ソース電極(エミッタ電
極)はソース(エミッタ)電極接続領域とボンディング
領域とで作るダイオードを介してボンディングパッドに
接続するので逆方向には電流が流れず保護の役割を果た
し、トランジスタがON状態のときにはダイオードは順
方向となるので十分な通電が電圧降下を起こすことなく
可能である。
According to the above structure, since the source electrode (emitter electrode) is connected to the bonding pad through the diode formed by the source (emitter) electrode connecting region and the bonding region, a current does not flow in the opposite direction and the role of protection. Since the diode is in the forward direction when the transistor is in the ON state, sufficient current can be supplied without causing a voltage drop.

【0009】[0009]

【実施例1】以下、この発明について図面を参照して説
明する。
First Embodiment The present invention will be described below with reference to the drawings.

【0010】第1図はこの発明の一実施例のNチャンネ
ルMOS型電界効果トランジスタの断面図である。図に
おいて、1はゲートポリシリコン電極、2は層間絶縁
膜,3はゲート酸化膜,4は厚い酸化膜、5はアルミで
なるボンディングパッド、6はソースボンディングワイ
ヤー、7・8はMOSトランジスタを形成するベース・
ソース部、9・10は絶縁領域を形成するための押込拡
散部・埋込拡散部、11はドレインとして作用するN型
エピタキシャル層、12はN+ 型エピタキシャル層、1
2はN+ 型基板ウェーハ、13はダイオードのアノード
として作用するP型ソース電極接続する領域、14はダ
イオードのカソードとして作用するN型のボンディング
領域で、エピタキシャル層11と同時に形成される、1
5はソースアルミ電極である。
FIG. 1 is a sectional view of an N-channel MOS field effect transistor according to an embodiment of the present invention. In the figure, 1 is a gate polysilicon electrode, 2 is an interlayer insulating film, 3 is a gate oxide film, 4 is a thick oxide film, 5 is a bonding pad made of aluminum, 6 is a source bonding wire, and 7 and 8 are MOS transistors. Base
Source portions, 9 and 10 are indented diffusion portions / buried diffusion portions for forming insulating regions, 11 is an N-type epitaxial layer acting as a drain, 12 is an N + -type epitaxial layer, 1
Reference numeral 2 is an N + -type substrate wafer, 13 is a region for connecting a P-type source electrode that acts as an anode of the diode, and 14 is an N-type bonding region that acts as a cathode of the diode, which is formed simultaneously with the epitaxial layer 11.
Reference numeral 5 is a source aluminum electrode.

【0011】次に上記のMOS型電界効果トランジスタ
の動作について説明する。ゲートポリシリコン電極1に
正の電圧を印加することでMOS型電界効果トランジス
タはON状態となり、ON電流は基板ウェーハ12→エ
ピタキシャル層11→ベース部7→ソース部8→ソース
アルミ電極15を通り、ソース電極接続領域13からボ
ンディング領域14とボンディングパッド5を通ってソ
ースボンディングワイヤ6に通電される。
Next, the operation of the above MOS type field effect transistor will be described. By applying a positive voltage to the gate polysilicon electrode 1, the MOS field effect transistor is turned on, and the ON current passes through the substrate wafer 12 → epitaxial layer 11 → base portion 7 → source portion 8 → source aluminum electrode 15, The source bonding wire 6 is energized from the source electrode connection region 13 through the bonding region 14 and the bonding pad 5.

【0012】一方、MOS型電界効果トランジスタがO
FF状態のときソース−ドレイン間に逆電圧が印加され
た場合は、ソース電極接続領域13とボンディング領域
14、ソースアルミ電極15には電流は流れない。
On the other hand, the MOS field effect transistor is
When a reverse voltage is applied between the source and the drain in the FF state, no current flows in the source electrode connection region 13, the bonding region 14, and the source aluminum electrode 15.

【0013】この実施例によればトランジスタがON状
態のときには,基板つまりドレインがソースワイヤーへ
の通電は可能であり、OFF状態のときには、ダイオー
ドの働きにより、ソース側からのサージに対して、トラ
ンジスタを保護することになり、破壊耐量が向上すると
いう利点がある。本実施例はMOS型電界効果トランジ
スタであるがバイポーラトランジスタでも同様な効果が
ある。
According to this embodiment, when the transistor is in the ON state, the substrate, that is, the drain, can energize the source wire, and in the OFF state, the diode functions to prevent the surge from the source side. Will be protected, and there is an advantage that the breakage resistance is improved. This embodiment is a MOS field effect transistor, but a bipolar transistor also has a similar effect.

【0014】図2に電界効果トランジスタとバイポーラ
トランジスタにダイオードを形成した場合の回路図を示
す。ダイオード16・17によりソース側からのサージ
に対してトランジスタは保護される。
FIG. 2 shows a circuit diagram when a diode is formed in the field effect transistor and the bipolar transistor. The transistors are protected against surges from the source side by the diodes 16 and 17.

【0015】図5にソース−ドレイン間の電圧・電流特
性を示す。18はドレインからソース方向への通常の耐
圧値、19はダイオードの逆耐圧値であり、(a),
(b)のようにダイオードの耐圧は、図10のソース電
極接続領域13の不純物より設定が自由である。
FIG. 5 shows the voltage-current characteristics between the source and the drain. 18 is the normal withstand voltage value from the drain to the source direction, 19 is the reverse withstand voltage value of the diode, (a),
As shown in (b), the breakdown voltage of the diode can be freely set by the impurities in the source electrode connection region 13 of FIG.

【0016】[0016]

【実施例2】図3はこの発明の第2実施例の断面図であ
る。この実施例は、前記第1の実施例の図1注のソース
電極接続領域13、つまりダイオードのアノードとなる
P領域をボンディングパッド5を取り囲む環状にした点
を除いては、第1の実施例と同様であるため、同一部分
には同一参照符号を付してその説明を省略する。この実
施例ではP領域13を長く環状に形成しているため、接
合面積が大きくなることで電流容量が大きくなり大電流
通電が可能になり、破壊耐量も向上するという利点があ
る。
Second Embodiment FIG. 3 is a sectional view of a second embodiment of the present invention. This embodiment is the same as the first embodiment except that the source electrode connection region 13 of FIG. 1Note of the first embodiment, that is, the P region serving as the anode of the diode is formed in an annular shape surrounding the bonding pad 5. Therefore, the same parts are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, since the P region 13 is formed in a long annular shape, there is an advantage that the junction area becomes large, the current capacity becomes large, a large current can be conducted, and the breakdown resistance is improved.

【0017】以上実施例はNチャンネルMOS型電界効
果トランジスタに付いて主として説明したが、他のトラ
ンジスタん、例えばPチャンネル電界効果トランジス
タ、NPNトランジスタにも同様の効果があることは言
うまでもない。
Although the embodiments have been mainly described with respect to the N-channel MOS type field effect transistor, it goes without saying that other transistors such as a P-channel field effect transistor and an NPN transistor also have similar effects.

【0018】[0018]

【発明の効果】以上説明したように、この発明はトラン
ジスタの逆方向にも耐圧を持たせたことにより、逆方向
のサージに対してトランジスタ本体を保護することによ
り破壊し憎くなるという効果がある。
As described above, according to the present invention, the breakdown voltage is provided in the reverse direction of the transistor as well, so that the transistor body is protected against the surge in the reverse direction and is destroyed and hated. .

【0019】また、両方向に耐圧のあるトライアックよ
りもMOS型電界効果トランジスタにすればスイッチン
グスピードが早くなり、スイッチングロスも少なくなり
有利である。
Further, if a MOS type field effect transistor is used rather than a triac having a withstand voltage in both directions, the switching speed becomes faster and the switching loss is reduced, which is advantageous.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明のダイオードを形成したMOS型電
界効果トランジスタの断面図。
FIG. 1 is a sectional view of a MOS field effect transistor having a diode according to the present invention.

【図2】 (a)は本発明のMOS型電界効果トランジ
スタの等価回路図。(b)は、バイポーラNPNトラン
ジスタの等価回路図である。
FIG. 2A is an equivalent circuit diagram of a MOS field effect transistor of the present invention. (B) is an equivalent circuit diagram of a bipolar NPN transistor.

【図3】 本発明の他の実施例の断面図。FIG. 3 is a sectional view of another embodiment of the present invention.

【図4】 従来のMOS型電界効果トランジスタのソー
スボンディングワイヤ付近の断面図。
FIG. 4 is a cross-sectional view of a conventional MOS field effect transistor in the vicinity of a source bonding wire.

【図5】 (a),(b)は本発明の電圧・電流特性図
である。(c)は従来トランジスタの電圧・電流特性図
である。
5A and 5B are voltage / current characteristic diagrams of the present invention. (C) is a voltage-current characteristic diagram of a conventional transistor.

【符号の説明】[Explanation of symbols]

1 ゲートポリシリコン電極 2 層間絶縁膜 3 ゲート酸化膜 4 厚い酸化膜 5 ソース電極ボンディングパッド 6 ソースボンディングワイヤ 7 MOSトランジスタユニットセル部P型ベース領域 8 MOSトランジスタユニットセル部N型ソース領域 9 押込拡散部 10 埋込拡散部 11 エピタキシャル層 12 基板ウェーハ 13 ダイオードアノードP型領域(ソース電極接続領
域) 14 ダイオードカソードN型領域(ボンディング領
域) 15 ソースアルミ電極 16 ダイオード 17 ダイオード 18 トランジスタ耐圧値 19 ダイオード耐圧値
1 Gate Polysilicon Electrode 2 Interlayer Insulation Film 3 Gate Oxide Film 4 Thick Oxide Film 5 Source Electrode Bonding Pad 6 Source Bonding Wire 7 MOS Transistor Unit Cell Part P-type Base Region 8 MOS Transistor Unit Cell Part N-type Source Region 9 Indented Diffusion Part 10 Embedded Diffusion Part 11 Epitaxial Layer 12 Substrate Wafer 13 Diode Anode P-type Region (Source Electrode Connection Region) 14 Diode Cathode N-type Region (Bonding Region) 15 Source Aluminum Electrode 16 Diode 17 Diode 18 Transistor Withstand Voltage Value 19 Diode Withstand Voltage Value

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/73 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 29/73

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ドレイン(又はコレクタ)として作用する
基板とは逆導電型の領域で表面をのぞいて囲まれて電気
的に絶縁された、基板と同じ導電型のボンディイング領
域と、その領域内表面に選択的に形成された基板とは逆
導電型のソース(又はエミッタ)電極接続領域と、前記
ボンディング領域の表面に設けたボンディングパッド
と、前記ソース(又はエミッタ)電極接続領域に接続す
るソース(又はエミッタ)とを具備することを特徴とす
る半導体装置。
1. A bonding region of the same conductivity type as that of the substrate, which is surrounded by a region of a conductivity type opposite to that of the substrate acting as a drain (or collector) except for the surface and is electrically insulated, and within that region. A source (or emitter) electrode connection region having a conductivity type opposite to that of the substrate selectively formed on the surface, a bonding pad provided on the surface of the bonding region, and a source connected to the source (or emitter) electrode connection region. (Or an emitter).
【請求項2】前記ソース(又はエミッタ)電極接続領域
が、前記ボンディング領域内で環状に形成されているこ
とを特徴とする請求項1に記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the source (or emitter) electrode connection region is formed in a ring shape in the bonding region.
JP8674192A 1992-04-08 1992-04-08 Semiconductor device Expired - Fee Related JP3211351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8674192A JP3211351B2 (en) 1992-04-08 1992-04-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8674192A JP3211351B2 (en) 1992-04-08 1992-04-08 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH05291571A true JPH05291571A (en) 1993-11-05
JP3211351B2 JP3211351B2 (en) 2001-09-25

Family

ID=13895234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8674192A Expired - Fee Related JP3211351B2 (en) 1992-04-08 1992-04-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3211351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248657B1 (en) 1998-03-13 2001-06-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248657B1 (en) 1998-03-13 2001-06-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method for manufacturing the same
KR100306858B1 (en) * 1998-03-13 2001-11-17 다니구찌 이찌로오, 기타오카 다카시 Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP3211351B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
US5162966A (en) Semiconductor device having a surge protecting element
JP4623775B2 (en) VDMOS transistor
JP2682272B2 (en) Insulated gate transistor
JPH11284175A (en) Mos type semiconductor device
JP3590706B2 (en) Protection device for semiconductor device
JPH0324791B2 (en)
US4987098A (en) Method of producing a metal-oxide semiconductor device
JPH02275675A (en) Mos type semiconductor device
JPH0575110A (en) Semiconductor device
US8018001B2 (en) Semiconductor device
JP2680788B2 (en) Integrated structure active clamp device
JP3302275B2 (en) Semiconductor devices
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
JPS61296770A (en) Insulated gate field effect type semiconductor device
EP0341730A2 (en) Gate-controlled bidirectional semiconductor switching device
US6144066A (en) Protection of the logic well of a component including an integrated MOS power transistor
JPH05291571A (en) Semiconductor device
US6781804B1 (en) Protection of the logic well of a component including an integrated MOS power transistor
JP3401840B2 (en) Semiconductor device
JP2871352B2 (en) Semiconductor device
JPH0997901A (en) Semiconductor device
JP3217484B2 (en) High voltage semiconductor device
JPH0715010A (en) Protective circuit of semiconductor device
JP2870450B2 (en) Semiconductor integrated circuit device
JPH01185971A (en) Insulated gate semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees