JPH05291391A - Method of forming element isolating structure in semiconductor device - Google Patents

Method of forming element isolating structure in semiconductor device

Info

Publication number
JPH05291391A
JPH05291391A JP8709292A JP8709292A JPH05291391A JP H05291391 A JPH05291391 A JP H05291391A JP 8709292 A JP8709292 A JP 8709292A JP 8709292 A JP8709292 A JP 8709292A JP H05291391 A JPH05291391 A JP H05291391A
Authority
JP
Japan
Prior art keywords
layer
insulating film
side wall
element isolation
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8709292A
Other languages
Japanese (ja)
Inventor
Takatoshi Ushigoe
貴俊 牛越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP8709292A priority Critical patent/JPH05291391A/en
Publication of JPH05291391A publication Critical patent/JPH05291391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To form an element isolating layer having an extremely small width and form a minute element isolation structure in which a buried layer does not come up at all in a method of forming an element isolation (PN isolation) which is formed in a semiconductor device such as a bipolar type semiconductor device or the like. CONSTITUTION:An insulating film 2 is formed on a substrate 1 and an opening part corresponding to an element forming region 10 is provided therein, and a P<+> type side wall 5a is formed on the side wall of the insulating film 2 provided with the opening part 10, and if the remaining insulating film 2 is removed, only the side wall 5a is left on the substrate 1, and if an N-type single crystal grows up to a height of the side wall 5a, the side wall 5a becomes an element isolation layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体装置、特にバ
イポーラ型半導体装置などにおける素子分離(中でもP
N分離)の形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to element isolation in semiconductor devices, particularly bipolar semiconductor devices (particularly P
N separation).

【0002】[0002]

【従来の技術】従来の素子分離構造には各種の構造が用
いられているが、特にバイポーラ型半導体装置について
の代表的な構造と製造方法を図3ないし図4に示し、以
下に説明する。
2. Description of the Related Art Various structures are used for a conventional element isolation structure. Particularly, a typical structure and manufacturing method for a bipolar semiconductor device are shown in FIGS. 3 to 4 and described below.

【0003】まず、P型半導体基板1にコレクタ抵抗低
減のための埋込みN+ 層3を形成し、表面に酸化膜2を
形成する(図3(a))。次に、PN分離をする為のP
+ 埋込み層(後述5a)を形成するため、再度酸化膜4
を施し(図3(b))、そのP+ 層5aを形成する部分
を開口し、その開口部5から不純物を注入し拡散すれば
+ 層5aが形成される(図3(c))。次にエピタキ
シャル層成長の準備のため、表面絶縁膜(酸化膜)2を
全面剥離する(図3(d))。
First, a buried N + layer 3 for reducing collector resistance is formed on a P-type semiconductor substrate 1, and an oxide film 2 is formed on the surface (FIG. 3A). Next, P for PN separation
+ To form a buried layer (5a described later), again oxide film 4
(FIG. 3 (b)), the portion where the P + layer 5a is to be formed is opened, and impurities are injected and diffused from the opening 5 to form the P + layer 5a (FIG. 3 (c)). .. Next, the surface insulating film (oxide film) 2 is entirely peeled off to prepare for epitaxial layer growth (FIG. 3D).

【0004】次に、公知のエピタキシャル技術でエピタ
キシャル層6を成長させる。このとき、N+ 埋込層3,
及びP+ 埋込層5a双方共にオートドープし、図3
(e)のように上方拡散させる。次に再度上部からP+
層を形成するための酸化膜7を形成する。そして、上部
+ 層を形成するため公知のホトリソグラフィ(以下ホ
トリソと略す)/エッチング技術で5b部を前記5aの
層の真上に開口し、不純物を注入し、拡散層5cを得
る。つまり、この層5cは前記下部埋込層5a層の真上
に形成する(図4(f))。
Next, the epitaxial layer 6 is grown by a known epitaxial technique. At this time, the N + buried layer 3,
And P + buried layer 5a are both auto-doped.
Diffuse upward as in (e). Then from the top again P +
An oxide film 7 for forming a layer is formed. Then, in order to form the upper P + layer, a portion 5b is opened directly above the layer 5a by a known photolithography (hereinafter abbreviated as photolithography) / etching technique, impurities are implanted, and a diffusion layer 5c is obtained. That is, this layer 5c is formed right above the lower buried layer 5a layer (FIG. 4 (f)).

【0005】次に公知の拡散技術でアニールすれば、前
記5a,5c層が成長してつながり5d層となり、この
5d層が素子分離層となる(図4(g))。
Next, when annealing is performed by a known diffusion technique, the 5a and 5c layers grow and connect to form a 5d layer, and this 5d layer serves as an element isolation layer (FIG. 4 (g)).

【0006】次に素子の作り込みのための絶縁膜8を形
成する(図4(h))。
Next, an insulating film 8 for forming an element is formed (FIG. 4 (h)).

【0007】実際にトランジスタが形成された断面図を
図4(i)に示す。9aがベース層,10aがエミッタ
層,11aがコレクタ層,9,10,11は各々コンタ
クト層である。
A cross-sectional view in which a transistor is actually formed is shown in FIG. Reference numeral 9a is a base layer, 10a is an emitter layer, 11a is a collector layer, and 9, 10, 11 are contact layers, respectively.

【0008】[0008]

【発明が解決しようとする課題】素子分離構造は他にも
多種あるが、前述した従来例の問題点を述べる。
Although there are various other element isolation structures, the problems of the above-mentioned conventional example will be described.

【0009】素子分離構造を微細化する為には、図4
(i)の断面図に示す、たとえばアイソレーション(素
子分離)層5dと埋込み拡散層3との間隔を狭くする必
要がある。また、トランジスタ形成領域9aと埋込み拡
散層3との間のA部を狭くするには、ベース層9a,エ
ミッタ層10a,コレクタ層11aの面積を小さくする
必要があるが、そのまま縮少すればアイソレーション耐
圧,トランジスタのコレクタ・ベース間耐圧BVCBO ,
コレクタ・エミッタ間耐圧BVCEO ,エミッタ・ベース
間耐圧BVEBO 等の耐圧が所望の値が得られなくなる。
さらに、各種熱処理により、特に埋込層の浮き上がりア
イソレーション層への横への拡がりが大きく微細化の大
きなネックとなっていた。
In order to miniaturize the element isolation structure, FIG.
For example, it is necessary to narrow the interval between the isolation (element isolation) layer 5d and the buried diffusion layer 3 shown in the sectional view of (i). Further, in order to narrow the area A between the transistor formation region 9a and the buried diffusion layer 3, it is necessary to reduce the areas of the base layer 9a, the emitter layer 10a, and the collector layer 11a. Breakdown voltage, transistor collector-base breakdown voltage BVCBO,
A desired value cannot be obtained for the breakdown voltage such as the collector-emitter breakdown voltage BVCEO and the emitter-base breakdown voltage BVEBO.
Further, due to various heat treatments, in particular, the buried layer floated up to the isolation layer and spread laterally, which was a major obstacle to miniaturization.

【0010】本発明は以上述べたアイソレーションの拡
がり、埋込層の浮き上りを最小限におさえ、特にエピタ
キシャル層を薄く形成し、アイソレーション幅はセルフ
アラインで最小限の幅に形成し、埋込みN+ 層の浮き上
りもなく、微細な分離構造を得ることを目的とする。
According to the present invention, the expansion of the isolation described above, the floating of the buried layer is minimized, the epitaxial layer is formed thin, and the isolation width is self-aligned to the minimum width. The purpose of the present invention is to obtain a fine isolation structure without raising the N + layer.

【0011】[0011]

【課題を解決するための手段】本発明は前記目的のた
め、素子分離の形成に於て、セルフアラインでアイソレ
ーション層をサイドウォールで形成する手段と、その際
エッチングによって残るダメージ層(金属汚染層など)
を除去する手段と、その上に全面エピタキシャル層を形
成する手段と、レジストを介して全面エッチバック後ダ
メージ層、金属汚染層などを除去する手段とを設けたも
のである。
To solve the above problems, the present invention has a means for forming an isolation layer by a sidewall by self-alignment in the formation of element isolation, and a damage layer (metal contamination) left by etching at that time. Layers)
Is provided, a means for forming an overall epitaxial layer thereon, and a means for removing a damage layer, a metal contamination layer, etc. after the entire surface is etched back through a resist.

【0012】[0012]

【作用】前述したように本発明は、アイソレーション層
をサイドウォールで形成するため、その後の熱処理をな
くして微細な素子分離層形成が可能となる。従って埋込
層よりの上方拡散,アイソレーション部からの横方向拡
散がなく、エピタキシャル層の厚さを薄くできる。従っ
て微細な素子分離構造が可能となる。
As described above, according to the present invention, since the isolation layer is formed by the sidewall, it is possible to form a fine element isolation layer without the subsequent heat treatment. Therefore, there is no upward diffusion from the buried layer and lateral diffusion from the isolation portion, and the thickness of the epitaxial layer can be reduced. Therefore, a fine element isolation structure becomes possible.

【0013】[0013]

【実施例】本発明の実施例の製造工程を図1ないし図2
に示し、以下順を追って説明する。まずP型半導体基板
1にコレクタ抵抗低減のためのN+ 埋込層3を形成し、
表面に絶縁膜(本実施例では酸化膜)2を形成する(図
1(a))。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A manufacturing process of an embodiment of the present invention will be described with reference to FIGS.
And will be described step by step below. First, an N + buried layer 3 for reducing collector resistance is formed on a P-type semiconductor substrate 1,
An insulating film (oxide film in this embodiment) 2 is formed on the surface (FIG. 1A).

【0014】次に、素子形成領域10対応の開口を施し
たレジストパターン4を公知のホトリソ技術により形成
する(図1(b))。そして絶縁膜2を公知のドライエ
ッチング技術でレジスト4をマスクにして素子形成領域
10対応の開口部を形成する。エッチング終点時は基板
1表面のダメージ層(表面が粗くなる)をとり除くため
ライトエッチを施しておく。
Next, a resist pattern 4 having an opening corresponding to the element forming region 10 is formed by a known photolithography technique (FIG. 1B). Then, using the resist 4 as a mask, the insulating film 2 is formed by a known dry etching technique to form an opening corresponding to the element formation region 10. At the end of etching, light etching is performed to remove the damaged layer (the surface becomes rough) on the surface of the substrate 1.

【0015】次にレジスト4を除去し、公知のエピタキ
シャル成長技術にてエピタキシャル層5を形成する。こ
の時、そのエピタキシャル層5はシランSiH4 とジボ
ランB2 6 で層を形成しP+ 型の層とする。またこの
場合、前記素子形成領域10の上は前述したようにP+
層5になるが、酸化膜である絶縁膜2上はポリシリコン
5bとなる(図1(c))。
Next, the resist 4 is removed, and the epitaxial layer 5 is formed by a known epitaxial growth technique. At this time, the epitaxial layer 5 is formed as a P + type layer by forming a layer of silane SiH 4 and diborane B 2 H 6 . Further, in this case, as described above, P + is formed on the element forming region 10.
Although the layer 5 is formed, polysilicon 5b is formed on the insulating film 2 which is an oxide film (FIG. 1C).

【0016】次に公知のエッチバック技術を用い全面ド
ライエッチングを行い、サイドウォール層5aのP+
が得られるようにする。この層5aの幅は絶縁膜2の高
さで決定される(図1(d))。
Next, the entire surface is dry-etched by using a known etch-back technique so that the P + layer of the sidewall layer 5a can be obtained. The width of this layer 5a is determined by the height of the insulating film 2 (FIG. 1 (d)).

【0017】この後、絶縁膜4をウェットエッチングす
ると、前記サイドウォールのP+ 層5aのみが基板1上
に素子分離層となるよう残る(図2(e))。次に、公
知のエピタキシャル技術でSiH4 +PH3 を流し単結
晶層(ここではN型)6を成長させる(図2(f))。
After that, when the insulating film 4 is wet-etched, only the P + layer 5a of the sidewall remains as an element isolation layer on the substrate 1 (FIG. 2 (e)). Next, SiH 4 + PH 3 is flown by a known epitaxial technique to grow a single crystal layer (here, N type) 6 (FIG. 2F).

【0018】次に素子分離層5a上に成長し残っている
層6aを除去する為、レジスト7を塗布し(図2
(g))、全面エッチバック(ドライエッチング)する
と(エッチバック後、ライトエッチは必ず行なう)、完
全な素子分離構造が得られる。その後、図2(h)のよ
うに素子形成のための絶縁膜8を形成すると素子分離は
完了する。
Next, a resist 7 is applied in order to remove the layer 6a grown and left on the element isolation layer 5a (see FIG. 2).
(G)) When the entire surface is etched back (dry etching) (after etching back, light etching is always performed), a complete element isolation structure can be obtained. Thereafter, as shown in FIG. 2H, an insulating film 8 for forming elements is formed to complete the element isolation.

【0019】[0019]

【発明の効果】以上詳細に説明したように、本発明によ
れば、アイソレーション層をサイドウォールで形成する
ため、その後の熱処理をなくして微細な素子分離層形成
が可能となる。従って埋込層よりの上方拡散,アイソレ
ーション部からの横方向拡散がなく、エピタキシャル層
の厚さは薄くできる。従って微細な素子分離構造が可能
となり、高集積化が期待できる。
As described in detail above, according to the present invention, since the isolation layer is formed by the sidewall, it is possible to form a fine element isolation layer without the subsequent heat treatment. Therefore, there is no upward diffusion from the buried layer and lateral diffusion from the isolation portion, and the thickness of the epitaxial layer can be reduced. Therefore, a fine element isolation structure becomes possible and high integration can be expected.

【0020】また、各ドライエッチング後、ライトエッ
チを施し、ダメージ層と金属汚染を除去するため、さら
に特性向上が見込まれる。
Further, after each dry etching, a light etching is performed to remove the damaged layer and metal contamination, so that further improvement in characteristics is expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例(その1)FIG. 1 is a first embodiment of the present invention.

【図2】本発明の実施例(その2)FIG. 2 is a second embodiment of the present invention.

【図3】従来例(その1)FIG. 3 Conventional example (No. 1)

【図4】従来例(その2)FIG. 4 Conventional example (No. 2)

【符号の説明】[Explanation of symbols]

1 基板 2 絶縁膜 3 N+ 埋込層 4 パターン 5 P+ 層 5a サイドウォール1 substrate 2 insulating film 3 N + burying layer 4 pattern 5 P + layer 5a sidewall

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a)半導体基板上に絶縁膜を形成し、
該絶縁膜に素子分離層で分離される素子形成領域に対応
した開口部を形成する工程、 (b)少なくとも前記絶縁膜の開口部上に第1導電型の
層を形成する工程、 (c)前記開口部を有する絶縁膜の開口部側側壁に前記
第1導電型層のサイドウォールが形成されるようにする
工程、 (d)前記絶縁膜の残りを除去する工程、 (e)基板表面に第2導電型の層を成長させ、前記サイ
ドウォールの上に前記第2導電型の層が残らないように
平坦化する工程、 以上の工程を含むことを特徴とする半導体装置における
素子分離領域の形成方法。
1. (a) An insulating film is formed on a semiconductor substrate,
A step of forming an opening corresponding to an element formation region separated by an element isolation layer in the insulating film, (b) a step of forming a layer of the first conductivity type at least on the opening of the insulating film, (c) A step of forming a sidewall of the first conductivity type layer on an opening side wall of an insulating film having the opening; (d) a step of removing the remaining insulating film; (e) a substrate surface A step of growing a second-conductivity-type layer and flattening the second-conductivity-type layer so that the second-conductivity-type layer does not remain on the sidewalls; and Forming method.
JP8709292A 1992-04-08 1992-04-08 Method of forming element isolating structure in semiconductor device Pending JPH05291391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8709292A JPH05291391A (en) 1992-04-08 1992-04-08 Method of forming element isolating structure in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8709292A JPH05291391A (en) 1992-04-08 1992-04-08 Method of forming element isolating structure in semiconductor device

Publications (1)

Publication Number Publication Date
JPH05291391A true JPH05291391A (en) 1993-11-05

Family

ID=13905318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8709292A Pending JPH05291391A (en) 1992-04-08 1992-04-08 Method of forming element isolating structure in semiconductor device

Country Status (1)

Country Link
JP (1) JPH05291391A (en)

Similar Documents

Publication Publication Date Title
KR0139805B1 (en) Method of making single polysilicon self-aligned transistor
US5496745A (en) Method for making bipolar transistor having an enhanced trench isolation
JPH07335663A (en) Vertical heterojunction bipolar transistor and its manufacture
JP2720793B2 (en) Method for manufacturing semiconductor device
JPH05206151A (en) Semiconductor device
JPH0638480B2 (en) Method of manufacturing integrated circuit device
US5436181A (en) Method of self aligning an emitter contact in a heterojunction bipolar transistor
US5877540A (en) Epitaxial-base bipolar transistor
JP2550906B2 (en) Semiconductor device and manufacturing method thereof
JPH0831478B2 (en) Bipolar transistor and manufacturing method thereof
JPH08274108A (en) Semiconductor device and its manufacture
JP2565162B2 (en) Bipolar transistor and manufacturing method thereof
JPH05291391A (en) Method of forming element isolating structure in semiconductor device
KR100267898B1 (en) Structure for and method of making a merged single polysilicon bipolar npn transistor
JP3011729B2 (en) Manufacturing method of bipolar semiconductor integrated circuit device
JP2797774B2 (en) Semiconductor device and manufacturing method thereof
EP0236811A2 (en) Method of manufacturing semiconductor device
JP2500427B2 (en) Method for manufacturing bipolar semiconductor device
JPS60244036A (en) Semiconductor device and manufacture thereof
KR100209765B1 (en) Method of fabricating bi-mos
JP3109579B2 (en) Method for manufacturing semiconductor device
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JP3707978B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP3168622B2 (en) Semiconductor device and manufacturing method thereof
JP2625373B2 (en) Method for manufacturing semiconductor device