JPH05291233A - Manufacture of compound semiconductor wafer - Google Patents

Manufacture of compound semiconductor wafer

Info

Publication number
JPH05291233A
JPH05291233A JP11680392A JP11680392A JPH05291233A JP H05291233 A JPH05291233 A JP H05291233A JP 11680392 A JP11680392 A JP 11680392A JP 11680392 A JP11680392 A JP 11680392A JP H05291233 A JPH05291233 A JP H05291233A
Authority
JP
Japan
Prior art keywords
wafer
water
solvent
ipa
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11680392A
Other languages
Japanese (ja)
Inventor
Toru Fukui
徹 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP11680392A priority Critical patent/JPH05291233A/en
Publication of JPH05291233A publication Critical patent/JPH05291233A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce an irregularity in the characteristic of a device which is manufactured and to enhance the characteristic by a method wherein a compound semiconductor wafer is mirror-polished, cleaned and washed by water, it is immersed in a specific solvent immediately after that, stuck water is replaced with a solvent and a steam drying operation by means of isopropyl alcohol is performed. CONSTITUTION:A compound semiconductor wafer is mirror-polished, cleaned and washed by water; immediately after that, the wafer is immersed in a solvent which is soluble in both water and isopropyl alcohol(IPA) at an arbitrary ratio; stuck water on the surface is replaced with the solvent; after that, a steam drying operation by means of IPA is performed. It is preferable that the solvent for stuck-water substitution use is used while it is being filtered by using a circulation and filtration device. For example, a GaAs single crystal is cut off to a wafer; the surface of the wafer is polished; the wafer is cleaned organically; after that, the wafer is washed by ultrapure water. Immediately after that, the wafer is immersed, two times for five minutes each, in a tank in which IPA in a liquid state has been put; stuck water on the surface is replaced with the IPA; after that, the wafer is dried by means of an IPA steam drying device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウェーハの製造
方法さらには鏡面加工後の半導体ウェーハの乾燥方法に
関し、特にGaAsウェーハの乾燥に利用して好適な技
術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor wafer, and further to a method for drying a semiconductor wafer after mirror finishing, and more particularly to a technique suitable for drying a GaAs wafer.

【0002】[0002]

【従来の技術】GaAs化合物半導体は、発光素子用の
材料あるいはマイクロ波素子用の材料として近年脚光を
あびている。こうしたデバイスや素子の基板として用い
られるGaAsウェーハは、GaAs単結晶インゴット
を薄板状に切断し、それをラッピングその他による鏡面
研磨後、洗浄、乾燥工程を経由して電子デバイスや光素
子用のウェーハとして提供される。このようにして鏡面
研磨されたGaAsウェーハは、用途に応じてその表面
にエピタキシャル層が成長されることもある。そのた
め、こうしたウェーハの表面には、付着物や酸化物のな
い極めて高度な清浄度が要求される。
2. Description of the Related Art GaAs compound semiconductors have been attracting attention in recent years as materials for light emitting devices or microwave devices. GaAs wafers used as substrates for such devices and elements are GaAs single crystal ingots cut into thin plates, which are then mirror-polished by lapping and other processes and then used as wafers for electronic devices and optical elements through cleaning and drying processes. Provided. The GaAs wafer thus mirror-polished may have an epitaxial layer grown on its surface depending on the application. Therefore, the surface of such a wafer is required to have an extremely high degree of cleanliness without deposits or oxides.

【0003】そこで、従来、鏡面研磨後のGaAsウェ
ーハを、リン酸−過酸化水素−水、あるいはフッ化水素
酸−過酸化水素酸−水の混合液により洗浄することによ
り清浄な表面を得る方法が提案されている(特開昭62
−252140)。さらに、一般にはエッチング液によ
る処理後に超純水による洗浄、乾燥が行なわれており、
乾燥方法としてはIPA(イソプロピルアルコール)を
用いた蒸気乾燥法が多用されている。このIPA蒸気乾
燥法は、水洗後のウェーハをIPA蒸気に晒すことによ
りウェーハの表面に凝結させて付着している水分をIP
Aで置換除去するもので、ウェーハの大量処理には好適
な方法である。
Therefore, conventionally, a method of obtaining a clean surface by cleaning a mirror-polished GaAs wafer with a mixed solution of phosphoric acid-hydrogen peroxide-water or hydrofluoric acid-hydrogen peroxide-water. Have been proposed (JP-A-62-62)
-252140). Furthermore, in general, cleaning with ultrapure water and drying are performed after processing with an etching solution,
A steam drying method using IPA (isopropyl alcohol) is often used as a drying method. In this IPA vapor drying method, the water after washing is exposed to IPA vapor to condense on the surface of the wafer to remove moisture adhering to the IP.
It is replaced by A and removed, which is a suitable method for large-scale processing of wafers.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記I
PA蒸気乾燥法をGaAsウェーハに適用した場合には
以下のような問題点を有していることが本発明者によっ
て明らかにされた。すなわち、水洗後のウェーハをIP
A蒸気乾燥室へ搬送する過程は勿論IPA蒸気に晒して
いる過程においてもウェーハの表面には僅かに水が付着
しており、この付着水に空気中の二酸化炭素が吸収され
て炭酸が生成され、表面の付着水の乾燥に伴って炭酸の
濃度が高くなってウェーハのGaAsと反応してGa2
3,As23,As25等の酸化物が生成されてしま
う。しかも、上記乾燥工程ではウェーハ表面の水が一様
に乾燥するのではなく、表面のあちこちに斑点のように
残りそれらがしだいに小さくなって消滅するという経過
を経て乾燥状態に至るため、局所的に酸化物が多くな
る。そして、これらの酸化物のうち特にAs23は極め
て昇華性が高い(昇華温度=80℃)ため、IPA蒸気
雰囲気(82.5℃以上)において容易に昇華してウェ
ーハ表面から揮発してしまうのである。
However, the above-mentioned I
It has been clarified by the present inventor that the PA vapor drying method has the following problems when applied to a GaAs wafer. That is, the wafer after washing with water is IP
A little water adheres to the surface of the wafer during the process of transferring to the A vapor drying chamber and of course exposing to the IPA vapor, and carbon dioxide in the air is absorbed by the attached water to generate carbonic acid. , The concentration of carbonic acid increases with the drying of the adhered water on the surface and reacts with GaAs on the wafer to produce Ga 2
Oxides such as O 3 , As 2 O 3 and As 2 O 5 are generated. Moreover, in the above drying step, the water on the wafer surface does not dry uniformly, but it remains locally like spots on the surface of the wafer, and they gradually become smaller and disappear, so that they reach a dry state, so that they are locally dried. There are many oxides. Of these oxides, As 2 O 3 has a particularly high sublimation property (sublimation temperature = 80 ° C.), so it easily sublimes in the IPA vapor atmosphere (82.5 ° C. or higher) and volatilizes from the wafer surface. It ends up.

【0005】このようにAs23の生成と昇華が同時に
進行したウェーハ表面は、生成したAs23が揮発した
ことによりAsの欠乏した状態となる。本発明者等がI
PA蒸気乾燥したウェーハをXPS(X線光電子分光
法)により分析したところ、Ga23やAs25の多い
表面状態になっていることが分かった。そして、このよ
うな酸化物が多く、Gaの過剰な表面状態のウェーハは
デバイス作成直前にエッチングを行なってもなかなかG
a:Asの比が1:1とならないとともに、エッチング
によってウェーハ表面に凹凸が発生したり平坦度が劣化
してデバイスの特性のバラツキや低下の原因となってい
ることを見出した。本発明は上記のような問題点を解決
すべくなされたもので、その目的とするところは、製造
されるデバイスの特性のバラツキが小さくかつ特性の向
上を図ることが可能なウェーハの乾燥方法を提供するこ
とにある。
As described above, the wafer surface on which As 2 O 3 production and sublimation proceed at the same time is in a state of As deficiency because the produced As 2 O 3 volatilizes. The present inventors
When the wafer dried by PA vapor was analyzed by XPS (X-ray photoelectron spectroscopy), it was found that the surface state was high in Ga 2 O 3 and As 2 O 5 . A wafer having such a large amount of oxides and an excessive amount of Ga is difficult to obtain even if the etching is performed immediately before device fabrication.
It has been found that the ratio of a: As does not become 1: 1 and unevenness is generated on the wafer surface due to etching or the flatness is deteriorated, which causes variation and deterioration of device characteristics. The present invention has been made to solve the above problems, and an object of the present invention is to provide a wafer drying method capable of improving the characteristics with little variation in the characteristics of the manufactured device. To provide.

【0006】[0006]

【課題を解決するための手段】本発明者はIPA蒸気乾
燥中においてGaAsウェーハ表面の酸化を抑制する方
法について検討した。そして、IPA蒸気乾燥中におい
てGaAsウェーハ表面の酸化が進行するのはウェーハ
表面に付着水が残っているのが原因であるのであるか
ら、超純水による洗浄直後にウェーハ表面の付着水を、
GaAsと反応しない溶剤で置換してしまえばよいとの
着想を得た。ただし、この溶剤はさらにその後IPA蒸
気と置換されるのであるから、IPAに対しても可溶で
あることが要求される。このような性質を有する溶剤と
しては、メタノール、エタノール等のアルコール類が適
しており、特にIPAが最適であるとの結論に達した。
一方、超純水による洗浄後にウェーハ表面の付着水を他
の溶剤で置換する場合、溶剤中の微小異物(以下、パー
ティクルと称する)がウェーハ表面に付着するおそれが
ある。その対策として、本発明者は、置換用溶剤を貯留
する槽に循環濾過装置を装備して、常時置換用溶剤を濾
過して超純水並みの清浄度に維持すればよいことを見い
出した。。
The present inventor has studied a method of suppressing the oxidation of the surface of a GaAs wafer during IPA vapor drying. The reason why the oxidation of the GaAs wafer surface progresses during IPA vapor drying is that the adhered water remains on the wafer surface.
I got the idea that it should be replaced with a solvent that does not react with GaAs. However, since this solvent is further replaced with IPA vapor thereafter, it is required to be soluble in IPA. As a solvent having such properties, alcohols such as methanol and ethanol are suitable, and it has been concluded that IPA is particularly suitable.
On the other hand, when substituting the adhering water on the wafer surface with another solvent after cleaning with ultrapure water, minute foreign substances (hereinafter referred to as particles) in the solvent may adhere to the wafer surface. As a countermeasure against this, the present inventor has found that a tank for storing the replacement solvent may be equipped with a circulation filtration device to constantly filter the replacement solvent to maintain the cleanliness of ultrapure water. ..

【0007】本発明は、上記着想に基づいてなされたも
ので、GaAsウェーハを鏡面研磨し、洗浄、水洗した
直後に、水およびイソプロピルアルコールの双方に任意
の割合で可溶な溶剤に上記ウェーハを浸漬して表面の付
着水を上記溶剤で置換した後、イソプロピルアルコール
による蒸気乾燥を行なうことを提案するものである。上
記の場合、好ましくは付着水置換用の溶剤を循環濾過装
置により濾過しながら使用するようにする。
The present invention was made on the basis of the above idea. Immediately after mirror-polishing, cleaning, and washing a GaAs wafer, the wafer is immersed in a solvent soluble in both water and isopropyl alcohol at an arbitrary ratio. It is proposed that after immersing and substituting the adhering water on the surface with the above solvent, vapor drying with isopropyl alcohol is performed. In the above case, it is preferable to use the solvent for replacing the adhering water while being filtered by a circulation filtration device.

【0008】[0008]

【作用】上記した手段によれば、GaAsウェーハは洗
浄後に表面の付着水が速やかにGaAsと反応しない溶
剤と置換されるため、ウェーハを構成するAsやGaが
水と反応して酸化物が生じるのを防止することができ、
製造されるデバイスの特性のバラツキを小さくしかつ特
性の向上を図ることが可能になるとともに、エピタキシ
ャル成長用基板として使用した場合には、エピタキシャ
ル層表面の欠陥を低減させ、特性の優れたデバイスを歩
留まりよく製造することが可能となる。
According to the above-mentioned means, since the adhering water on the surface of the GaAs wafer is quickly replaced with the solvent that does not react with GaAs after cleaning, As and Ga constituting the wafer react with water to generate an oxide. Can be prevented
It is possible to reduce variations in the characteristics of manufactured devices and improve the characteristics, and when used as a substrate for epitaxial growth, reduce defects on the surface of the epitaxial layer and yield devices with excellent characteristics. It is possible to manufacture well.

【0009】[0009]

【実施例】以下、本発明の一実施例を図1を用いて説明
する。先ず、液体封止チョクラルスキー法により引き上
げた直径2インチのノンドープGaAs単結晶を1mm
の厚さのウェーハに切り出し、ラッピング、ポリシング
で表面研磨を行なって、トリクレン、アセトン、メタノ
ールにより有機洗浄した後、超純水で水洗を行なった
(ステップS1〜S3)。この後、上記ウェーハを液体
状態のIPAの入った槽内に5分間ずつ2回浸漬して表
面の付着水をIPAで置換した後、IPA蒸気乾燥装置
により乾燥させた(ステップS4,S5)。なお、上記
置換用のIPAの入った槽にはポア径0.1μmのフィ
ルタを備えた循環濾過装置を装備させ、上記置換処理
(ステップS4)中ずっとIPAを濾過し続けた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. First, a non-doped GaAs single crystal with a diameter of 2 inches pulled by the liquid sealed Czochralski method is set to 1 mm.
After slicing into a wafer having a thickness of 1, the surface was polished by lapping and polishing, organic cleaning was performed using trichlene, acetone, and methanol, and then water cleaning was performed with ultrapure water (steps S1 to S3). After that, the above-mentioned wafer was dipped twice in a tank containing IPA in a liquid state for 5 minutes each time to replace the adhering water on the surface with IPA, and then dried by an IPA vapor dryer (steps S4 and S5). The tank containing the IPA for replacement was equipped with a circulation filter equipped with a filter having a pore diameter of 0.1 μm, and IPA was continuously filtered during the replacement process (step S4).

【0010】比較のため、従来のIPA蒸気乾燥法によ
る乾燥、すなわち上記ステップS1〜S3の処理後のウ
ェーハを、IPAによる付着水の置換をせずに直ちにI
PA蒸気で乾燥させる実験も行なった。これらのウェー
ハの表面を、XPS(X線光電子分光法)で分析した結
果、従来のIPA蒸気乾燥法で乾燥させたウェーハは表
面のGaとAsの組成比が1.91とGaが過剰である
のに対し、本発明法により乾燥させたウェーハは表面の
GaとAsの組成比が1.06とほぼストイキメトリに
近くなっていることが分かった。
For comparison, the wafer after drying by the conventional IPA vapor drying method, that is, the wafers after the above steps S1 to S3 are immediately subjected to I without being replaced with the attached water by IPA.
An experiment of drying with PA steam was also conducted. As a result of analyzing the surfaces of these wafers by XPS (X-ray photoelectron spectroscopy), the wafers dried by the conventional IPA vapor drying method have a Ga / As composition ratio of 1.91 and Ga in excess. On the other hand, it was found that the composition ratio of Ga to As on the surface of the wafer dried by the method of the present invention was 1.06, which was close to stoichiometry.

【0011】また、乾燥後にウェーハ表面に付着してい
る粒径0.2μm以上のパーティクルの数を測定したと
ころ、本発明法により乾燥させたウェーハ表面のパーテ
ィクルの数の平均は20個で、従来のIPA蒸気乾燥法
で乾燥させたウェーハの平均パーティクル数(18個)
とほぼ同等であった。さらに、本発明方法と従来のIP
A蒸気乾燥法で乾燥させたウェーハ表面に、MBE法で
HEMT構造のエピタキシャル層を成長させ、オーバル
ディフェクト(卵型欠陥)の密度および移動度とキャリ
ア濃度をそれぞれ測定した。その結果を、表1に示す。
When the number of particles having a particle size of 0.2 μm or more attached to the wafer surface after drying was measured, the average number of particles on the wafer surface dried by the method of the present invention was 20. Average number of particles (18) on wafer dried by IPA vapor drying method
Was almost equal to. Furthermore, the method of the present invention and the conventional IP
An epitaxial layer having a HEMT structure was grown on the surface of the wafer dried by the A vapor drying method by the MBE method, and the density and mobility of oval defects (oval defects) and the carrier concentration were measured. The results are shown in Table 1.

【表1】 同表において、(A)は本発明方法、(B)は従来のI
PA蒸気乾燥法でそれぞれ乾燥させたウェーハについて
の測定結果を示す。また、同表の(C)は、従来のIP
A蒸気乾燥法で乾燥した後、ウェーハ表面、硫酸系(H
2SO4−H22−H2O)のエッチャントで2〜3μm
エッチングした後、HEMT構造のエピタキシャル層を
成長させ、オーバルディフェクトの密度および移動度と
キャリア濃度をそれぞれ測定した結果を示す。
[Table 1] In the table, (A) is the method of the present invention and (B) is the conventional method.
The measurement result about the wafer dried by the PA vapor drying method is shown. Further, (C) in the table is a conventional IP.
A After drying by steam drying method, the wafer surface, sulfuric acid (H
2 SO 4 —H 2 O 2 —H 2 O) etchant 2-3 μm
After etching, an epitaxial layer having a HEMT structure was grown, and the results of measuring the density and mobility of the oval defect and the carrier concentration are shown.

【0012】表1より、従来のIPA蒸気乾燥法で乾燥
させたウェーハは、硫酸系のエッチャントによる処理を
行なったウェーハに比べてエピタキシャル層のオーバル
ディフェクト密度が高く表面モホロジーが悪いととも
に、移動度およびキャリア濃度の点でも劣っている。こ
れに対し、本発明方法で乾燥させたウェーハは、硫酸系
のエッチャントによる処理を行なわないにもかかわら
ず、従来のIPA蒸気乾燥法による乾燥後に硫酸系のエ
ッチャントによる処理を行なったウェーハに比べてエピ
タキシャル層のオーバルディフェクト密度、移動度およ
びキャリア濃度すべての点で同程度になっていることが
分かる。なお、上記実施例では、GaAsウエーハの乾
燥方法について説明したが、この発明はそれに限定され
るものでなく、InPウェーハその他化合物半導体ウェ
ーハ全般に適用することができる。
From Table 1, it can be seen that the wafer dried by the conventional IPA vapor drying method has a higher oval defect density of the epitaxial layer and a lower surface morphology than the wafer treated by the sulfuric acid-based etchant, and the mobility and It is also inferior in terms of carrier concentration. On the other hand, the wafer dried by the method of the present invention is not processed by the sulfuric acid-based etchant, but is compared with the wafer processed by the sulfuric acid-based etchant after being dried by the conventional IPA vapor drying method. It can be seen that the oval defect density, the mobility and the carrier concentration of the epitaxial layer are almost the same. Although the method of drying a GaAs wafer has been described in the above embodiment, the present invention is not limited to this and can be applied to InP wafers and other compound semiconductor wafers in general.

【0013】[0013]

【発明の効果】以上説明したように本発明は、GaAs
ウェーハを鏡面研磨し、洗浄、水洗した後すぐに、水お
よびイソプロピルアルコールの双方に任意の割合で可溶
な溶剤に上記ウェーハを浸漬して表面の付着水を上記溶
剤で置換した後、イソプロピルアルコールによる蒸気乾
燥を行なうようにしたので、GaAsウェーハ表面の付
着水が速やかにGaAsと反応しない溶剤と置換される
という作用により、ウェーハを構成するAsやGaが水
と反応して酸化物が生じるのを防止することができ、製
造されるデバイスの特性のバラツキを小さくしかつ特性
の向上を図ることが可能になるとともに、エピタキシャ
ル成長用基板として使用した場合には、エピタキシャル
層表面の欠陥を低減させ、特性の優れたデバイスを歩留
まりよく製造することが可能となるという効果がある。
As described above, the present invention is based on GaAs
Immediately after the wafer is mirror-polished, washed, and rinsed with water, the wafer is immersed in a solvent that is soluble in both water and isopropyl alcohol at an arbitrary ratio to replace surface water with the solvent, and then isopropyl alcohol. Since vapor drying is performed by means of the method described above, the action that the adhering water on the GaAs wafer surface is quickly replaced with a solvent that does not react with GaAs causes As and Ga constituting the wafer to react with water to generate oxides. Can be prevented, it is possible to reduce the variation in the characteristics of the device to be manufactured and improve the characteristics, and when used as a substrate for epitaxial growth, reduce the defects on the surface of the epitaxial layer, There is an effect that a device having excellent characteristics can be manufactured with high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るウェーハ乾燥方法の手順の一例を
示すフローチャートである。
FIG. 1 is a flowchart showing an example of a procedure of a wafer drying method according to the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 化合物半導体ウェーハを鏡面研磨し、洗
浄、水洗した後すぐに、水およびイソプロピルアルコー
ルの双方に任意の割合で可溶な溶剤に上記ウェーハを浸
漬して表面の付着水を上記溶剤で置換した後、イソプロ
ピルアルコールによる蒸気乾燥を行なうようにしたこと
を特徴とする化合物半導体ウェーハの製造方法。
1. A compound semiconductor wafer is mirror-polished, washed, and washed with water, and immediately thereafter, the wafer is immersed in a solvent soluble in both water and isopropyl alcohol at an arbitrary ratio to remove water adhering to the surface from the solvent. The method for producing a compound semiconductor wafer is characterized in that vapor substitution with isopropyl alcohol is carried out after replacement with.
【請求項2】 上記付着水置換用の溶剤を循環濾過装置
により濾過しながら使用することを特徴とする請求項1
記載の化合物半導体ウェーハの製造方法。
2. The solvent for displacing attached water is used while being filtered by a circulation filtration device.
A method for producing a compound semiconductor wafer according to claim 1.
【請求項3】 上記付着水置換用の溶剤は、イソプロピ
ルアルコールであることを特徴とする請求項1または2
記載の化合物半導体ウェーハの製造方法。
3. The solvent for replacing the attached water is isopropyl alcohol.
A method for producing a compound semiconductor wafer according to claim 1.
JP11680392A 1992-04-08 1992-04-08 Manufacture of compound semiconductor wafer Pending JPH05291233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11680392A JPH05291233A (en) 1992-04-08 1992-04-08 Manufacture of compound semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11680392A JPH05291233A (en) 1992-04-08 1992-04-08 Manufacture of compound semiconductor wafer

Publications (1)

Publication Number Publication Date
JPH05291233A true JPH05291233A (en) 1993-11-05

Family

ID=14696055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11680392A Pending JPH05291233A (en) 1992-04-08 1992-04-08 Manufacture of compound semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH05291233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177970A (en) * 2019-04-16 2020-10-29 住友電気工業株式会社 Gallium arsenide substrate, epitaxial substrate, manufacturing method of gallium arsenide substrate, and manufacturing method of epitaxial substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177970A (en) * 2019-04-16 2020-10-29 住友電気工業株式会社 Gallium arsenide substrate, epitaxial substrate, manufacturing method of gallium arsenide substrate, and manufacturing method of epitaxial substrate

Similar Documents

Publication Publication Date Title
EP2629319B1 (en) Process for cleaning compound semiconductor wafer
EP1737026B1 (en) Method of surface treating III-V semiconductor compound based substrates and method of manufacturing III-V compound semiconductors
JP2017152748A (en) Compound semiconductor substrate
US20130224954A1 (en) Silicon carbide single crystal substrate
JP2007234952A (en) Manufacturing method of compound semiconductor, surface treatment method of compound semiconductor substrate, compound semiconductor substrate, and semiconductor wafer
TWI753114B (en) GaAs substrate and manufacturing method thereof
US20100013053A1 (en) Method for manufacturing iii-v compound semiconductor substrate, method for manufacturing epitaxial wafer, iii-v compound semiconductor substrate, and epitaxial wafer
US20090203212A1 (en) Surface Grinding Method and Manufacturing Method for Semiconductor Wafer
KR20050003163A (en) Etchant for etching nitride and method for removing nitride film of semiconductor device using the same
JPH05291233A (en) Manufacture of compound semiconductor wafer
JPH07211688A (en) Production of compound semiconductor substrate
JPH05291231A (en) Manufacture of compound semiconductor wafer
JP2006228963A (en) Method of manufacturing semiconductor wafer
JP3036366B2 (en) Processing method of semiconductor silicon wafer
JP2006173425A (en) Semiconducting crystal wafer
JPS6293950A (en) Manufacture of wafer
JP3718419B2 (en) Manufacturing method of silicon epitaxial wafer
JPH0412616B2 (en)
JP3254436B2 (en) A method of manufacturing an etching mask for a gallium nitride-based compound semiconductor.
JP2013211314A (en) Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate
JP2020096013A (en) Compound semiconductor substrate and method for cleaning the same
JPH11111670A (en) Adjusting method of thickness of semiconductor wafer
JPH04237127A (en) Crystal wafer with oxide film
JPH0645318A (en) Gaas wafer and its manufacture
JPH06291105A (en) Cleaning and drying method for compound