JPH0529116A - High corrosion-resistant rare earth magnet - Google Patents

High corrosion-resistant rare earth magnet

Info

Publication number
JPH0529116A
JPH0529116A JP3203321A JP20332191A JPH0529116A JP H0529116 A JPH0529116 A JP H0529116A JP 3203321 A JP3203321 A JP 3203321A JP 20332191 A JP20332191 A JP 20332191A JP H0529116 A JPH0529116 A JP H0529116A
Authority
JP
Japan
Prior art keywords
rare earth
earth magnet
plating
alloy
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3203321A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
廣士 佐藤
Haruo Tomari
治夫 泊里
Fumihiro Sato
文博 佐藤
Atsushi Hanaki
敦司 花木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3203321A priority Critical patent/JPH0529116A/en
Publication of JPH0529116A publication Critical patent/JPH0529116A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Abstract

PURPOSE:To maintain excellent magnetic property for a long period by covering the surface of an RE-B-Fe sintered rare earth magnet or the surface of an RE-TM-B hot processed rare earth magnet with the vapor-phase plating of Al or Al alloy and the organic coating layer by electrodeposited plating. CONSTITUTION:A vapor-phased plating made of Al or Al alloy is made on the surface of an RE-B-Fe sintered rare earth magnet or the surface of an RE-TM-B hot processed rare earth magnet, and thereon an organic coating layer is made by electrodeposited plating. The plating of Al or Al alloy serves as a layer for preventing the oxidation of the surface of a magnet, and also is elevates the adhesion with the organic coating layer made by an electrodeposition-coating method, and further it has a function as a hydrogen shutoff layer which hinderes the hydrogen produced in electrodeposition coating from moving in ward the magnetic alloy and from causing hydrogen embrittlement, and this plated layer is made by vapor-phase plating method. Hereby, excellent magnetic property can be maintained for a long period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐食性の改善された希土
類磁石に関し、詳細には希土類磁石の表面にAlもしく
はAl合金よりなる気相めっき層および電着塗装による
耐食性有機コーティング層を形成し、それにより耐食性
を高めて優れた磁気特性を長期間維持できる様にした高
耐食性希土類磁石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnet having improved corrosion resistance. More specifically, a rare earth magnet is provided with a vapor phase plating layer made of Al or Al alloy and a corrosion resistant organic coating layer formed by electrodeposition coating on the surface of the rare earth magnet. Accordingly, the present invention relates to a highly corrosion-resistant rare earth magnet which has improved corrosion resistance and can maintain excellent magnetic properties for a long period of time.

【0002】[0002]

【従来の技術】磁石合金は、永久磁石等として大型コン
ピューターの周辺機器から一般家庭用の各種電気製品等
の電気もしくは電子部品用材料として幅広く利用されて
おり、特に近年におけるコンピューターや電気製品の小
型化、高性能化の要求にともなって、磁石合金に対する
磁気特性や耐食性等の要求性能はますます高度のものが
求められている。
2. Description of the Related Art Magnet alloys are widely used as permanent magnets and the like as peripheral materials for large computers and as materials for electric or electronic parts such as various electric products for general household use. With the demand for higher performance and higher performance, the demands for magnetic alloys such as magnetic properties and corrosion resistance are becoming more and more advanced.

【0003】こうした中にあってRE−B−Fe系焼結
希土類磁石またはRE−TM−B系熱間加工希土類磁石
は磁気特性に優れたものであるとされている。ところが
この希土類磁石は、非常に活性の高い希土類元素を含有
するばかりでなく、REリッチ相とFeリッチ相が混在
する合金であるため、両相間の電位差による局部電池の
影響も加わって容易に発錆する。従って実用化に当たっ
ては防錆のための表面処理が不可欠であり、たとえばN
iやZnなどの金属やそれらの合金をめっきする方法;
りん酸塩処理やクロメート処理等の化成処理を施す方
法;浸漬法やスプレー法等によりエポキシ系樹脂やアク
リル系樹脂等の樹脂コーティングを施す方法等が提案さ
れている。
Among these, the RE-B-Fe system sintered rare earth magnet or the RE-TM-B system hot-worked rare earth magnet is said to have excellent magnetic properties. However, since this rare earth magnet not only contains a highly active rare earth element but also an alloy in which a RE-rich phase and an Fe-rich phase coexist, it is easily generated by the influence of the local battery due to the potential difference between the two phases. Rust. Therefore, surface treatment for rust prevention is indispensable for practical use.
a method of plating a metal such as i or Zn or an alloy thereof;
A method of applying chemical conversion treatment such as phosphate treatment or chromate treatment; a method of applying a resin coating of epoxy resin or acrylic resin by a dipping method, a spray method or the like has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながらNi等の
金属もしくは合金をめっきする方法あるいは化成処理法
では、満足のいくめっき密着性および耐食性が得られな
い。しかもこれらの希土類磁石は水素吸蔵性が高く、水
素吸蔵によって脆化する性質があるので、電気めっき或
は無電解めっき法を採用すると、めっき時に発生する水
素を吸蔵して磁石がめっき界面で脆化割れを起こし、め
っき剥離を起こして耐食性を維持できなくなる。
However, satisfactory plating adhesion and corrosion resistance cannot be obtained by the method of plating a metal or alloy such as Ni or the chemical conversion treatment method. Moreover, since these rare earth magnets have a high hydrogen storage property and have the property of being brittle due to hydrogen storage, if electroplating or electroless plating is adopted, hydrogen generated during plating is stored and the magnet becomes brittle at the plating interface. It causes chemical cracking and peels off the plating, making it impossible to maintain corrosion resistance.

【0005】こうした問題を回避するため、蒸着めっき
等の気相めっき法も提案されているが、この方法ではめ
っき層のピンホール欠陥が耐食性向上の大きな障害とな
る。
In order to avoid such problems, vapor phase plating methods such as vapor deposition plating have been proposed, but in this method, pinhole defects in the plating layer are a major obstacle to improvement in corrosion resistance.

【0006】また浸漬法やスプレー法等によって樹脂コ
ーティングを施す方法でも、十分な密着性と耐食性は得
られ難く、しかも磁石表面に均一な樹脂コーティング被
膜を形成することは困難であって、特に磁石のエッジ部
は耐食性不足となり易く、この部分を起点として腐食が
進行する。
In addition, it is difficult to obtain sufficient adhesion and corrosion resistance even by a method of applying a resin coating such as a dipping method or a spray method, and it is difficult to form a uniform resin coating film on the magnet surface. Corrosion resistance is apt to be insufficient at the edge portion, and corrosion progresses from this portion as a starting point.

【0007】本発明は上記の様な状況に着目してなされ
たものであって、その目的は、水素吸蔵等の問題を生じ
ることなく、優れた磁気特性を長期的に維持し得る様な
高耐食性希土類磁石を提供しようとするものである。
The present invention has been made by paying attention to the above situation, and an object thereof is to obtain a high magnetic property capable of maintaining excellent magnetic characteristics for a long term without causing problems such as hydrogen absorption. It is intended to provide a corrosion resistant rare earth magnet.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明の構成は、RE−B−Fe系焼結希土類
磁石またはRE−TM−B系熱間加工希土類磁石の表面
に、AlまたはAl合金よりなる気相めっき層が形成さ
れると共に、該めっき層上に電着塗装による有機コーテ
ィング層が形成されたものであるところに要旨を有する
ものである。尚、また有機コーティング層を形成するた
めの電着塗装法は、アニオン型電着塗装法およびカチオ
ン型電着塗装法のどちらでもよいが、より好ましいのは
電着工程で水素を発生することのないアニオン型電着塗
装法である。
Means for Solving the Problems The constitution of the present invention which has been able to solve the above-mentioned problems is that the surface of a RE-B-Fe system sintered rare earth magnet or a RE-TM-B system hot-worked rare earth magnet is made of Al. Alternatively, the gist is that a vapor phase plating layer made of an Al alloy is formed, and an organic coating layer formed by electrodeposition coating is formed on the plating layer. The electrodeposition coating method for forming the organic coating layer may be either an anion type electrodeposition coating method or a cation type electrodeposition coating method, but it is more preferable to generate hydrogen in the electrodeposition step. There is no anion type electrodeposition coating method.

【0009】[0009]

【作用】本発明に係る高耐食性希土類磁石は、上記の如
くRE−B−Fe系焼結希土類磁石またはRE−TM−
B系熱間加工希土類磁石の表面に、AlまたはAl合金
よりなる気相めっき層が形成されると共に、その上に電
着塗装によって有機コーティング層を形成してなるもの
であり、これら両層の相乗的表面保護効果によって磁石
の耐食性は著しく高められる。
The high corrosion resistance rare earth magnet according to the present invention is the RE-B-Fe system sintered rare earth magnet or RE-TM- magnet as described above.
A vapor phase plating layer made of Al or an Al alloy is formed on the surface of a B-system hot-working rare earth magnet, and an organic coating layer is formed thereon by electrodeposition coating. Due to the synergistic surface protection effect, the corrosion resistance of the magnet is significantly increased.

【0010】まず本発明で形成されるAlまたはAl合
金めっき層は、磁石表面の酸化防止層として作用すると
共に、電着塗装法によって形成される有機コーティング
層の密着性を高め、さらには電着塗装時に生成する水素
が磁石合金方向へ移行して水素脆化を起こすのを阻止す
る水素遮断層としての作用を有するものであり、このめ
っき層は気相めっき法によって形成される。
First, the Al or Al alloy plating layer formed in the present invention acts as an antioxidation layer on the surface of the magnet and enhances the adhesion of the organic coating layer formed by the electrodeposition coating method. It functions as a hydrogen barrier layer that prevents hydrogen generated during coating from moving toward the magnet alloy and causing hydrogen embrittlement, and this plated layer is formed by a vapor phase plating method.

【0011】即ち気相めっき法を採用すると、電気めっ
き法や無電解めっき法を採用した場合の様にめっき工程
で水素を生成することがなく、先に述べた様に磁石表面
が水素吸蔵によって脆化するといった問題を起こす恐れ
がないからである。
That is, when the vapor-phase plating method is adopted, hydrogen is not generated in the plating process unlike the case where the electroplating method or the electroless plating method is adopted, and as described above, the magnet surface absorbs hydrogen. This is because there is no risk of causing problems such as embrittlement.

【0012】またAlまたはAl合金めっき層は、その
表面に形成される有機コーティング層の電着塗装工程で
電着塗装液により適度のエッチングを受け、有機コーテ
ィング層の密着性を高める作用も発揮する。尚気相めっ
き法としては、真空蒸着法、スパッタリング法、イオン
プレーティング法等が好ましいものとして挙げられる。
尚Al合金としては、Alと共にMg、Si,Cu,M
n,Zn,Cr,Ni等の金属の1種以上を合金成分と
して含む様々のAl合金が包含される。
Further, the Al or Al alloy plated layer is appropriately etched by the electrodeposition coating liquid in the electrodeposition coating process of the organic coating layer formed on the surface thereof, and also exerts the action of enhancing the adhesiveness of the organic coating layer. . As the vapor phase plating method, a vacuum vapor deposition method, a sputtering method, an ion plating method and the like can be mentioned as preferable ones.
As an Al alloy, Mg, Si, Cu, M together with Al
Various Al alloys containing one or more metals such as n, Zn, Cr and Ni as alloy components are included.

【0013】ところで気相めっき法によって形成される
AlまたはAl合金めっき層は、微細なピンホール欠陥
を有しているため、十分な表面保護効果が得られない。
そこで本発明ではこのピンホール欠陥を補って優れた耐
食性を得るための手段として、その上に電着塗装による
有機コーティング層を形成することとしている。
By the way, the Al or Al alloy plating layer formed by the vapor phase plating method has a minute pinhole defect, so that a sufficient surface protection effect cannot be obtained.
Therefore, in the present invention, as a means for compensating for this pinhole defect and obtaining excellent corrosion resistance, an organic coating layer is formed thereon by electrodeposition coating.

【0014】即ち電着塗装法によれば有機コーティグ層
形成材が磁石表面に電気的に吸着して被膜を形成するの
で、気相めっき層のピンホール欠陥部までコーティング
層形成材が確実に侵入して表面保護被膜を形成し、従っ
て、通常の浸漬法やスプレー法等に較べて被膜密着性が
著しく高められる。
That is, according to the electrodeposition coating method, the organic coating layer forming material is electrically adsorbed on the surface of the magnet to form a coating film, so that the coating layer forming material surely penetrates to the pinhole defect portion of the vapor phase plating layer. Thus, a surface protective film is formed, and therefore the film adhesion is remarkably enhanced as compared with the ordinary dipping method, spray method and the like.

【0015】殊に電着塗装に際しては、最初は被塗面の
全面で樹脂の電解析出が起こるが、電解析出の途中で樹
脂の付着量が不均一になった場合は、樹脂付着量の多い
部分は通電抵抗の増大によって相対的に電解析出量が減
少するのに対し、樹脂付着量の少ない部分は通電抵抗が
低いので樹脂の電解析出量は樹脂付着量の多い部分に比
べてそれほど低下せず、従って最終的に形成される電着
塗膜は全面に渡って均等な肉厚のものとなり、局部的に
ピンホール等の塗膜欠陥が残る様な恐れもない。
In particular, during electrodeposition coating, the electrolytic deposition of the resin initially occurs on the entire surface to be coated, but if the resin deposition amount becomes uneven during the electrolytic deposition, the resin deposition amount In areas where there is a large amount of electrolytic resistance, the amount of electrolytic deposition decreases relatively, whereas in areas where there is a small amount of resin deposition, the amount of electrolytic deposition is low. Therefore, the finally formed electrodeposition coating film has a uniform thickness over the entire surface, and there is no fear that coating film defects such as pinholes locally remain.

【0016】しかも磁石表面に気相めっき法によって形
成されるAlまたはAl合金は、Niめっき等に較べて
希土類磁石に対する密着性がよく、且つAlまたはAl
合金は電着塗装時に適度のエッチング作用を受けて清浄
化され、その表面に樹脂が電解析出していくので、こう
した効果が相まって表面被膜の密着性が著しく高められ
ると共に、被膜は非常に緻密で均質なものとなり、高レ
ベルの耐食性を長期間維持し得るものとなる。
Moreover, Al or Al alloy formed on the surface of the magnet by the vapor plating method has better adhesion to the rare earth magnet than Ni plating or the like, and Al or Al alloy.
The alloy is cleaned by an appropriate etching action during electrodeposition coating, and the resin is electrolytically deposited on the surface of the alloy, so these effects are combined to significantly enhance the adhesion of the surface coating and the coating is extremely dense. It becomes homogeneous and can maintain a high level of corrosion resistance for a long period of time.

【0017】電着塗装法にはアニオン型電着塗装とカチ
オン型電着塗装があり、本発明ではどちらを採用しても
よいが、より好ましいのはアニオン型電着塗装である。
なぜならばアニオン型電着塗装では電解析出時に水素の
発生が見られず、水素吸蔵による磁石脆化の問題を起こ
す恐れが全くないからである。しかし本発明では下地層
として水素遮断効果を有するAlまたはAl合金めっき
層が形成されており、電着塗装工程で多少の水素が発生
しても該水素は該めっき層によって磁石合金方向への移
行が阻止されるので、カチオン型電着塗装法を採用する
ことも可能である。
The electrodeposition coating methods include anion type electrodeposition coating and cation type electrodeposition coating. Either of them may be adopted in the present invention, but anion type electrodeposition coating is more preferable.
This is because anion type electrodeposition coating does not show generation of hydrogen during electrolytic deposition, and there is no possibility of causing a problem of magnet embrittlement due to hydrogen absorption. However, in the present invention, an Al or Al alloy plating layer having a hydrogen barrier effect is formed as the underlayer, and even if some hydrogen is generated in the electrodeposition coating process, the hydrogen moves toward the magnet alloy due to the plating layer. Therefore, it is also possible to employ the cationic electrodeposition coating method.

【0018】しかしカチオン型電着塗装法を採用する場
合は、AlまたはAl合金めっき層のピンホール欠陥を
通して水素が磁石合金方向へ侵入し、少しではあるが磁
石が水素脆化を起こすことが懸念されるので、予めクロ
メート処理等の化成処理を施してピンホール欠陥部に化
成皮膜を形成し、磁石合金方向への水素の移行を確実に
阻止することが望まれる。
However, when the cation-type electrodeposition coating method is adopted, hydrogen may invade toward the magnet alloy through pinhole defects in the Al or Al alloy plating layer, and the magnet may be slightly embrittled by hydrogen. Therefore, it is desired to perform a chemical conversion treatment such as a chromate treatment in advance to form a chemical conversion film on the pinhole defect portion to surely prevent the migration of hydrogen toward the magnet alloy.

【0019】本発明で使用される電着塗装溶液の種類は
特に限定されないが、好ましいものとしては、アニオン
型電着塗装用樹脂として、ポリエステル系、ポリブタジ
エン系、エポキシ系、アクリル系、アルキド系等の樹脂
の1種もしくは2種以上をブレンドしたり反応させたア
ニオン型エマルジョンが挙げられ、またカチオン型電着
塗装用樹脂として、エポキシ系やポリエステル系等の樹
脂の1種もしくは2種以上をブレンドしたり反応させた
カチオン型エマルジョンが例示される。これらの中でも
とりわけ優れた耐食性が得られるのは、pH8.3以上
の高アルカリ性アニオン型電着塗装溶液である。
The type of electrodeposition coating solution used in the present invention is not particularly limited, but preferred examples are anion type electrodeposition coating resins such as polyester type, polybutadiene type, epoxy type, acrylic type and alkyd type resins. Anionic emulsions obtained by blending or reacting one or more of the above resins with each other, and one or more of the epoxy-based or polyester-based resins as the cationic electrodeposition coating resin are blended. An example is a cationic emulsion that has been reacted or reacted. Among these, it is the highly alkaline anion type electrodeposition coating solution having a pH of 8.3 or more that can obtain particularly excellent corrosion resistance.

【0020】但し上記の樹脂は、概してアルカリ性水溶
液としたときに増粘する傾向があるので、使用される樹
脂の種類に応じて十分な安定性と電着塗装性が得られる
様に分子量、酸価、固形分濃度等を適宜調整することが
望まれる。
However, the above resins generally tend to thicken when they are made into an alkaline aqueous solution. Therefore, depending on the kind of the resin used, the molecular weight and acidity may be adjusted so that sufficient stability and electrodeposition coatability can be obtained. It is desired to adjust the valency, solid content concentration and the like as appropriate.

【0021】表面保護層を構成する上記AlまたはAl
合金層および有機コーティング層の肉厚は、要求される
耐食性の程度や経済性等を考慮して適当に決めればよい
が、標準的な値として示すならば、AlまたはAl合金
めっき層は5〜15μm程度、有機コーティング層は5
〜20μm程度である。
The above Al or Al constituting the surface protective layer
The thicknesses of the alloy layer and the organic coating layer may be appropriately determined in consideration of the required degree of corrosion resistance and economic efficiency, but if they are shown as standard values, the Al or Al alloy plating layer may have a thickness of 5 to 5. 15μm, organic coating layer is 5
It is about 20 μm.

【0022】次に本発明で使用されるRE−B−Fe系
焼結希土類磁石及びRE−TM−B系熱間加工希土類磁
石について説明する。まずRE−B−Fe系焼結希土類
磁石は、希土類元素の少なくとも1種とB及びFeを必
須元素として含むものであり、REで示される希土類元
素としては、Pr,Nd,La,Ce,Td,Dy,H
o,Er,Eu,Sm,Gd,Pm,Tm,Yb,L
u,Yなどを挙げることができ、これらは単独で使用し
てもよく或は必要により2種以上を併用することもでき
る。上記希土類元素の中でも特に好ましいのはPrとN
dである。
Next, the RE-B-Fe system sintered rare earth magnet and the RE-TM-B system hot-worked rare earth magnet used in the present invention will be explained. First, the RE-B-Fe based sintered rare earth magnet contains at least one rare earth element and B and Fe as essential elements, and the rare earth element represented by RE is Pr, Nd, La, Ce, Td. , Dy, H
o, Er, Eu, Sm, Gd, Pm, Tm, Yb, L
Examples thereof include u and Y, and these may be used alone or, if necessary, may be used in combination of two or more kinds. Among the above rare earth elements, Pr and N are particularly preferable.
d.

【0023】これらRE−B−Fe系焼結希土類磁石中
に占めるREの好ましい含有量(以下、特記しない限り
原子%を意味する)は8〜30%であり、8%未満では
十分な保磁力が得られにくく、30%を超えると残留磁
束密度が不足気味となる。またBの好ましい含有率は2
〜28%であり、2%未満では十分な保磁力が得られ難
く、一方28%を超えると残留磁束密度が不十分とな
る。Feは40〜90%の範囲が好ましく、40%未満
では残留磁束密度が不足気味となり、一方90%を超え
ると高レベルの保磁力が得られ難くなる。
The preferred RE content in these RE-B-Fe-based sintered rare earth magnets (hereinafter referred to as atomic% unless otherwise specified) is 8 to 30%, and if it is less than 8%, a sufficient coercive force is obtained. Is difficult to obtain, and if it exceeds 30%, the residual magnetic flux density tends to be insufficient. Further, the preferable content ratio of B is 2
If it is less than 2%, it is difficult to obtain a sufficient coercive force, and if it exceeds 28%, the residual magnetic flux density becomes insufficient. Fe is preferably in the range of 40 to 90%. If it is less than 40%, the residual magnetic flux density tends to be insufficient, while if it exceeds 90%, it becomes difficult to obtain a high level coercive force.

【0024】尚上記RE−B−Fe系焼結希土類磁石に
おいては、Feの一部をCoやNiで置換することもで
きる。しかしCoの置換量が多くなり過ぎると高保磁力
が得られにくくなるので、Feに対する置換量は50%
以下に抑えるべきであり、またNi置換量が多くなり過
ぎると残留磁束密度が低下する傾向があるので、Feに
対する置換量は8%以下とすべきである。
In the RE-B-Fe system sintered rare earth magnet, part of Fe may be replaced with Co or Ni. However, if the substitution amount of Co becomes too large, it becomes difficult to obtain a high coercive force, so the substitution amount of Fe is 50%.
The residual magnetic flux density tends to decrease when the Ni substitution amount becomes too large, so the substitution amount for Fe should be 8% or less.

【0025】更にこの磁石には、他の元素として以下に
示す様な元素の1種以上をFeに置換して含有させるこ
とによって保磁力を更に高めることが可能である(但
し、2種以上を併用する場合の許容含有量は、各添加元
素のうち最大値を示すものの含有量を上限とする)。
Further, in this magnet, the coercive force can be further increased by substituting one or more of the following elements as Fe for substitution with Fe (provided that two or more elements are included). When used in combination, the allowable content is the upper limit of the content of each additive element that exhibits the maximum value).

【0026】Al:9.5%以下、 Ti:4.5%以
下、 V:9.5%以下、Cr:8.5%以下、 M
n:8.0%以下、 Bi:5.0%以下、Nb:9.
5%以下、 Ta:9.5%以下、 Mo:9.5%以
下、W: 9.5%以下、 Sb:2.5%以下、 G
e:7.0%以下、Sn:3.5%以下、 Zr:5.
5%以下、 Ni:9.0%以下、Si:9.0%以
下、 Zn:1.1%以下、 Hf:5.5%以下。
Al: 9.5% or less, Ti: 4.5% or less, V: 9.5% or less, Cr: 8.5% or less, M
n: 8.0% or less, Bi: 5.0% or less, Nb: 9.
5% or less, Ta: 9.5% or less, Mo: 9.5% or less, W: 9.5% or less, Sb: 2.5% or less, G
e: 7.0% or less, Sn: 3.5% or less, Zr: 5.
5% or less, Ni: 9.0% or less, Si: 9.0% or less, Zn: 1.1% or less, Hf: 5.5% or less.

【0027】次にRE−TM−B系熱間加工希土類磁石
は、Yを含む希土類元素(RE)の少なくとも1種と遷
移元素(TM)およびBを必須元素として含むものであ
り、REとしては前記RE−B−Fe系焼結希土類磁石
の構成元素として挙げたものが再び例示されるが、これ
らのうち最も高い磁気的性質はPrを用いたときに得ら
れ易いので、実質的にはPrのみ、もしくはREのうち
50%以上がPrであるものが好ましい。またDyやT
d等の重希土類元素を少量併用することは、保磁力の向
上に有効である。
Next, the RE-TM-B hot-working rare earth magnet contains at least one rare earth element (RE) containing Y, a transition element (TM) and B as essential elements. Those listed as the constituent elements of the RE-B-Fe-based sintered rare earth magnet are exemplified again, but the highest magnetic property among these is easily obtained when Pr is used, so that it is substantially Pr. It is preferable that only 50% or more of RE is Pr. Also Dy and T
The combined use of a small amount of heavy rare earth element such as d is effective for improving the coercive force.

【0028】該RE−TM−B系熱間加工希土類磁石全
量中に占めるREの好ましい含有量は、8〜25%、よ
り好ましくは10〜20%、更に好ましくは12〜18
%の範囲である。REとTMおよびBを基本成分とする
磁石の主相はRE2 TM14B(たとえばPr2 Fe
14B)であるが、REが不足するとこの化合物が形成さ
れず、α−鉄と同一構造の立方晶組織となるため良好な
磁気的特性(特に保磁率)が得られ難く、他方、REが
多過ぎると非磁性のREリッチ相が多くなって残留磁束
密度が低下傾向を示す様になる。
The RE content in the total amount of the RE-TM-B hot-worked rare earth magnets is preferably 8 to 25%, more preferably 10 to 20%, further preferably 12 to 18%.
% Range. The main phase of a magnet having RE, TM and B as its basic components is RE 2 TM 14 B (eg Pr 2 Fe).
14B ), if RE is insufficient, this compound is not formed and a cubic crystal structure having the same structure as α-iron is formed, so that it is difficult to obtain good magnetic properties (especially coercivity), while RE is If it is too large, the amount of non-magnetic RE rich phase increases and the residual magnetic flux density tends to decrease.

【0029】次にBの含有量は、2〜8%、より好まし
くは4〜6%が適当である。B量が不足する場合は、R
E−Fe系の菱面体となるため満足な保磁力が得られ難
く、逆に多過ぎるとたとえば非磁性のRE2 Fe4 B相
が析出して残留磁束密度が低くなる。
Next, the content of B is suitably 2 to 8%, more preferably 4 to 6%. If the amount of B is insufficient, R
Since it becomes an E—Fe rhombohedron, it is difficult to obtain a sufficient coercive force. On the contrary, if the coercive force is too large, for example, a nonmagnetic RE 2 Fe 4 B phase is precipitated and the residual magnetic flux density becomes low.

【0030】TMは40〜90%、より好ましくは65
〜90%が適当であり、TM量が不足すると残留磁束密
度が低くなり、また多過ぎると保磁力が不十分となる。
尚、TMのうち最も代表的なものはFeであるが、その
一部をCoおよび/またはNiで代替することができ
る。Coは磁石のキュリー点を上げるのに有効であり、
基本的には主相のFeサイトを置換してRE2 Co14
を形成するが、この化合物は結晶異方性磁界が小さく、
Coの代替量が多くなるにつれて磁石全体としての保磁
力が低下するので、Feの50%以下、より好ましくは
20%以下に抑えるのがよい。またNiの代替量が多く
なると残留磁束密度が低下する傾向があるので、Feの
8%程度以下に抑えることが望まれる。
TM is 40 to 90%, more preferably 65.
90% is appropriate. If the amount of TM is insufficient, the residual magnetic flux density becomes low, and if it is too large, the coercive force becomes insufficient.
The most typical one of TM is Fe, but a part of it can be replaced with Co and / or Ni. Co is effective in raising the Curie point of the magnet,
Basically, by replacing the Fe site of the main phase, RE 2 Co 14 B
However, this compound has a small crystal anisotropy field,
Since the coercive force of the entire magnet decreases as the substitution amount of Co increases, it is preferable to suppress Fe to 50% or less, more preferably 20% or less. Further, since the residual magnetic flux density tends to decrease as the substitution amount of Ni increases, it is desirable to suppress Fe to about 8% or less.

【0031】RE−TM−B系熱間加工希土類磁石の基
本的構成元素は上記の通りであるが、必要により更に他
の元素としてAg,Au,Al,Cu,Ga,Sn,P
t,Zn等の1種以上を含有させることにより保磁力を
更に高めることができ、その効果は0.2 %以上の添加で
有効に発揮される。しかし多過ぎると非磁性の粒界相が
増加して磁気特性の低下を招くので2%以下に抑えるべ
きである。
The basic constituent elements of the RE-TM-B hot-working rare earth magnet are as described above, but if necessary, other elements such as Ag, Au, Al, Cu, Ga, Sn and P are used.
The coercive force can be further increased by containing at least one of t, Zn and the like, and the effect is effectively exhibited by the addition of 0.2% or more. However, if the amount is too large, the non-magnetic grain boundary phase increases and the magnetic properties are deteriorated. Therefore, it should be suppressed to 2% or less.

【0032】上記元素の中でも特にAg,Au,Al,
Cu,Pt,Sn,Znは結晶組織を微細化し、後述す
るような異方性付与のための熱間加工に伴う表面劣化層
の生成を抑制する作用があり、例えば3mm程度の薄肉形
状のものであっても優れた磁気特性を持った磁石を与え
るという効果を発揮する。
Among the above elements, particularly Ag, Au, Al,
Cu, Pt, Sn, and Zn have the effect of refining the crystal structure and suppressing the formation of a surface-deteriorated layer due to hot working for imparting anisotropy as described later, and have a thin-walled shape of, for example, about 3 mm. Even in this case, the effect of giving a magnet having excellent magnetic characteristics is exhibited.

【0033】かくして得られるRE−TM−B系合金
を、好ましくは800℃以上の温度で熱間加工して配向
させると、異方性の永久磁石が得られる。尚、このRE
−TM−B系熱間加工希土類磁石は、耐食性や磁気特性
において前述のRe−B−Fe系焼結希土類磁石よりも
優れた効果を有しているので特に好ましい。
An anisotropic permanent magnet can be obtained by hot working the RE-TM-B alloy thus obtained, preferably at a temperature of 800 ° C. or higher, and orienting it. In addition, this RE
The -TM-B hot-working rare earth magnet is particularly preferable because it has a superior effect in corrosion resistance and magnetic properties to the above-mentioned Re-B-Fe sintered rare earth magnet.

【0034】本発明では、上記のようなRE−B−Fe
系焼結希土類磁石もしくはRE−TM−B系熱間加工希
土類磁石に、前述のAlまたはAl合金めっきおよびア
ニオン型電着塗装を施すことによって高耐食性の永久磁
石を得ることができる。すなわち上記の磁石合金は、そ
の中に含まれる酸素や希土類元素酸化物の量が非常に少
なく、表層部に脆弱で被膜密着性の乏しい酸化物層が存
在しないばかりでなく、保護被膜形成工程或はその後で
水素を吸蔵して脆化することもなく、こうした効果と、
AlまたはAl合金めっき及び電着塗装による前述の塗
膜密着性改善効果が相まって、卓越した耐食性を示し、
高レベルの磁気特性を長期間に渡って維持し得るものと
なる。
In the present invention, RE-B-Fe as described above is used.
A permanent magnet having high corrosion resistance can be obtained by applying the above-mentioned Al or Al alloy plating and anionic electro-deposition coating to the system sintered rare earth magnet or the RE-TM-B system hot worked rare earth magnet. That is, in the above magnet alloy, not only is the amount of oxygen and rare earth element oxides contained therein extremely small, and there is no fragile oxide layer with poor coating adhesion in the surface layer portion, or the protective coating formation step or Will not occlude hydrogen and then embrittle,
Combined with the above-mentioned effect of improving coating film adhesion by Al or Al alloy plating and electrodeposition coating, excellent corrosion resistance is exhibited,
A high level of magnetic properties can be maintained for a long period of time.

【0035】[0035]

【実施例】実施例1 純度99.9%の鉄粉、純度99.9%のフェロボロン
合金および純度99.7%以上のNdを原料とし、これら
を配合して高周波溶解した後水冷銅鋳型を用いて鋳造
し、組成がNd147 Fe79の鋳塊を得た。
Example 1 Iron powder having a purity of 99.9%, ferroboron alloy having a purity of 99.9% and Nd having a purity of 99.7% or more were used as raw materials, and these were blended and subjected to high frequency melting, and then a water-cooled copper mold was prepared. Casting was performed to obtain an ingot having a composition of Nd 14 B 7 Fe 79 .

【0036】この鋳塊をスタンプミルで粗粉砕した後ボ
ールミルで微粉砕し、粒径が2.8〜8μmの微粉末を
得た。この微粉末を金型に装入して、10KOeの磁界
中で配向させると共に1.5t/cm2 の圧力で成形し
た。
The ingot was roughly crushed with a stamp mill and then finely crushed with a ball mill to obtain a fine powder having a particle size of 2.8 to 8 μm. This fine powder was charged into a mold, oriented in a magnetic field of 10 KOe, and molded at a pressure of 1.5 t / cm 2 .

【0037】この成形体を、Ar雰囲気中1000℃で
1時間焼結した後放冷し、その後Ar雰囲気中600℃
で2時間時効処理することにより希土類磁石を得た。得
られた磁石より20mm×30mm×3mmサイズの試
験片を切り出し、表面研磨(No.150)及びアセト
ン脱脂後、表1に示す如く真空蒸着法によってAlめっ
き層を形成し、その上に電着塗装法によって有機コーテ
ィング層を形成した。また従来法に準拠し、ワット浴を
用いて電流密度8A/dm2 でNiめっきを行なったも
の及び蒸着Alめっき層のみ並びに有機電着塗装のみの
ものを比較例として示した。
This compact was sintered in an Ar atmosphere at 1000 ° C. for 1 hour, then allowed to cool, and then 600 ° C. in an Ar atmosphere.
A rare earth magnet was obtained by aging treatment for 2 hours. A test piece of 20 mm × 30 mm × 3 mm size was cut out from the obtained magnet, surface-polished (No. 150) and degreased with acetone, and then an Al plating layer was formed by the vacuum deposition method as shown in Table 1, and electrodeposition was performed thereon. The organic coating layer was formed by the coating method. In addition, in accordance with the conventional method, those plated with Ni at a current density of 8 A / dm 2 using a Watt bath, only the vapor-deposited Al plating layer and only the organic electrodeposition coating are shown as comparative examples.

【0038】電着塗装もしくはNiめっきの後夫々着磁
処理を行ない、下記の初期磁気特性を有する供試材を得
た。 残留磁束密度(Br)=12.5KG 保磁力(iHc)=12.0KQe エネルギー積(BH)max =35.0MGOe 得られた各供試材について下記の方法で耐食性試験を行
なった。
After electrodeposition coating or Ni plating, magnetizing treatment was carried out to obtain a test material having the following initial magnetic characteristics. Residual magnetic flux density (Br) = 12.5 KG Coercive force (iHc) = 12.0 KQe Energy product (BH) max = 35.0 MGOe Each of the obtained test materials was subjected to a corrosion resistance test by the following method.

【0039】(耐食性試験)供試材を80℃×90%R
Hの恒温恒湿雰囲気に600時間放置した後、外観(目
視観察)、皮膜密着性(JIS K 5400:碁盤目
テープ法)および磁気特性を調べた。結果を表1に一括
して示す。
(Corrosion resistance test) Test material is 80 ° C. × 90% R
After standing for 600 hours in a constant temperature and humidity atmosphere of H, the appearance (visual observation), film adhesion (JIS K 5400: cross-cut tape method) and magnetic properties were examined. The results are collectively shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】表1からも明らかであるように、実施例
(No.1〜5)では耐食性試験後の外観変化および塗
膜密着性の低下は全く見られず、磁気特性も試験前の値
をそのまま維持しているのに対し、比較例(No.6〜
11)では発錆による外観劣化およびめっき密着性の低
下が著しく、また磁気特性もかなり低下している。
As is apparent from Table 1, in Examples (Nos. 1 to 5), no change in appearance and no decrease in coating adhesion were observed after the corrosion resistance test, and the magnetic properties were the same as those before the test. While maintaining as it is, Comparative Example (No. 6 ~
In No. 11), appearance deterioration due to rusting and deterioration of plating adhesion are remarkable, and magnetic properties are considerably deteriorated.

【0042】実施例2 純度99.9%の電解鉄と純度99.9%のフェロボロ
ンおよび純度99%以上のPrを原料とし、これらを配
合した後高周波溶解後水冷銅鋳型を用いて表2に示す組
成の鋳塊を得た。この鋳塊を切断して鉄製カプセルに封
入し、950℃にて全圧下率76%の熱間圧延を行なっ
た後、1000℃×6時間および480℃×2時間の条
件で熱処理することにより、表2に示す磁気特性の希土
類磁石を得た。この磁石より20mm×30mm×3m
mの試験片を切り出し、表面研磨(No.150)およ
びアセトン脱脂の後、表3に示す蒸着Alめっき及び電
着塗装を行ない、以下実施例1と同様にして着磁処理お
よび耐食性試験を行なった。結果を表4に示す。
Example 2 Electrolytic iron having a purity of 99.9%, ferroboron having a purity of 99.9%, and Pr having a purity of 99% or more were used as raw materials, which were blended and then subjected to high frequency melting. An ingot having the composition shown was obtained. By cutting this ingot, encapsulating it in an iron capsule, performing hot rolling with a total reduction of 76% at 950 ° C., and then heat treating it under the conditions of 1000 ° C. × 6 hours and 480 ° C. × 2 hours, The rare earth magnets having the magnetic characteristics shown in Table 2 were obtained. 20mm x 30mm x 3m from this magnet
A test piece of m was cut out, and after surface polishing (No. 150) and degreasing with acetone, vapor deposition Al plating and electrodeposition coating shown in Table 3 were performed, and a magnetization treatment and a corrosion resistance test were performed in the same manner as in Example 1 below. It was The results are shown in Table 4.

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】表2〜4に示した供試材は、いずれも本発
明の規定要件を満たすものであり、耐食性試験後の外観
劣化および塗膜密着性の低下並びに磁気特性の低下は全
く認められない。
All the test materials shown in Tables 2 to 4 satisfy the requirements of the present invention, and the deterioration of the appearance after the corrosion resistance test, the deterioration of the coating film adhesion and the deterioration of the magnetic properties are completely recognized. Absent.

【0047】[0047]

【発明の効果】本発明は以上の様に構成されており、R
E−B−Fe系焼結希土類磁石またはRE−TM−B系
熱間加工希土類磁石の表面をAlまたはAl合金よりな
る気相めっき層と電着塗装による有機コーティング層で
被覆することによって、磁石表面とめっき層およびめっ
き層と有機コーティング層の密着性がいずれも高めら
れ、その結果全体としての耐食性を著しく高めることが
でき、優れた磁気特性を長期間維持する高耐食性の希土
類磁石を提供し得ることになった。
The present invention is constructed as described above, and R
A magnet is obtained by coating the surface of an EB-Fe-based sintered rare earth magnet or a RE-TM-B-based hot-worked rare earth magnet with a vapor phase plating layer made of Al or an Al alloy and an organic coating layer by electrodeposition coating. The adhesion between the surface and the plating layer and the adhesion between the plating layer and the organic coating layer are both enhanced, and as a result, the corrosion resistance as a whole can be significantly increased, and a highly corrosion-resistant rare earth magnet that maintains excellent magnetic properties for a long time is provided. I got it.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 RE−B−Fe系焼結希土類磁石または
RE−TM−B系熱間加工希土類磁石(REは希土類元
素の1種以上、TMは遷移元素の1種以上を表す:以下
同じ)の表面に、AlまたはAl合金よりなる気相めっ
き層が形成されると共に、該めっき層上に電着塗装によ
る有機コーティング層が形成されたものであることを特
徴とする高耐食性希土類磁石。
1. A RE-B-Fe-based sintered rare earth magnet or a RE-TM-B-based hot-worked rare earth magnet (RE represents one or more rare earth elements, and TM represents one or more transition elements: the same applies hereinafter. 1. A highly corrosion-resistant rare earth magnet, characterized in that a vapor phase plating layer made of Al or an Al alloy is formed on the surface of 1), and an organic coating layer formed by electrodeposition coating is formed on the plating layer.
【請求項2】 有機コーティング層がアニオン型電着塗
装によって形成されたものである請求項1記載の高耐食
性希土類磁石。
2. The highly corrosion resistant rare earth magnet according to claim 1, wherein the organic coating layer is formed by anion type electrodeposition coating.
JP3203321A 1991-07-18 1991-07-18 High corrosion-resistant rare earth magnet Withdrawn JPH0529116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3203321A JPH0529116A (en) 1991-07-18 1991-07-18 High corrosion-resistant rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3203321A JPH0529116A (en) 1991-07-18 1991-07-18 High corrosion-resistant rare earth magnet

Publications (1)

Publication Number Publication Date
JPH0529116A true JPH0529116A (en) 1993-02-05

Family

ID=16472086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3203321A Withdrawn JPH0529116A (en) 1991-07-18 1991-07-18 High corrosion-resistant rare earth magnet

Country Status (1)

Country Link
JP (1) JPH0529116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1569251A2 (en) 2004-02-26 2005-08-31 Shin-Etsu Chemical Co., Ltd. Sealed rare earth magnet and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1569251A2 (en) 2004-02-26 2005-08-31 Shin-Etsu Chemical Co., Ltd. Sealed rare earth magnet and method for manufacturing the same
US7391291B2 (en) * 2004-02-26 2008-06-24 Shin-Etsu Chemical Co., Ltd. Sealed rare earth magnet and method for manufacturing the same
EP1569251A3 (en) * 2004-02-26 2011-07-06 Shin-Etsu Chemical Co., Ltd. Sealed rare earth magnet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP1467385B1 (en) Rare earth element sintered magnet and method for producing rare earth element sintered magnet
KR20050103310A (en) Method for producing rare-earth permanent magnet and metal plating bath
US5332488A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JPH05226129A (en) Manufacture of highly corrosion-resistant rare-earth magnet
JP2003257721A (en) Sintered rare-earth magnet
JPH0529119A (en) High corrosion-resistant rare earth magnet
WO2006054617A1 (en) Rare earth sintered magnet
JP2007300791A (en) Method for using rare earth sintered magnet
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JPH0529116A (en) High corrosion-resistant rare earth magnet
JPH05226125A (en) Manufacture of highly corrosion-resistant rare-earth magnet
US6211762B1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JPS62120002A (en) Permanent magnet with excellent corrosion resistance
JP3914557B2 (en) Rare earth sintered magnet
JPH0529120A (en) High corrosion-resistant rare earth magnet and manufacture thereof
JPH0541313A (en) High corrosion resistant rare earth magnet
JPH05226126A (en) Highly corrosion-resistant rare-earth magnet
JPH05109519A (en) High corrosion resistant rare earth magnet and manufacture thereof
JPH04288804A (en) Permanent magnet and manufacture thereof
US5348639A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JPH06290935A (en) Rare earth magnet
JPS61281850A (en) Permanent magnet material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008