JPH05290B2 - - Google Patents

Info

Publication number
JPH05290B2
JPH05290B2 JP62256590A JP25659087A JPH05290B2 JP H05290 B2 JPH05290 B2 JP H05290B2 JP 62256590 A JP62256590 A JP 62256590A JP 25659087 A JP25659087 A JP 25659087A JP H05290 B2 JPH05290 B2 JP H05290B2
Authority
JP
Japan
Prior art keywords
plug
transport pipe
powder
compressed air
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62256590A
Other languages
Japanese (ja)
Other versions
JPH0198522A (en
Inventor
Satoyuki Terada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP25659087A priority Critical patent/JPH0198522A/en
Publication of JPH0198522A publication Critical patent/JPH0198522A/en
Publication of JPH05290B2 publication Critical patent/JPH05290B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粉粒体の空気輸送方法に係り、特に輸
送管内に間欠的な粉粒体のプラグを形成させなが
ら粉粒体を空気輸送する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for pneumatically transporting powder and granules, and particularly to a method for pneumatically transporting powder and granules while forming intermittent plugs of powder and granules in a transport pipe. Regarding the method.

〔従来の技術〕[Conventional technology]

この種、粉粒体のプラグを形成させながら、粉
粒体を空気輸送する方法は、粉粒体を低速、高濃
度に輸送する場合に適している。この方法は空気
速度が1〜8m/s程度と低いので、輸送中での
粉粒体の破粋が少なく、輸送管の摩耗も少ないと
いう長所がある。一方、空気の静圧力でプラグを
押し動かして輸送することを原理としているの
で、輸送用の圧縮空気の圧力を2〜7Kg/cm2程度
と高くしなければならず、また、プラグの長さが
過大になると輸送管内で粉粒体が閉塞しやすいと
いう短所がある。特に、高圧の圧縮空気を用いる
ので粉粒体を輸送管へ供給するための供給系の弁
類はシール性が低下し空気漏れが生じやすい。一
旦、弁類のシール性が低下すると、その部分に圧
縮空気が高速で通り抜けるため、弁シートの摩耗
が加速し、漏れ空気量が級数的に増大する。この
ため当初に設定した輸送用としての空気量では風
量が不足し、輸送管内での粉粒体の閉塞を助長す
るという悪循環があつた。一旦、閉塞が発生する
と、輸送装置の全系統を停止しなければならず、
その回復には多段の手間を必要とする。このよう
な欠点をカバーするために、圧縮空気の供給量を
過大に設定しておき、前記弁類からの空気漏れが
生じても、輸送管での閉塞は最小限防止するとい
う方法も考えられる。しかしながら、このような
方法は、粉粒体を低速かつ高濃度に輸送し、粉粒
体の破砕や輸送管の摩耗を少なくできるというプ
ラグ輸送方式の長所を減殺するものであり、好ま
しい解決策とはいえなかつた。また、空気漏れが
急速に進行した場合には追従できないという欠点
があつた。
This type of method of pneumatically transporting the powder while forming a plug of the powder is suitable for transporting the powder at low speed and in high concentration. This method has the advantage that the air velocity is as low as about 1 to 8 m/s, so there is little breakage of the powder or granules during transportation, and there is little wear on the transportation pipes. On the other hand, since the principle of transportation is to push and move the plug using the static pressure of air, the pressure of the compressed air for transportation must be as high as 2 to 7 kg/ cm2 , and the length of the plug must be If it becomes too large, there is a disadvantage that the powder and granules are likely to become clogged within the transport pipe. In particular, since high-pressure compressed air is used, the sealing performance of the valves in the supply system for supplying the powder to the transport pipe deteriorates, and air leaks are likely to occur. Once the sealing performance of the valves deteriorates, compressed air passes through that area at high speed, accelerating the wear of the valve seat and increasing the amount of leaked air exponentially. For this reason, the amount of air initially set for transportation was insufficient, creating a vicious cycle in which the clogging of the powder and granular materials in the transportation pipes was facilitated. Once a blockage occurs, the entire transport system must be shut down;
Its recovery requires multiple steps. In order to overcome these drawbacks, it is conceivable to set the supply amount of compressed air to an excessively high value, so that even if air leaks from the valves, blockage in the transport pipes is prevented to a minimum. . However, such a method negates the advantages of the plug transport method, which is to transport powder and granules at low speeds and in high concentrations, and to reduce crushing of powder and granules and wear on the transport pipe, and therefore is not the preferred solution. I couldn't say yes. Another drawback is that it is not possible to follow air leakage if it progresses rapidly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、前記従来技術の問題点を改善
し、輸送管内に常に安定なプラグを形成し、粉粒
体の低速、高濃度輸送を安定に維持することがで
きる粉粒体の空気輸送方法を提供することにあ
る。
An object of the present invention is to improve the problems of the prior art described above, to form a stable plug in the transport pipe, and to pneumatically transport powder and granular materials that can stably maintain low-speed, high-concentration transportation of powder and granular materials. The purpose is to provide a method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、粉粒体を圧縮空気によつて輸送管内
に送り込み、輸送管内に間欠的な粉粒体のプラグ
を形成させながら空気輸送する方法において、前
記輸送管の延在方向に沿つて複数箇所に圧力検出
座を設け、これらの圧力検出座から検出した前記
複数箇所間の差圧に基づいて、輸送管に供給する
圧縮空気の量を調整するようにしたことを特徴と
する。
The present invention provides a method for pneumatically transporting powder or granular material by sending compressed air into a transport pipe while forming intermittent plugs of the powder or granular material in the transport pipe, in which a plurality of particles are transported along the extending direction of the transport pipe. The present invention is characterized in that pressure detection seats are provided at the locations, and the amount of compressed air supplied to the transport pipe is adjusted based on the differential pressure between the plurality of locations detected from these pressure detection seats.

〔作用〕[Effect]

前記差圧の時間的な変化の状況と、輸送管内で
の粉粒体の挙動とは密接な関係がある。したがつ
て、差圧の時間的な変化の状況が、安定なプラグ
を形成しているときと一致するように、圧縮空気
の供給量を調整すれば、粉粒体の低速、高濃度輸
送を安定に維持することができる。
There is a close relationship between the temporal change in the differential pressure and the behavior of the powder inside the transport pipe. Therefore, by adjusting the supply amount of compressed air so that the temporal change in differential pressure matches that when a stable plug is formed, it is possible to transport powder and granules at low speed and in high concentration. Can be maintained stably.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を実施するための装置系統図で
ある。粉粒体は供給ホツパ3に入つており、受入
弁2を開閉することによつて、供給ホツパ3内の
粉粒体は下方の圧送タンク1に受入れられる。圧
送タンク1の底部には輸送管5が接続し、輸送管
内5の末端は貯槽6に通じる。圧送タンク1の上
部には、コンプレツサ10からの圧縮空気が管路
11、流量調整弁4、管路12を経て流入する。
また輸送管5が圧送タンク1と接続する位置に
は、前記流量調整弁4からの圧縮空気が加速弁1
3を経て合流するようにされている。前記受入弁
2、流量調整弁4、加速弁13は制御装置9によ
つてその作動が制御される。すなわち、受入弁2
は圧送タンク1や供給ホツパ3に設けた粉粒体レ
ベル計(図示せず)の信号もしくはタイマなどに
よつてON−OFF制御される。また、流量調整弁
4は後述する演算装置14からの信号に基いて制
御される。加速弁13はタイマであらかじめ設定
した時間毎にON−OFF(例えば開を4秒、閉2
秒)を繰り返す。
FIG. 1 is a system diagram of an apparatus for carrying out the present invention. The granular material is placed in the supply hopper 3, and by opening and closing the receiving valve 2, the granular material in the supply hopper 3 is received into the pressure feeding tank 1 below. A transport pipe 5 is connected to the bottom of the pressure tank 1, and the end of the transport pipe 5 communicates with a storage tank 6. Compressed air from a compressor 10 flows into the upper part of the pressure tank 1 via a pipe line 11, a flow rate regulating valve 4, and a pipe line 12.
Further, compressed air from the flow rate adjustment valve 4 is connected to the acceleration valve 1 at the position where the transport pipe 5 connects with the pressure tank 1.
They are designed to merge after passing through 3. The operation of the receiving valve 2, flow regulating valve 4, and acceleration valve 13 is controlled by a control device 9. That is, receiving valve 2
is ON-OFF controlled by a signal from a powder level meter (not shown) provided in the pressure feeding tank 1 or the supply hopper 3, or by a timer. Further, the flow rate regulating valve 4 is controlled based on a signal from a calculation device 14, which will be described later. The acceleration valve 13 is turned on and off at intervals preset by a timer (for example, open for 4 seconds and close for 2 seconds).
repeat).

輸送管5の末端側、水平部には輸送管の延在方
向に沿つて2箇所に圧力検出座7,7が設けられ
ている。圧力検出座7,7には差圧計8が接続し
ており、輸送管内での上記2箇所間の差圧を検出
する。この検出信号は刻々演算装置14に送ら
れ、演算装置では差圧の時間的な変化の状況を数
値化して、この値を制御装置9に伝送する。制御
装置9では、この値に基づき流量調整弁4の開度
を制御する。
On the distal end side of the transport pipe 5, pressure detection seats 7, 7 are provided at two positions along the extending direction of the transport pipe. A differential pressure gauge 8 is connected to the pressure detection seats 7, 7, and detects the differential pressure between the two locations in the transport pipe. This detection signal is sent to the arithmetic unit 14 every moment, and the arithmetic unit digitizes the temporal change in the differential pressure and transmits this value to the control device 9. The control device 9 controls the opening degree of the flow rate regulating valve 4 based on this value.

圧送タンク1に受入れられた粉粒体は、管路1
2から圧送タンク1内に送給された圧縮空気によ
つて、輸送管5内にほぼ連続的に供給される。一
方、加速弁13からは圧縮空気が輸送管5の始端
部に間欠的に送給される。このため、加速弁13
が閉の時に、輸送管5内に平均的に供給された粉
粒体は、加速弁13が開とされることによつて、
始端部付近の粉粒体が加速弁13からの圧縮空気
の動エネルギによつて加速され、輸送管5内の前
方側に粉粒体の集合、すなわちプラグを形成す
る。この際、管路12から圧送タンク1に供給さ
れる圧縮空気の量が相対的に減少するので、圧送
タンク1から輸送管5に供給される粉粒体の量も
相対的に減少する。したがつて、加速度13が開
の時のプラグ形成作用はスムーズに行われる。以
上に説明したように、輸送管5内における粉粒体
の間欠的なプラグの形成は加速弁13の開閉動作
の1サイクル毎に1個のプラグが形成される作用
によつて実現する。プラグを輸送管5内壁の抵抗
に打ち勝つて移動させる駆動力は、プラグ前後の
圧力差である。輸送管5内では、プラグの前後で
大きな圧力差を生じながら、プラグを順繰りに輸
送する。
The powder and granules received in the pressure feeding tank 1 are transferred to the pipe line 1
The compressed air fed into the pressure feed tank 1 from the pressure feed tank 1 is almost continuously supplied into the transport pipe 5. On the other hand, compressed air is intermittently supplied from the acceleration valve 13 to the starting end of the transport pipe 5. For this reason, the acceleration valve 13
The powder and granules evenly supplied into the transport pipe 5 when the accelerating valve 13 is opened,
The powder near the starting end is accelerated by the dynamic energy of the compressed air from the acceleration valve 13, and forms a collection of powder or granules on the front side of the transport pipe 5, that is, a plug. At this time, since the amount of compressed air supplied from the pipe line 12 to the pressure-feeding tank 1 is relatively reduced, the amount of powder and granular material supplied from the pressure-feeding tank 1 to the transport pipe 5 is also relatively reduced. Therefore, the plug forming action when the acceleration 13 is open is performed smoothly. As explained above, the intermittent formation of plugs of the powder or granular material in the transport pipe 5 is realized by the action of forming one plug for each cycle of the opening/closing operation of the acceleration valve 13. The driving force that moves the plug overcoming the resistance on the inner wall of the transport pipe 5 is the pressure difference before and after the plug. Inside the transport pipe 5, the plugs are transported one after another while creating a large pressure difference before and after the plugs.

したがつて、前記圧力検出座7,7間の差圧、
すなわち差圧計8が検出する信号値の大きさは、
圧力検出座7,7間に存在するプラグ部分の長さ
にほぼ比例する。この時の経時変化を第2図にモ
デル化して示す。図中イ、ハはプラグの長さが圧
力検出座の取付間隔(以下、検出区間という。)
よりも長い場合であり、差圧は最初、検出区間に
侵入した長さに比例して上昇したのち、検出区間
よりもプラグの長さが長い部分では主として検出
区間の大きさによつて定まる最大値の差圧を示し
てプラグが摺動し、この後は検出区間に残存する
プラグの長さに比例して差圧が低下する。一方、
図中ロ、ホはプラグの長さが検出区間よりも短い
場合であり、差圧はプラグの長さに対応した最大
値を示してプラグが検出区間内で摺動したのち、
前記と同じく残存するプラグの長さに比例して差
圧が低下する。図中ニはプラグの長さが検出区間
と一致する場合である。差圧が零の時間帯Toは、
この時間帯には検出区間内をプラグの少くとも一
部が通過しなかつたことを示す。
Therefore, the differential pressure between the pressure detection seats 7, 7,
In other words, the magnitude of the signal value detected by the differential pressure gauge 8 is
It is approximately proportional to the length of the plug portion existing between the pressure detection seats 7, 7. The temporal change at this time is modeled and shown in Fig. 2. In the figure, A and C indicate the length of the plug and the installation interval of the pressure detection seat (hereinafter referred to as the detection section).
In this case, the differential pressure initially rises in proportion to the length of penetration into the detection section, and then rises to the maximum value determined mainly by the size of the detection section in the part where the length of the plug is longer than the detection section. The plug slides, exhibiting a differential pressure of a value, after which the differential pressure decreases in proportion to the length of the plug remaining in the detection zone. on the other hand,
B and E in the figure are cases where the length of the plug is shorter than the detection section, and the differential pressure shows the maximum value corresponding to the length of the plug, and after the plug slides within the detection section,
As before, the differential pressure decreases in proportion to the length of the remaining plug. D in the figure is a case where the length of the plug matches the detection section. The time period To when the differential pressure is zero is
This indicates that at least a portion of the plug did not pass through the detection zone during this time period.

以上に述べたように、差圧計8によつて検出さ
れる差圧は時々刻々変化し、その時々に通過する
プラグの長さ、プラグの圧密の程度、プラグの形
成状態などによつて変化する。この差圧の変化の
状態を比較的長い時間帯について例示すると第3
図のようになる。
As mentioned above, the differential pressure detected by the differential pressure gauge 8 changes from moment to moment, depending on the length of the plug passing through it, the degree of compaction of the plug, the state of formation of the plug, etc. . To illustrate the state of change in this differential pressure over a relatively long time period, the third
It will look like the figure.

一方、粉粒体を輸送するための圧縮空気の量が
過大であると、たとえ、前記加速弁13によつて
圧縮空気の送給を間欠的に行うように操作して
も、プラグが形成しにくく、また、形成したプラ
グが崩壊しやすい。このため、粉粒体は輸送管内
で不規則な動きをしながら、ほぼ連続的に高速に
移動する。この時の前記検出区間における差圧の
変化の状態を例示すると第4図のようになる。す
なわち、前記第3図に示したプラグ輸送の場合に
比べて、瞬間における差圧の最大値は小さく、差
圧の変化の程度は小さくて連続的な波形となつて
おり、単位時間当りの平均差圧も低下する。
On the other hand, if the amount of compressed air for transporting the powder is excessive, plugs may form even if the acceleration valve 13 is operated to supply compressed air intermittently. In addition, the formed plug is likely to collapse. For this reason, the powder and granules move almost continuously at high speed while making irregular movements within the transport pipe. An example of the state of change in the differential pressure in the detection section at this time is as shown in FIG. 4. That is, compared to the case of plug transportation shown in Fig. 3 above, the maximum value of the instantaneous differential pressure is small, the degree of change in the differential pressure is small, and the waveform is continuous, and the average value per unit time is small. The differential pressure also decreases.

逆に、粉粒体を輸送するための圧縮空気の量が
過少であると、輸送管内においてプラグが長く形
成され、閉塞の傾向を示す。このため、前記検出
区間をプラグが通過する時間帯が長くなり、単位
時間当りの平均差圧が上昇する。
On the other hand, if the amount of compressed air for transporting the powder or granular material is too small, a long plug will be formed in the transport pipe, showing a tendency for blockage. Therefore, the time period during which the plug passes through the detection section becomes longer, and the average differential pressure per unit time increases.

本発明は、上記に鑑みて発案されたものであつ
て、本実施においては、前記差圧計8の検出信号
に基づいて、例えば1分間毎に差圧の時間的平均
を演算装置14で演算し、この結果を制御装置に
送る。
The present invention has been devised in view of the above, and in the present implementation, the temporal average of the differential pressure is computed by the computing device 14 every minute, for example, based on the detection signal of the differential pressure gauge 8. , sends this result to the control device.

制御装置では例えば、差圧の時間的平均Pdが
0.01Kg/cm2以下のときは、被輸送物である粉粒体
が前送圧送タンク1側から供給されていないとみ
なして、運転を停止するか、もしくは風量をその
まま維持するか適宜に選択して出力する。Pdが
0.01〜0.1Kg/cm2では粉粒体の量に比べて、圧縮
空気の供給量が過剰であり、前記第4図で示した
連続輸送のケースと判断して風量を減少するよう
に出力する。Pdが0.1〜0.2Kg/cm2では良好なプラ
グ輸送が進行していると判断して、風量をそのま
ま維持する。Pdが0.2Kg/cm2を越えるときは、圧
縮空気の供給量が実質的に不足しており、粉粒体
が輸送管内で閉塞傾向にあると判断して、風量を
増加するように出力する。風量を減少増加させる
ための具体的手段は、前記流量調整弁4の開度を
段階的又はリニアに制御することによつて実施す
る。前記風量を制御するためのPdの設定値は、
取扱う粉粒体の性状、輸送管の口径、圧力検出座
の位置、取付間隔によつて著しく変化するので、
試行錯誤の上で最も適した値を選定して設定すれ
ばよい。
For example, in a control device, the temporal average Pd of the differential pressure is
If it is less than 0.01Kg/ cm2 , it is assumed that the powder or granular material to be transported is not being supplied from the front pressure-feeding tank 1 side, and the operation is stopped or the air volume is maintained as it is, which is selected as appropriate. and output. Pd is
At 0.01 to 0.1Kg/ cm2 , the amount of compressed air supplied is excessive compared to the amount of powder and granular material, and it is determined that this is the case of continuous transportation shown in Figure 4 above, and the output is made to reduce the air volume. . When Pd is 0.1 to 0.2 Kg/cm 2 , it is determined that good plug transport is progressing, and the air volume is maintained as it is. When Pd exceeds 0.2Kg/cm 2 , it is determined that the supply of compressed air is substantially insufficient and that the powder and granules are clogging the transport pipe, and the output is made to increase the air volume. . A specific means for decreasing or increasing the air volume is to control the opening degree of the flow rate regulating valve 4 stepwise or linearly. The set value of Pd for controlling the air volume is:
It varies significantly depending on the properties of the powder and granular material being handled, the diameter of the transport pipe, the position of the pressure detection seat, and the installation interval.
The most suitable value can be selected and set through trial and error.

圧力検出座は前記したように、輸送管5の末端
側の水平部に設けることが好ましい。すなわち、
輸送管内におけるプラグの形成は始端側ほど、粉
粒体の離合、集散が激しく、プラグの崩壊、再形
成を繰り返す頻度が多いのに比べ、末端側では一
旦形成されたプラグは比較的整然と管内を移動す
る。また、垂直部では粉粒体の落下現象が観察さ
れ、プラグが不安定である。水平部においても粉
粒体の居残り現象等に起因してプラグの分割、合
体といつた現象が見受けられるが、垂直部に比べ
て安定している。
As described above, it is preferable that the pressure detection seat is provided in the horizontal portion of the distal end of the transport pipe 5. That is,
When a plug is formed in a transport pipe, the closer it is to the starting end, the more particles are separated and scattered, and the plug collapses and re-forms more frequently. On the other hand, once formed at the end, the plug moves through the pipe in a relatively orderly manner. Moving. In addition, a falling phenomenon of powder particles was observed in the vertical part, making the plug unstable. Even in the horizontal part, phenomena such as splitting and coalescence of plugs are observed due to the phenomenon of residual particles, etc., but it is more stable than in the vertical part.

圧力検出座は2箇所に限らず、3箇所に設けて
各検出座相互間の差圧に基いて、制御するように
すれば、より一層精密な運転が可能となる。また
輸送管が特に長い場合には、差圧検出を相互に離
れた位置で複数箇所で行い、これらの検出結果に
基いてより精密な制御をするようにしてもよい。
If the number of pressure detection seats is not limited to two but three, and control is performed based on the differential pressure between the pressure detection seats, even more precise operation will be possible. Furthermore, if the transport pipe is particularly long, differential pressure detection may be performed at multiple locations separated from each other, and more precise control may be performed based on these detection results.

差圧を検出するための圧力検出座の取付間隔
(検出区間)は、予想し得るプラグの好ましい長
さ程度にする。検出区間が必要以上に長いと、区
間内に常時、1個以上プラグが存在することにな
り、プラグ輸送独特の激しい差圧の変化状況を確
認することが難しくなる。逆に検出区間が短い
と、検出される差圧が相対的に小さくなるので運
転状況の識別が困難になり、その分、制御の誤差
が大きくなる。
The mounting interval (detection section) of the pressure detection seats for detecting the differential pressure is set to approximately the desired predictable length of the plug. If the detection section is longer than necessary, one or more plugs will always be present in the section, making it difficult to confirm the drastic change in differential pressure that is unique to plug transportation. On the other hand, if the detection interval is short, the detected differential pressure will be relatively small, making it difficult to identify the operating situation, and the control error will increase accordingly.

前記実施例では差圧の時間的な変化の状況とし
て、差圧の時間的平均値を演算したが、これに代
つて、差圧の時間的偏差を演算し、この結果に基
いて圧縮空気の供給量を制御すればより一層安定
な運転を実現できる。
In the above embodiment, the temporal average value of the differential pressure was calculated as the temporal change of the differential pressure, but instead, the temporal deviation of the differential pressure was calculated, and based on this result, the compressed air was calculated. By controlling the supply amount, even more stable operation can be achieved.

さらに、差圧の時間的平均値と、時間的偏差を
組み合せて木目細かな制御を行うようにしてもよ
い。さらには差圧の経時変化を波形として認識し
制御するようにしてもよい。
Furthermore, fine control may be performed by combining the temporal average value of the differential pressure and the temporal deviation. Furthermore, the temporal change in differential pressure may be recognized as a waveform and controlled.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複数箇所間の差圧に基いて、
輸送管に供給する圧縮空気の量を調整するように
したので、粉粒体の供給系などにおいて空気漏れ
が生じていても、輸送管内にプラグ輸送のための
適正な圧縮空気を供給できる。このため、粉粒体
の低速、高濃度輸送を安定に維持することができ
る。
According to the present invention, based on the differential pressure between multiple locations,
Since the amount of compressed air supplied to the transport pipe is adjusted, even if air leakage occurs in the powder supply system, etc., the appropriate compressed air for transporting the plugs can be supplied into the transport pipe. Therefore, it is possible to stably maintain low-speed, high-concentration transport of the granular material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置系統図、
第2図は差圧の経時変化をモデル化した説明図、
第3図はプラグ輸送時の差圧の経時変化を例示し
た図、第4図はプラグ輸送よりも高速に輸送した
場合の差圧の経時変化を例示した図である。 1……圧送タンク、2……受入弁、4……流量
調整弁、5……輸送管、7……圧力検出座、8…
…差圧計、9……制御装置、10……コンプレツ
サ、13……加速弁、14……演算装置。
FIG. 1 is a system diagram of an apparatus for carrying out the present invention;
Figure 2 is an explanatory diagram modeling the change in differential pressure over time.
FIG. 3 is a diagram illustrating a change in differential pressure over time during plug transportation, and FIG. 4 is a diagram illustrating a change in differential pressure over time when the plug is transported at a higher speed than the plug transportation. DESCRIPTION OF SYMBOLS 1...Pressure tank, 2...Receiving valve, 4...Flow rate adjustment valve, 5...Transport pipe, 7...Pressure detection seat, 8...
... Differential pressure gauge, 9 ... Control device, 10 ... Compressor, 13 ... Accelerator valve, 14 ... Arithmetic device.

Claims (1)

【特許請求の範囲】 1 粉粒体を管路を介して供給される圧縮空気に
よつて輸送管内に送り込むと共に該管路に加速弁
を設け、この加速弁の開閉によつて圧縮空気を前
記輸送管内に間欠的に送り込み、輸送管内に粉粒
体のプラグを形成させながら粉粒体を空気輸送す
る粉粒体の空気輸送方法において、 前記輸送管内の延在方向に予め設定したプラグ
長さの間隔に複数の圧力検出座を設けると共に、
前記管路に流量調整弁を設け、 これらの圧力検出座から検出した前記圧力検出
座間の差圧が、所定の値よりも高い場合には、プ
ラグが輸送管内で閉塞、又はプラグが設定した長
さよりも長いと判断して前記流量調整弁を開いて
輸送管に供給する圧縮空気量を増加させ、 前記差圧が所定の値よりも低い場合には、プラ
グが形成されずに粉粒体が輸送管内で連続輸送、
又はプラグが設定した長さよりも短いと判断して
前記流量調整弁を閉じて輸送管に供給する圧縮空
気量を減少させ、前記プラグを予め設定した長さ
に形成して輸送することを特徴とする粉粒体の空
気輸送方法。
[Scope of Claims] 1. Powder and granular material is sent into a transport pipe by compressed air supplied through a pipe, and an acceleration valve is provided in the pipe, and the compressed air is transported into the transport pipe by opening and closing the acceleration valve. In a pneumatic transportation method for powder and granular material, in which the powder and granular material is intermittently fed into a transport pipe and pneumatically transported while forming a plug of the powder and granular material in the transport pipe, the length of the plug is preset in the extending direction within the transport pipe. In addition to providing multiple pressure detection seats at intervals of
A flow rate regulating valve is provided in the pipeline, and if the differential pressure between the pressure detection seats detected from these pressure detection seats is higher than a predetermined value, the plug is blocked in the transport pipe, or the plug has a set length. If the pressure difference is lower than a predetermined value, the flow rate adjustment valve is opened to increase the amount of compressed air supplied to the transport pipe. Continuous transportation within the transportation pipe,
Alternatively, the plug is determined to be shorter than a preset length, and the flow rate regulating valve is closed to reduce the amount of compressed air supplied to the transport pipe, and the plug is formed to have a preset length before being transported. A method for pneumatic transportation of powder and granular materials.
JP25659087A 1987-10-12 1987-10-12 Pneumatic transportation for bulk material Granted JPH0198522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25659087A JPH0198522A (en) 1987-10-12 1987-10-12 Pneumatic transportation for bulk material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25659087A JPH0198522A (en) 1987-10-12 1987-10-12 Pneumatic transportation for bulk material

Publications (2)

Publication Number Publication Date
JPH0198522A JPH0198522A (en) 1989-04-17
JPH05290B2 true JPH05290B2 (en) 1993-01-05

Family

ID=17294741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25659087A Granted JPH0198522A (en) 1987-10-12 1987-10-12 Pneumatic transportation for bulk material

Country Status (1)

Country Link
JP (1) JPH0198522A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125789A (en) * 1990-01-02 1992-06-30 Peerless Automation Molded parts removal and transfer robot
JPH0798573B2 (en) * 1992-01-08 1995-10-25 運輸省港湾技術研究所長 Slurry flow method with mixed pressurized air
WO2007139106A1 (en) * 2006-05-31 2007-12-06 Sintokogio, Ltd. Pressurized tank, device for feeding powder to transportation pipe and its feeding method, and method of determining feeding interval of powder to transportation pipe
TWI612000B (en) * 2014-03-14 2018-01-21 Sintokogio Ltd Pressurizing tank, feeding device for feeding powder into conveying pipe and feeding method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162516U (en) * 1985-02-05 1985-10-29 ソシエテ・アノニム・デ・ゼタブリスマン・ヌ− Pneumatic transportation equipment for powdered or granular materials

Also Published As

Publication number Publication date
JPH0198522A (en) 1989-04-17

Similar Documents

Publication Publication Date Title
US4009912A (en) Pneumatic conveying apparatus and method
EP3478611B1 (en) Material conveying apparatus and method
CN105683068A (en) Vacuum-pneumatic device for conveying granular materials having high mass concentration
US4200412A (en) Control for pneumatic conveying system
US3291536A (en) Powdered material conveyor system
US3599832A (en) Flow control of fluidized material
RU2005106239A (en) METHOD AND DEVICE FOR SUBMITTING DUSTY MATERIAL
US3837540A (en) Control method and apparatus
JPH05290B2 (en)
JP3463188B2 (en) Pneumatic device for powder
JPH10236647A (en) Powder exhaust hole of tank for powder fluidization
JPH085548B2 (en) High-pressure transportation equipment for powders
US3923343A (en) Boast assisted conveying system
US4986456A (en) Flow rate controller and feeder
JP3313448B2 (en) Transport pressure adjusting device for high pressure granular material transport system
JPS6050691B2 (en) Processing of waste such as municipal garbage
JPH0151407B2 (en)
CN204275041U (en) A kind of capsule lifting machine
EP3718909B1 (en) Vertical packaging machine for packaging products in a modified atmosphere
JPH0659916B2 (en) Liquid level control method and apparatus for filling machine
JPH0154246B2 (en)
JPH0543051A (en) High concentration air transport device
JPH09286488A (en) Elimination of bridging in powder/granule hopper
JPS6218447B2 (en)
RU1791300C (en) Method and device for controlling operation of bulk material pneumatic transportation unit by chamber feeder along transportation pipeline