JPH0154246B2 - - Google Patents

Info

Publication number
JPH0154246B2
JPH0154246B2 JP17120281A JP17120281A JPH0154246B2 JP H0154246 B2 JPH0154246 B2 JP H0154246B2 JP 17120281 A JP17120281 A JP 17120281A JP 17120281 A JP17120281 A JP 17120281A JP H0154246 B2 JPH0154246 B2 JP H0154246B2
Authority
JP
Japan
Prior art keywords
pressure
amount
transport
powder
transport pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17120281A
Other languages
Japanese (ja)
Other versions
JPS5874426A (en
Inventor
Yoshinobu Shinozaki
Hiroya Marushima
Tadaaki Iwamura
Shuzo Fujii
Yasuo Yanagihara
Hideo Ooishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17120281A priority Critical patent/JPS5874426A/en
Publication of JPS5874426A publication Critical patent/JPS5874426A/en
Publication of JPH0154246B2 publication Critical patent/JPH0154246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/66Use of indicator or control devices, e.g. for controlling gas pressure, for controlling proportions of material and gas, for indicating or preventing jamming of material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Air Transport Of Granular Materials (AREA)

Description

【発明の詳細な説明】 本発明は、圧送容器からの粉粒体の切出し量調
整方法に関するものであり、特に高炉へ微粉炭燃
料を吹き込む際の圧送容器から高炉羽口へ接続さ
れた複数の輸送管へ微粉炭吹込量を調整する方法
を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adjusting the amount of granular material cut out from a pressure-feeding container, and particularly relates to a method for adjusting the amount of pulverized coal cut out from a pressure-feeding container. This provides a method for adjusting the amount of pulverized coal injected into a transport pipe.

高炉の各羽口に微粉炭を供給するには、各羽口
への均等分配性と、吹込み量の定量性が要求され
る。
In order to supply pulverized coal to each tuyere of a blast furnace, uniform distribution to each tuyere and quantitative ability to inject the amount are required.

圧送容器からの定量切り出しに関しては種々の
研究が成されて来ており、それらは (1) ロータリーバルブ等、機械的手段により強制
的に切り出し量を制御する方法 (2) 流体力学の応用をベースにして制御回路を駆
使して切り出し量を制御する方法 等の2分類に大別される。
Various studies have been conducted regarding quantitative cutting from a pressure-feeding container, and these include (1) a method of forcibly controlling the cutting amount by mechanical means such as a rotary valve, and (2) a method based on the application of fluid mechanics. It is roughly divided into two categories, such as a method of controlling the cutting amount by making full use of a control circuit.

共にかなりの効果を上げており、相方甲乙つけ
がたいが、従来の機械的手段の場合機械の摩耗に
よる粉粒体の切出し量の経時変化及び保全費用が
かさむという欠点があり、又後者の流体力学の応
用の方法の場合、従来技術においては圧送容器の
圧力を制御する事により切り出し量を制御する方
法が提供されるが、この方法の場合、輸送先末端
の圧力上昇又は下降に対し、圧送容器の圧力を同
様に上昇、下降させて切り出し量が定量になる様
に調整するわけであるが、圧送容器の圧力制御系
の応答性は圧送容器の容量が大きくなればなる程
悪くなるという欠点があり、ほとんど制御になら
ないのが現状である。
Both of them have been quite effective, and it is hard to argue with the other party, but conventional mechanical means have the drawbacks of changes in the amount of powder cut out over time due to machine wear and increased maintenance costs, and the latter's fluid In the case of a method applying mechanics, the prior art provides a method of controlling the amount of cutout by controlling the pressure of the pressure-feeding container; The pressure in the container is raised and lowered in the same way to adjust the cutting amount to a fixed amount, but the disadvantage is that the responsiveness of the pressure control system of the pressure-feeding container worsens as the capacity of the pressure-feeding container increases. Currently, there is little control over the situation.

さらに、従来技術の場合均等多分配輸送に適用
しようとすると、機械的手段の場合、構造的な制
約により不向であり、又流体力学の応用である圧
送容器の圧力制御の場合、高炉の様に各羽口への
輸送距離が異なるものについては、制御点が圧送
容器圧力のみである為、各輸送管へ切り出される
微粉炭の量は各輸送管の距離すなわち抵抗によつ
て支配される。従つて距離の長い羽口への微粉炭
吹込量は距離の短い羽口のそれに比べ小さい値に
なり、均等配分出来なくなる。従来技術ではこれ
をのがれる為に各羽口への輸送距離を等しくする
様に一番遠距離の羽口への輸送管に合わせて他の
輸送管も長くするという方法を採用しているから
配管優先のレイアウトになり、配管ルートが自由
に選べなくなるという欠点がある。
Furthermore, when trying to apply the conventional technology to uniformly distributed transport, mechanical means are unsuitable due to structural constraints, and in the case of pressure control in a pressure-feeding container, which is an application of fluid dynamics, it is difficult to apply it to a blast furnace. For coal that has different transport distances to each tuyere, the only control point is the pressure in the pressure vessel, so the amount of pulverized coal cut into each transport pipe is controlled by the distance of each transport pipe, that is, the resistance. Therefore, the amount of pulverized coal injected into the tuyere with a long distance is smaller than that with the tuyere with a short distance, making it impossible to distribute it evenly. In order to avoid this problem, conventional technology adopts a method in which the length of the other transport pipes is made to match the length of the transport pipe to the farthest tuyere so that the transport distance to each tuyere is equal. The disadvantage is that the layout prioritizes piping, making it impossible to freely choose the piping route.

本発明は従来技術の欠点及び従来法では成し得
なかつた多分配定量輸送を可能にするものであつ
て以下に具体的に説明する。
The present invention overcomes the shortcomings of the prior art and enables multi-distributed quantitative transport which could not be achieved with the conventional method, and will be specifically explained below.

先ず本発明に適用する装置は第1図に示すよう
であつて圧力容器10は底部にエアフイルタ16
を具備し、且つ多数の排出ノズル1′…5′を内装
している。
First, the apparatus applied to the present invention is as shown in FIG. 1, in which a pressure vessel 10 is equipped with an air filter 16 at the bottom.
It is equipped with a large number of discharge nozzles 1'...5'.

1…5は並列輸送管であり夫々高炉各羽口(図
示せず)に開口し且つブスター配管11…と15
と連接している。
1...5 are parallel transport pipes that open to each blast furnace tuyere (not shown) and are connected to booster pipes 11... and 15.
It is connected with.

6は排出弁、7は圧力容器を重力的に絶縁する
ためのフレキシブルホース、8はブスター逆止弁
である。
6 is a discharge valve, 7 is a flexible hose for gravitationally insulating the pressure vessel, and 8 is a booster check valve.

9はブスタ流量調節計、17は加圧気体圧力調
節計、18は圧力容器からの粉体排出重量dw/
dtを計量するための計量装置である。
9 is a booster flow rate controller, 17 is a pressurized gas pressure controller, and 18 is a powder discharge weight dw/ from the pressure vessel.
This is a measuring device for measuring dt.

本発明はこのような装置から粉粒体を定量分配
輸送するに当り、圧力容器10内を加圧配管19
を通して圧力気体源20から流入する加圧気体に
よつて一定圧力に保持するように調整することを
基本的な条件としている。
In the present invention, when distributing and transporting powder particles from such an apparatus, the pressure pipe 19 is connected inside the pressure vessel 10.
The basic condition is that the pressure is maintained at a constant pressure by pressurized gas flowing from the pressurized gas source 20 through.

即ちこの状態において、輸送に必要な圧力PT
は、輸送管で失なわれる圧縮ガスの圧力損失を△
Pa、輸送管で失なわれる粉粒体の管摩擦等によ
る圧力損失を△Ps、輸送管末端での圧力をPbと
すると次式の関係で表わされる。
In other words, in this state, the pressure required for transportation P T
is the pressure loss of compressed gas lost in the transport pipe △
If Pa is the pressure loss due to pipe friction of the powder and granules lost in the transport pipe, ΔPs, and the pressure at the end of the transport pipe is Pb, the relationship is expressed by the following equation.

PT=△Pa+△Ps+Pb …(1) 上式においてPbが大気圧である場合は略一定
と考えられるからPT=一定の条件の下では △Pa+△Ps=PT−Pb=一定 …(2) の関係になつていることが判る。
P T = △Pa + △Ps + Pb …(1) In the above equation, if Pb is at atmospheric pressure, it is considered to be approximately constant, so under the condition that P T = constant, △Pa + △Ps = P T −Pb = constant …( It can be seen that the relationship 2) is established.

本発明は(2)式の関係に基くものであつて△Pa
と△Psが相対的関係にあることを利用するもの
である。
The present invention is based on the relationship of equation (2), and △Pa
This takes advantage of the fact that there is a relative relationship between and △Ps.

即ち、圧送容器10の圧力PTを、加圧気体圧
力調節計17により一定に保持した状態で輸送管
内により多量の加圧気体を流せば△Paが増加し、
粉粒体の圧力損失△Psが減少し、粉粒体の流れ
が制限されることになる。
That is, if a larger amount of pressurized gas is flowed into the transport pipe while the pressure P T in the pressure-feeding container 10 is held constant by the pressurized gas pressure regulator 17, △Pa increases,
The pressure loss ΔPs of the granular material decreases, and the flow of the granular material is restricted.

なお上記はPbを大気圧一定として考えたが(1)
式において(△Pa+Pb)+△Ps=一定である関
係にあるから圧力変動がある場合においても(△
Pa+Pb)を操作量とすることによつて△Psを自
由に変化させることができるのである。
Note that the above assumes that Pb is at constant atmospheric pressure (1)
In the formula, (△Pa + Pb) + △Ps = constant, so even when there is pressure fluctuation, (△
By setting Pa+Pb) as the manipulated variable, ΔPs can be changed freely.

即ちブスター配管のガス流量を各々個別に変化
させる事により各輸送管へ均等分配できるばかり
でなく複数本の輸送管のうち特定の1本以上の輸
送量を多くする事も容易に出来ることになる。
In other words, by changing the gas flow rate of each booster pipe individually, it is not only possible to distribute the gas equally to each transport pipe, but also easily increase the transport volume of one or more specific transport pipes among multiple transport pipes. .

従つて本発明によれば配管ルートを選ぶ必要は
全くなくなり自由で且つ経済的な設計が可能にな
る他輸送管の末端条件が変化しても、また、輸送
管圧力が変化しても粉粒体輸送量を調整できしか
も従来法の如く応答性の悪い圧力制御ではなく流
量制御であるから応答性がよく切り出し量が精度
よく円滑迅速に調整できるのである。
Therefore, according to the present invention, there is no need to select a piping route, and a free and economical design is possible.In addition, even if the terminal conditions of the transport pipe change or the transport pipe pressure changes, the powder particles will not change. The amount of body transport can be adjusted, and since the method uses flow rate control instead of pressure control, which has poor responsiveness as in the conventional method, the responsiveness is good, and the cutting amount can be adjusted accurately, smoothly, and quickly.

本発明の有効性及び効果は以下の測定結果によ
つて明らかになる。先ず、第2図は第1図装置に
おいて、圧力容器10の圧力を4Kg/cm2G(一定)
として一本の輸送管2へのみ輸送した場合のブス
ター流量に対する切出し量の変化を示すものであ
つて切り出し量を100Kg/hrから850Kg/hrに至る
広い範囲で調整できることを示している。
The effectiveness and effects of the present invention will become clear from the following measurement results. First, Fig. 2 shows the pressure of the pressure vessel 10 at 4 kg/cm 2 G (constant) in the apparatus shown in Fig. 1.
This shows the change in the amount of cutout with respect to the booster flow rate when transported only to one transport pipe 2, and shows that the amount of cutout can be adjusted in a wide range from 100Kg/hr to 850Kg/hr.

而してこの場合の切り出し量の輸送中の変化割
合つまり定量性について測定したところ(dw/
dt=357391426Kg/hrを0として)その変化割合
は±2%の範囲内であり定量性は抜群であつた。
In this case, we measured the rate of change in the cutout amount during transportation, that is, the quantitative property (dw/
The rate of change (assuming dt=357391426Kg/hr as 0) was within the range of ±2%, and the quantitative nature was excellent.

また第3図は所定の条件で輸送管1,4,5の
3本に同時に輸送した場合の切出し量を示すもの
である。この図から各輸送管の輸送量を例えば
800Kg/hrにしたい場合は輸送管5のブスター流
量は35Nm3/hr、輸送管1のそれは40Nm3/hr、
輸送管4のそれは45Nm3/hrに調整すればよいこ
とが判る。
Further, FIG. 3 shows the amount of cutout when the material is transported simultaneously through three transport pipes 1, 4, and 5 under predetermined conditions. From this figure, the transport volume of each transport pipe can be calculated, for example.
If you want to make it 800Kg/hr, the booster flow rate of transport pipe 5 is 35Nm 3 /hr, that of transport pipe 1 is 40Nm 3 /hr,
It can be seen that the value of the transport pipe 4 should be adjusted to 45Nm 3 /hr.

因に、輸送管1…5に同時に定量切出し輸送し
ている状態で各管の切り出し量の平均値を0とし
た場合の各管の偏差%つまり均等分配精度は±3
%であつた。
Incidentally, when the average value of the cut amount of each pipe is set to 0 when a fixed amount is cut out and transported to transport pipes 1...5 at the same time, the deviation % of each pipe, that is, the uniform distribution accuracy is ±3
It was %.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に適用する装置の概要図、第2
図及び第3図はブスター流量に対する切出し量の
変化を示すグラフである。 1〜5……輸送管、11〜15……ブスター配
管、19……加圧気体配管。
Figure 1 is a schematic diagram of the device applied to the present invention, Figure 2 is a schematic diagram of the device applied to the present invention;
The figure and FIG. 3 are graphs showing changes in the cutting amount with respect to the booster flow rate. 1-5...transport pipe, 11-15...booster pipe, 19...pressurized gas pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 圧力容器の底部にエアレータを備え、加圧気
体によつて浮揚された粉粒体を複数の排出ノズル
を通して受給端圧力が略一定である複数の輸送管
内に送給する粉粒体分配輸送方法において、前記
エアレータ内の圧力を一定に保つた状態で各輸送
管に連接したブスター配管に流れるブスター流量
を個々に変化させることにより該容器から各輸送
管に切出す粉粒体の単位時間当りの切出し量を調
整することを特徴とする粉粒体切出し量調整方
法。
1. A method for distributing and transporting powder and granular material, which includes an aerator at the bottom of a pressure vessel and feeds the powder and granular material floated by pressurized gas through a plurality of discharge nozzles into a plurality of transport pipes in which the pressure at the receiving end is approximately constant. In this step, by individually changing the booster flow rate flowing into the booster pipes connected to each transport pipe while keeping the pressure in the aerator constant, the amount of powder per unit time cut from the container into each transport pipe is determined. A method for adjusting the amount of powder or granular material cut out, characterized by adjusting the amount of cut out.
JP17120281A 1981-10-26 1981-10-26 Regulating method of feed quantity in distributive transportation Granted JPS5874426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17120281A JPS5874426A (en) 1981-10-26 1981-10-26 Regulating method of feed quantity in distributive transportation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17120281A JPS5874426A (en) 1981-10-26 1981-10-26 Regulating method of feed quantity in distributive transportation

Publications (2)

Publication Number Publication Date
JPS5874426A JPS5874426A (en) 1983-05-04
JPH0154246B2 true JPH0154246B2 (en) 1989-11-17

Family

ID=15918907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17120281A Granted JPS5874426A (en) 1981-10-26 1981-10-26 Regulating method of feed quantity in distributive transportation

Country Status (1)

Country Link
JP (1) JPS5874426A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031438A (en) * 1983-08-01 1985-02-18 Denka Consult & Eng Co Ltd High accurate exhausting device for pulverized or granular objects
GB8406106D0 (en) * 1984-03-08 1984-04-11 Davair Heating Ltd Oil burner
SE457528B (en) * 1984-12-04 1989-01-09 Flaekt Ab BEFORE SOIL SHARED SOLID PARTICLES INTENDED FOR PARTICLE TRANSPORTING DEVICE
JPS61155124A (en) * 1984-12-28 1986-07-14 Kawasaki Steel Corp Powdery granule quantitative transport controlling method
LU87453A1 (en) * 1989-02-14 1990-09-19 Wurth Paul Sa PROCESS FOR THE PNEUMATIC INJECTION OF QUANTITIES OF POWDERED MATERIALS INTO A VARIABLE PRESSURE ENCLOSURE

Also Published As

Publication number Publication date
JPS5874426A (en) 1983-05-04

Similar Documents

Publication Publication Date Title
JPS59124624A (en) Method for distribution and transport of pulverized/ granular material
US5813801A (en) Dense phase particulate conveying system and method with continuous air leakage management
EP0081622B1 (en) Method and apparatus for distributing powdered particles
US3365242A (en) Apparatus for discharging a gas from a container at a constant rate through several conduits
JPS61162425A (en) Flow control type distributor for powdered substance which can be changed into fluid
HU193520B (en) Process for regulating material-stream
YU35104A (en) System for distributing a pulverulent material with controlled gravimetric flow
US4502820A (en) High-pressure conveyor for powdery and granular materials
US4662798A (en) Method and a device for measuring and/or regulating the mass flow of solid particles
JPS614561A (en) Powdered body feeder for thermal spray gun
JPH0154246B2 (en)
EP0060137A1 (en) Conveying systems
JPS5934605B2 (en) constant flow transport device
JPS6354610B2 (en)
JPH036094B2 (en)
EP0223589B1 (en) Pneumatic conveying apparatus for bulk material
JPS57112231A (en) Method of controlling distributing of powder
US6474398B1 (en) Apparatus for introducing granular mold flux onto the top of a slab being cast within a continuous casting mold
JPS5942044B2 (en) Method of feeding powdered fuel mixture to blast furnace tuyeres
KR100582164B1 (en) Controller for powder flow rate in pneumatic transport
JPH0144609B2 (en)
CN110529871A (en) A kind of coal dust dynamic allocator device and its working method
EP0147888B1 (en) Method of controlling substantially equal distribution of particulates from a multi-outlet distributor and an article constructed according to the method
JPH0356274B2 (en)
GB2106064A (en) Pneumatic conveyance of solids