JPH05288722A - Method for ultrasonic examination of sheet defect - Google Patents

Method for ultrasonic examination of sheet defect

Info

Publication number
JPH05288722A
JPH05288722A JP4089152A JP8915292A JPH05288722A JP H05288722 A JPH05288722 A JP H05288722A JP 4089152 A JP4089152 A JP 4089152A JP 8915292 A JP8915292 A JP 8915292A JP H05288722 A JPH05288722 A JP H05288722A
Authority
JP
Japan
Prior art keywords
probe
defect
welding line
flaw detection
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4089152A
Other languages
Japanese (ja)
Other versions
JP3140157B2 (en
Inventor
Hiroyuki Matsumura
裕之 松村
Takamasa Ogata
隆昌 緒方
Hideyuki Hirasawa
英幸 平澤
Taketo Yamakawa
武人 山川
Yutaka Senda
豊 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP04089152A priority Critical patent/JP3140157B2/en
Publication of JPH05288722A publication Critical patent/JPH05288722A/en
Application granted granted Critical
Publication of JP3140157B2 publication Critical patent/JP3140157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PURPOSE:To obtain a method for ultrasonic examination which detects precisely a sheet defect such as a crack or a lack of penetration occurring in the direction of the thickness of a welded part of a welded structure such as an offshore structure or a land structure. CONSTITUTION:Two angle probes made up of a longitudinal wave angle probe 4a for transmission and an angle probe 4b for reception are disposed on one side of a welding line 2a on the surface of an object 1 of inspection so that they are not located on the same line as the direction vertical to the welding line 2a. A longitudinal wave 5 transmitted from the longitudinal wave angle probe 4a strikes on a sheet defect 3 in the thickness direction and then strikes on the rear 1b of the object 1, and a wave 5a converted in a mode from the longitudinal wave 5 into a lateral wave on this rear is received by the angle probe 4b, and thereby the sheet defect 3 is detected precisely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、海洋構造物や陸上構
造物などの溶接構造物の溶接部肉厚方向に発生した割れ
や溶込み不良などの面状の欠陥を精度よく検出する超音
波探傷方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ultrasonic waves for accurately detecting surface defects such as cracks and poor penetration that occur in the thickness direction of welded portions of welded structures such as marine structures and land structures. Regarding flaw detection method.

【0002】[0002]

【従来技術とその課題】従来、肉厚方向に発生した縦割
れなどの面状の欠陥の検出には、図9に示すような一探
触子法が用いられることもある。図9中、1は検査対象
物、1aは探傷面、2は溶接部、2aは溶接線、3は欠
陥、4は斜角探触子を示す。しかし、一探触子法におけ
る超音波の受信音圧は、欠陥面に垂直な方向から超音波
が入射する場合に最も大きく得られるために、肉厚方向
に発生した面状の欠陥の場合には、欠陥面に垂直に超音
波を入射することが困難なために受信音圧が高く得られ
ないという欠点があった。尚、以下の図中の同一態様部
分は同一符号を用いて説明するものとする。
2. Description of the Related Art Conventionally, a single probe method as shown in FIG. 9 may be used to detect a planar defect such as a vertical crack that occurs in the thickness direction. In FIG. 9, 1 is an inspection object, 1a is a flaw detection surface, 2 is a welded portion, 2a is a welding line, 3 is a defect, and 4 is an oblique probe. However, the received sound pressure of the ultrasonic wave in the one-probe method is the largest when the ultrasonic wave is incident from the direction perpendicular to the defect surface, so that in the case of a planar defect generated in the thickness direction, Has a drawback in that the received sound pressure cannot be high because it is difficult to inject ultrasonic waves perpendicularly to the defect surface. In addition, the same mode parts in the following drawings will be described using the same reference numerals.

【0003】上記の一探触子法以外の方法として、特開
昭54−140586号公報発明のような送受信を分割
した方法があるが、垂直探触子では溶接部の余盛のため
に溶接金属中の縦割れなどの検出は困難であるという欠
点があった。
As a method other than the one-probe method described above, there is a method in which transmission and reception are divided as in the invention of Japanese Patent Laid-Open No. 54-140586. However, in the vertical probe, welding is performed due to excess welded portions. There is a drawback that it is difficult to detect vertical cracks in metal.

【0004】従って、斜角探触子を用いた送受信を分割
した方法として、図10に示すタンデム探傷法が多く用
いられており、送信の探触子と受信の探触子を溶接線と
直交方向に同一線上に並べて配置して探傷を行ってい
る。
Therefore, the tandem flaw detection method shown in FIG. 10 is often used as a method of dividing the transmission and reception using the bevel probe, and the transmission probe and the reception probe are orthogonal to the welding line. The flaws are detected by arranging them on the same line in the same direction.

【0005】しかしながら、このタンデム探傷法では、
図11に示すように、肉厚が薄い試験体では2個の探触
子同士が干渉するために、送受信位置を一定距離までし
か接近できず、従来のタンデム探傷の実施可能な検査対
象物の肉厚には限界があるという欠点があった。
However, in this tandem flaw detection method,
As shown in FIG. 11, in a thin test piece, two probes interfere with each other, so that the transmitting / receiving position can be approached only a certain distance, and thus the conventional tandem flaw detection can be performed on the inspection object. There was a drawback that the wall thickness was limited.

【0006】さらに、送受信の探触子配置を逆の位置に
設定したい場合には、探触子の前後走査だけでは設定が
不可能で、容易に前後の配置を逆転できない等の欠点が
あった。
Furthermore, when it is desired to set the transmitting and receiving probe arrangements to the opposite positions, there is a drawback that the setting cannot be done only by scanning the probe forward and backward, and the front and rear arrangements cannot be easily reversed. ..

【0007】また、オーステナイト系ステンレス鋼溶接
部、あるいは母材が9%Ni鋼で溶接部が約70%程度
のNiを含むような溶接部などのように、オーステナイ
ト組織の粗大な柱状晶が発生するような材料では、材料
中の超音波の減衰が大きいために、縦波が利用される。
この場合には、横波5aを使った従来のタンデム探傷法
が材料中の超音波の減衰が大きく有効でないために図1
2に示すような検査対象物の表面から送信された縦波5
が欠陥に当たった後に、裏面で縦波5から横波5aにモ
ード変換した波を受信する方法が考えられるが、この場
合には、タンデム探傷よりもより探触子が接近した配置
が必要であり、検査可能な範囲7が限定されてしまうと
いう欠点があった。
Further, coarse columnar crystals of austenite structure are generated, such as austenitic stainless steel welds or welds in which the base metal is 9% Ni steel and the weld contains about 70% Ni. In such a material, a longitudinal wave is used because the attenuation of ultrasonic waves in the material is large.
In this case, the conventional tandem flaw detection method using the transverse wave 5a is not effective because the attenuation of ultrasonic waves in the material is large.
Longitudinal wave 5 transmitted from the surface of the inspection object as shown in 2
After hitting the defect, a method of receiving the mode-converted wave from the longitudinal wave 5 to the transverse wave 5a on the back surface is conceivable. In this case, however, it is necessary to dispose the probe closer than the tandem flaw detection. However, there is a drawback that the inspectable range 7 is limited.

【0008】一方、二振動子斜角探触子では、送受信を
左右に分割した構造となっているが、この探触子を用い
た探傷方法としては、直接欠陥から反射して来る欠陥エ
コーを観察する方法のみが実施されており、タンデム探
傷など送信から欠陥までの超音波の伝搬経路と欠陥から
受信部までの超音波の伝搬経路が異なる方法には適用さ
れていない。そのため、仮にタンデム探傷など欠陥まで
の往路と復路が異なる手法に二振動子探触子を適用しよ
うと考えても、送信部と受信部の振動子の配置が欠陥エ
コーの受信効率が高まるように配置してしないなどの欠
点があったと考えられる。
On the other hand, the two-transducer bevel probe has a structure in which transmission and reception are divided into left and right, and a flaw detection method using this probe is a defect echo directly reflected from a defect. Only the observation method is implemented, and it is not applied to a method such as tandem flaw detection in which the propagation path of the ultrasonic wave from the transmission to the defect and the propagation path of the ultrasonic wave from the defect to the reception unit are different. Therefore, even if we consider applying the two-transducer probe to a method such as tandem flaw detection in which the outward path and the return path to the defect are different, the placement of the oscillators in the transmitter and the receiver will improve the reception efficiency of the defective echo. It is probable that there were some drawbacks such as not placing them.

【0009】あるいは、特開平02−63441号及び
特開平02−63442号に示すような、多数個の振動
子を縦横に配列して1個の振動素子群を形成した探触子
により立体的な情報を得ることを目的とした装置がある
が、この種のアレイ型探触子では、多くの振動子が必要
であり、かつ、対象とする欠陥寸法が小さい場合には1
個の振動子寸法を大きくできず、超音波の材料中の減衰
が大きな材料で充分な音圧レベルを送信できないか、振
動子の配置の自由度が低いか、あるいは採取データの高
度な信号処理などを必要とするために高コストの装置に
なってしまい、溶接部に対し広く適用できないという欠
点があった。
Alternatively, as shown in JP-A-02-63441 and JP-A-02-63442, a three-dimensional transducer is used to form a single vibrating element group in a three-dimensional manner. Although there is a device for the purpose of obtaining information, this type of array-type probe requires a large number of transducers, and when the target defect size is small, 1
It is not possible to increase the size of each transducer and transmit a sufficient sound pressure level with a material that has a large attenuation in the material of ultrasonic waves, or the degree of freedom of placement of the transducer is low, or advanced signal processing of collected data However, there is a drawback in that it becomes a high-cost device and cannot be widely applied to welded parts.

【0010】本発明の目的は、溶接部肉厚方向に発生し
た割れや溶込み不良などの面状欠陥を精度よく検出する
超音波探傷方法を提供することにある。
An object of the present invention is to provide an ultrasonic flaw detection method for accurately detecting a surface defect such as a crack or a penetration defect which occurs in the thickness direction of a welded portion.

【0011】[0011]

【課題を解決するための手段】本発明による超音波探傷
方法は、溶接線方向とほぼ平行に発生する縦割れなどの
肉厚方向の面状欠陥の検出方法として、タンデム探傷
法、あるいは検査対象物の表面に配置した縦波斜角探触
子から送信した縦波が欠陥にあたった後に裏面にあた
り、裏面で縦波から横波にモード変換した波を受信側の
斜角探触子により検出する2探触子法において、送信1
個及び受信1個からなる2個の斜角探触子を溶接線の片
側に溶接線と垂直な方向に対して同一線上にならないよ
うに、送信部と受信部の振動子を欠陥からの高い受信効
率が得られるように個別あるいは一体枠で保持して配置
するか、あるいは走査して、肉厚方向に発生した面状の
欠陥を検出する方法である。
An ultrasonic flaw detection method according to the present invention is a tandem flaw detection method or an inspection object as a method for detecting a planar defect in a thickness direction such as a vertical crack that occurs substantially parallel to a welding line direction. After the longitudinal wave transmitted from the longitudinal wave bevel probe placed on the surface of the object hits the defect and hits the back surface, the wave on the back side that has undergone mode conversion from longitudinal wave to transverse wave is detected by the bevel probe on the receiving side. 2 In the probe method, transmission 1
The transducers of the transmitter and the receiver are high from the defect so that the two bevel transducers consisting of one receiver and one receiver are not on the same line on one side of the weld line in the direction perpendicular to the weld line. This is a method of detecting the planar defects generated in the wall thickness direction by arranging and holding them individually or by an integrated frame so as to obtain reception efficiency, or by scanning.

【0012】[0012]

【作用】本発明では、検査対象物の表面から送信された
縦波が欠陥に当たった後に、裏面で縦波から横波にモー
ド変換した波を受信する方法、あるいはタンデム探傷法
おいて、送信1個及び受信1個からなる2個の斜角探触
子を溶接線の片側に溶接線と垂直な方向に対して同一線
上にならないように配置するために、従来技術である2
個の探触子を前後に配置する場合よりも、図1と図12
の検査可能範囲の比較から明らかなように、検査可能な
範囲が広くとることができる。
According to the present invention, after the longitudinal wave transmitted from the surface of the object to be inspected hits the defect, the method of receiving the mode-converted wave from the longitudinal wave to the transverse wave on the back surface or the tandem flaw detection method, the transmission 1 In order to dispose two beveled probes each consisting of one and one receiving unit on one side of the welding line so as not to be on the same line with respect to the direction perpendicular to the welding line, this is a conventional technique.
1 and 12 as compared with the case where the individual probes are arranged front and back.
As is clear from the comparison of the inspectable range of, the inspectable range can be wide.

【0013】特に、肉厚が薄い試験体では溶接線と垂直
な同一線上に前後に2個の探触子を配置した場合には、
2個の探触子同士が干渉するために、送受信位置を一定
距離までしか接近できないが、2個の探触子を前後では
なく左右方向に配置することで、実施可能な検査範囲を
広げることができる。
Particularly, in the case of a thin test piece, when two probes are arranged in front and back on the same line perpendicular to the welding line,
Since the two probes interfere with each other, the transmission / reception position can be approached only a certain distance. However, by arranging the two probes in the left / right direction instead of the front / back direction, the range of possible inspections can be expanded. You can

【0014】さらに、2つの探触子を前後に同一線上に
配置した場合には、送受信の探触子配置を逆の位置に容
易に設定が不可能であるが、2つの探触子を同一線上か
らずらして配置すると、探触子を溶接線方向に走査する
ことで、溶接線に対する前後の関係を容易に逆転でき
る。
Further, when the two probes are arranged in front and rear on the same line, it is impossible to easily set the transmitting and receiving probe arrangements to opposite positions, but the two probes are the same. When the probe is arranged so as to be displaced from the line, the front-rear relationship with respect to the weld line can be easily reversed by scanning the probe in the weld line direction.

【0015】2つの探触子を同時に走査したい場合に
は、対象とする欠陥一に応じて2つの探触子配置を一体
枠に固定して走査を容易にすることができる。
When it is desired to scan two probes at the same time, the two probe arrangements can be fixed to an integral frame in accordance with the target defect to facilitate scanning.

【0016】また、同一線上に前後に配置していないた
めに、欠陥からの高い受信音圧を得るために探触子の片
方あるいは両方を自由に走査して、欠陥の検出能力を向
上させることが可能である。
Further, since they are not arranged front and back on the same line, one or both of the probes can be freely scanned in order to obtain a high received sound pressure from the defect to improve the defect detection capability. Is possible.

【0017】さらに、斜角探触子を用いているために、
溶接金属の余盛上から探傷する垂直探傷法に比べて余盛
形状による表面の伝達損失の影響を受けることなく、高
い受信音圧が得られる。
Further, since the bevel probe is used,
As compared with the vertical flaw detection method in which flaws are detected from above the weld metal surplus, a high received sound pressure can be obtained without being affected by the surface transmission loss due to the surplus shape.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。図1(a)(b)に示すように、検査対象物1の溶
接部2には、溶接線2a方向とほぼ平行に発生する縦割
れなどの肉厚方向の面状欠陥3が存在している。検査対
象物1の表面1aに縦波斜角探触子4aとこれと同一線
上から外れた位置に斜角探触子4aが配設されている。
本発明の探傷方法は、縦波斜角探触子4aから送信した
縦波5は、欠陥3にあたった後に裏面1bにあたり、裏
面1bで縦波5から横波5にモード変換される。この横
波5aを受信側の斜角探触子4bにより検出する二探触
子法である。つまり、送信1個及び受信1個からなる2
個の斜角探触子を溶接線2aの片側に溶接線2aと垂直
な方向に対して同一線上にならないように配置し、肉厚
方向に発生した面状の欠陥を検出する超音波探傷方法で
ある。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 (a) and 1 (b), the welded portion 2 of the inspection object 1 has a planar defect 3 in the thickness direction such as a vertical crack that occurs substantially parallel to the welding line 2a direction. There is. A longitudinal wave bevel probe 4a is provided on the surface 1a of the inspection object 1, and a bevel probe 4a is arranged at a position deviated from the same line.
In the flaw detection method of the present invention, the longitudinal wave 5 transmitted from the longitudinal wave bevel probe 4a hits the back surface 1b after hitting the defect 3, and the back surface 1b is mode-converted from the longitudinal wave 5 to the transverse wave 5. This is a two-probe method in which the transverse wave 5a is detected by the oblique-angle probe 4b on the receiving side. That is, 2 consisting of 1 transmission and 1 reception
An ultrasonic flaw detection method for arranging individual bevel probes on one side of the welding line 2a so as not to be collinear with the direction perpendicular to the welding line 2a and detecting planar defects generated in the thickness direction. Is.

【0019】検査可能範囲7の裏面側限界において、探
触子を溶接線2aと直角に同一線上に配置した場合に比
べて、2個の探触子が相互に干渉しないために、広く検
査範囲をとることが可能である(図1と図12を比較参
照)。つまり、図1(b) に示すように、縦波斜角探触子
4aは溶接ビードの止端位置Aまでもって来ても、ま
た、縦波5が裏面1bでの反射位置が溶接ビード止端に
くる位置Bまでもって来ても、2つの探触子が同一線上
にないため、受信用の探触子を送信用の探触子と無関係
に所定の位置にもってこれ、横波にモード変換された波
を受信できることによるものである。これによって面状
欠陥を精度よく検出できるようになる。尚、この際の振
動子寸法は、上下方向に長く左右方向に短い長方形型の
振動子寸法を採用しており、超音波の肉厚方向の指向性
を鋭く、左右方向の指向性を鈍くするなど指向性の設定
も可能である。
In the limit of the back surface side of the inspectable range 7, the two probes do not interfere with each other as compared with the case where the probes are arranged on the same line at right angles to the welding line 2a. Can be taken (see comparison between FIG. 1 and FIG. 12). That is, as shown in FIG. 1 (b), even if the longitudinal wave bevel probe 4a reaches the toe position A of the welding bead, the longitudinal wave 5 is also reflected at the back surface 1b at the welding bead stop position. Even if it comes to the position B which comes to the end, since the two probes are not on the same line, the receiving probe is put in a predetermined position independently of the transmitting probe, and this is converted into a transverse wave mode. This is because the received waves can be received. As a result, it becomes possible to accurately detect the planar defect. In addition, as the transducer size at this time, a rectangular transducer size that is long in the up-down direction and short in the left-right direction is adopted, and the directivity in the thickness direction of ultrasonic waves is sharp and the directivity in the left-right direction is made dull. It is also possible to set the directivity.

【0020】図2には、上記記載の送信及び受信用の探
触子4a、4bにおいて、送信部と受信部を一体枠6に
固定した構造の探触子を用いて、肉厚方向に発生した面
状の欠陥を検出する超音波探傷方法を示している。
In FIG. 2, in the above-mentioned transmitting and receiving probes 4a and 4b, the probe having a structure in which the transmitting part and the receiving part are fixed to the integral frame 6 is used to generate in the thickness direction. 3 shows an ultrasonic flaw detection method for detecting a surface-shaped defect.

【0021】図3には、上記記載の探触子配置におい
て、送信の探触子4aと受信の探触子4bの超音波の送
受信の方向を共に欠陥3に向けて、欠陥3からの音圧が
高く得られるように、溶接線2aに対する超音波の入射
角度と溶接線2aまでの距離を調整し、肉厚方向に発生
した面状の欠陥3を検出する超音波探傷方法を示してい
る。
In the probe arrangement described above, FIG. 3 shows the sound from the defect 3 with the transmitting and receiving probe 4a and the receiving probe 4b both transmitting and receiving ultrasonic waves toward the defect 3. An ultrasonic flaw detection method is shown in which the angle of incidence of ultrasonic waves on the welding line 2a and the distance to the welding line 2a are adjusted so as to obtain a high pressure, and the planar defects 3 generated in the thickness direction are detected. ..

【0022】図4には、上記記載の探触子配置におい
て、欠陥からの受信音圧が高く得られるように、受信側
4a及び送信側4b、あるいはどちらか一方の探触子を
溶接線と直角方向Xあるいは超音波入射方向Yに走査
し、肉厚方向に発生した面状の欠陥3を検出する超音波
探傷方法を示している。
In the probe arrangement described above, in FIG. 4, the probe on the receiving side 4a and the transmitting side 4b, or either one of them is used as a welding line in order to obtain a high received sound pressure from a defect. An ultrasonic flaw detection method is shown in which scanning is performed in the orthogonal direction X or the ultrasonic wave incident direction Y to detect the planar defects 3 generated in the thickness direction.

【0023】図5には、肉厚方向に発生した溶接割れな
どの面状の欠陥3の検出方法であるタンデム探傷法にお
いて、送信1個及び受信1個からなる2個の斜角探触子
4a、4bを溶接線2aの片側に溶接線と垂直な方向に
対して同一線上にならないように配置し、溶接線2aに
対する超音波の入射角度と溶接線までの距離を所定の値
に設定し、肉厚方向に発生した面状の欠陥3を検出する
超音波探傷方法を示している。
In FIG. 5, in the tandem flaw detection method, which is a method of detecting a planar defect 3 such as a weld crack generated in the thickness direction, two beveled probes each including one transmitter and one receiver. 4a and 4b are arranged on one side of the welding line 2a so as not to be collinear with the direction perpendicular to the welding line, and the incident angle of the ultrasonic wave to the welding line 2a and the distance to the welding line are set to predetermined values. , An ultrasonic flaw detection method for detecting a planar defect 3 generated in the thickness direction is shown.

【0024】図6には、上記記載の送信及び受信用の探
触子4a、4bにおいて、送信部と受信部を一体枠6に
固定した構造の探触子を用いて、肉厚方向に発生した面
状の欠陥3を検出するようにした超音波探傷方法を示し
ている。
In FIG. 6, in the transmitting and receiving probes 4a and 4b described above, a probe having a structure in which the transmitting portion and the receiving portion are fixed to the integral frame 6 is used to generate in the thickness direction. The ultrasonic flaw detection method for detecting the planar defect 3 is shown.

【0025】図7には、上記記載の探触子配置におい
て、送信の探触子4aと受信の探触子4bの超音波の送
受信の方向を共に欠陥3に向けて、欠陥からの音圧が高
く得られるように、溶接線2aに対する超音波の入射角
度と溶接線までの距離を調整し、肉厚方向に発生した面
状の欠陥3を検出する超音波探傷方法を示している。
In FIG. 7, in the probe arrangement described above, both the transmitting and receiving directions of ultrasonic waves of the transmitting probe 4a and the receiving probe 4b are directed to the defect 3, and the sound pressure from the defect is set. In order to obtain a high defect rate, an ultrasonic flaw detection method for detecting the planar defect 3 generated in the wall thickness direction by adjusting the incident angle of the ultrasonic wave to the welding line 2a and the distance to the welding line is shown.

【0026】図8には、上記記載の探触子配置におい
て、欠陥からの音圧が高く得られるように、受信側4a
及び送信側4b、あるいはどちらか一方の探触子を溶接
線2aと直角方向Xあるいは超音波入射方向Yに走査
し、肉厚方向に発生した面状の欠陥3を検出する超音波
探傷方法を示している。尚、本発明の態様は上記の態様
に限るものではないことは明かである。
In FIG. 8, in the probe arrangement described above, the receiving side 4a is arranged so that a high sound pressure from a defect can be obtained.
And an ultrasonic flaw detection method for detecting a planar defect 3 generated in the wall thickness direction by scanning the probe on the transmitting side 4b or on either side in the direction X orthogonal to the welding line 2a or in the ultrasonic wave incident direction Y. Shows. Obviously, the aspects of the present invention are not limited to the above-mentioned aspects.

【0027】[0027]

【発明の効果】 本発明では、検査対象物の表面から
送信された縦波が欠陥に当たった後に、裏面で縦波から
横波にモード変換した波を受信する方法、あるいはタン
デム探傷法おいて、送信1個及び受信1個からなる2個
の斜角探触子を溶接線の片側に溶接線と垂直な方向に対
して同一線上にならないように配置するために、従来技
術である2個の探触子を前後に配置する場合よりも、図
1と図12の検査可能範囲の比較から明らかなように、
検査可能な範囲を肉厚方向に広くとることができる。特
に、肉厚が薄い検査体では溶接線と垂直な同一線上に前
後に2個の探触子を配置した場合には、2個の探触子同
士が干渉するために、送受信位置を一定距離までしか接
近できないが、2個の探触子を前後ではなく左右方向に
配置することで、実施可能な検査範囲を広げることがで
きる。
According to the present invention, after the longitudinal wave transmitted from the surface of the inspection object hits the defect, the method of receiving the mode-converted wave from the longitudinal wave to the transverse wave on the back surface, or the tandem flaw detection method, In order to arrange two bevel transducers, one transmitting and one receiving, on one side of the welding line so as not to be on the same line with respect to the direction perpendicular to the welding line, it is necessary to use two of the conventional techniques. As can be seen from the comparison of the inspectable range in FIG. 1 and FIG.
The inspectable range can be widened in the thickness direction. In particular, in the case of a thin inspection body, when two probes are arranged in front and back on the same line perpendicular to the welding line, the two probes interfere with each other, so that the transmission / reception position is kept at a constant distance. However, by arranging the two probes in the left-right direction instead of the front-back direction, the practicable inspection range can be expanded.

【0028】 さらに、2つの探触子を前後に同一線
上に配置した場合には、送受信の探触子配置を逆の位置
に容易に設定が不可能であるが、2つの探触子を同一線
上からずらして配置すると、探触子を溶接線方向に走査
することで、溶接線に対する前後の関係を容易に逆転で
きる。
Further, when the two probes are arranged in front and rear on the same line, it is impossible to easily set the transmitting and receiving probe arrangements to opposite positions, but the two probes are the same. When the probe is arranged so as to be displaced from the line, the front-rear relationship with respect to the weld line can be easily reversed by scanning the probe in the weld line direction.

【0029】 また、同一線上に前後に配置していな
いために、欠陥からの高い受信音圧を得るために探触子
の片方あるいは両方を自由に走査して、欠陥の検出能力
を向上させることが可能である。
Further, since they are not arranged front and back on the same line, one or both of the probes can be freely scanned in order to obtain a high received sound pressure from the defect, thereby improving the defect detection capability. Is possible.

【0030】 さらに、斜角探触子を用いているため
に、溶接金属の余盛上から探傷する垂直探傷法に比べて
余盛形状による表面の伝達損失の影響を受けることな
く、高い受信音圧が得られる。
Furthermore, since the bevel probe is used, compared to the vertical flaw detection method in which flaws are detected on the weld metal overfill, the received sound is not affected by the surface transmission loss due to the overfill shape, and the received sound is high. The pressure is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)(b)は本発明にかかる第1実施例の平面図と
断面図である。
1A and 1B are a plan view and a sectional view of a first embodiment according to the present invention.

【図2】(a)(b)は本発明にかかる第2実施例の平面図と
断面図である。
2A and 2B are a plan view and a sectional view of a second embodiment according to the present invention.

【図3】(a)(b)は本発明にかかる第3実施例の平面図と
断面図である。
3 (a) and 3 (b) are a plan view and a sectional view of a third embodiment according to the present invention.

【図4】(a)(b)は本発明にかかる第4実施例の平面図と
断面図である。
4A and 4B are a plan view and a sectional view of a fourth embodiment according to the present invention.

【図5】(a)(b)は本発明にかかる第5実施例の平面図と
断面図である。
5 (a) and 5 (b) are a plan view and a sectional view of a fifth embodiment according to the present invention.

【図6】(a)(b)は本発明にかかる第6実施例の平面図と
断面図である。
6A and 6B are a plan view and a sectional view of a sixth embodiment according to the present invention.

【図7】(a)(b)は本発明にかかる第7実施例の平面図と
断面図である。
7 (a) and (b) are a plan view and a sectional view of a seventh embodiment according to the present invention.

【図8】(a)(b)は本発明にかかる第8実施例の平面図と
断面図である。
8A and 8B are a plan view and a sectional view of an eighth embodiment according to the present invention.

【図9】従来の一探触子法の説明図である。FIG. 9 is an explanatory diagram of a conventional single probe method.

【図10】従来のタンデム探傷方法の説明図である。FIG. 10 is an explanatory diagram of a conventional tandem flaw detection method.

【図11】従来のいタンデム探傷方法において前後配置
にした場合に、前後の探触子が干渉して探傷ができない
ことの説明図である。
FIG. 11 is an explanatory diagram showing that the front and rear probes interfere with each other when the conventional tandem flaw detection method is arranged in the front and rear, and thus flaw detection cannot be performed.

【図12】(a)(b)は縦波を用いた二探触子による探傷方
法の説明図で前後に探触子を配置しているために検査で
きる領域が限られてしまうことの説明図である。
12 (a) and 12 (b) are explanatory views of a flaw detection method using two probes using longitudinal waves, and an explanation that the inspection area is limited because the probes are arranged in front and behind. It is a figure.

【符号の説明】[Explanation of symbols]

1…検査対象物 1a…探傷面 2…溶接部 2a…溶接線 3…欠陥 4…斜角探触子 4a…送信用斜角探触子 4b…受信用斜角探触子 5…縦波(超音波) 5a…横波(超音波) 6…一体枠 7…検査可能領域 DESCRIPTION OF SYMBOLS 1 ... Object to be inspected 1a ... Detection surface 2 ... Welding part 2a ... Welding line 3 ... Defect 4 ... Bevel probe 4a ... Bevel probe for transmission 4b ... Bevel probe for reception 5 ... Longitudinal wave ( Ultrasonic wave 5a ... transverse wave (ultrasonic wave) 6 ... integral frame 7 ... inspectable area

フロントページの続き (72)発明者 平澤 英幸 兵庫県神戸市中央区東川崎町3丁目1番1 号 川崎重工業株式会社神戸工場内 (72)発明者 山川 武人 兵庫県加古郡播磨町新島8番地 川崎重工 業株式会社播磨工場内 (72)発明者 千田 豊 兵庫県加古郡播磨町新島8番地 川崎重工 業株式会社播磨工場内Front page continued (72) Hideyuki Hirasawa, Inventor Hideyuki Hirasawa, 3-1-1 Higashikawasaki-cho, Chuo-ku, Kobe-shi, Hyogo Kawasaki Heavy Industries, Ltd.Kobe factory (72) Takehito Yamakawa 8 Niijima, Harima-cho, Kako-gun, Hyogo (72) Inventor Yutaka Senda 8th Niijima, Harima-cho, Kako-gun, Hyogo Prefecture Kawasaki Heavy Industries, Ltd. Harima-factory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 検査対象物の表面に、送信用縦波探触子
1個及び受信用探触子1個からなる2個の斜角探触子を
溶接線の片側に溶接線と垂直な方向に対して同一線上に
ならないように配置し、該縦波斜角探触子から送信した
縦波が肉厚方向の面状欠陥にあたった後に前記検査対象
物の裏面にあたり、この裏面で縦波から横波にモード変
換した波を上記斜角探触子により受信することにより、
前記欠陥を検出することを特徴とする面状欠陥の超音波
探傷方法。
1. On the surface of an object to be inspected, two oblique-angle probes consisting of one transmitting longitudinal wave probe and one receiving probe are provided on one side of the welding line and perpendicular to the welding line. The longitudinal wave transmitted from the longitudinal wave bevel probe hits the surface defect in the thickness direction after hitting the planar defect in the thickness direction, and is arranged so as not to be on the same line with respect to the direction. By receiving the wave mode-converted from the wave to the transverse wave by the bevel probe,
An ultrasonic flaw detection method for a planar defect, which comprises detecting the defect.
【請求項2】 送信及び受信用の探触子を一体枠に固定
した構造の探触子を用いて、肉厚方向に発生した面状欠
陥を検出することを特徴とする請求項1記載の面状欠陥
の超音波探傷方法。
2. The planar defect generated in the thickness direction is detected by using a probe having a structure in which a transmitting and receiving probe is fixed to an integral frame. Ultrasonic flaw detection method for surface defects.
【請求項3】 送信の探触子と受信の探触子の超音波の
送受信の方向を共に欠陥に向けて、欠陥からの音圧が高
く得られるように、溶接線に対する超音波の入射角度と
溶接線までの距離を調整し、肉厚方向に発生した面状の
欠陥を検出することを特徴とする請求項1記載の面状欠
陥の超音波探傷方法。
3. An angle of incidence of ultrasonic waves on a welding line so that both the transmitting and receiving directions of ultrasonic waves of a transmitting probe and a receiving probe are directed to a defect so that a high sound pressure can be obtained from the defect. The ultrasonic flaw detection method for a planar defect according to claim 1, wherein the planar defect generated in the thickness direction is detected by adjusting the distance to the welding line.
【請求項4】 欠陥からの受信音圧が高く得られるよう
に、受信側及び送信側、あるいはどちらか一方の探触子
を溶接線と直角方向あるいは超音波入射方向に走査し、
肉厚方向に発生した面状の欠陥を検出することを特徴と
する請求項1項記載の面状欠陥の超音波探傷方法。
4. The probe on the receiving side and / or the transmitting side is scanned in a direction perpendicular to the welding line or in an ultrasonic wave incident direction so that a high received sound pressure from the defect can be obtained.
The ultrasonic flaw detection method for a planar defect according to claim 1, wherein a planar defect generated in the thickness direction is detected.
【請求項5】 肉厚方向に発生した溶接割れなどの面状
の欠陥の検出方法であるタンデム探傷法において、送信
1個及び受信1個からなる2個の斜角探触子を溶接線の
片側に溶接線と垂直な方向に対して同一線上にならない
ように配置し、溶接線に対する超音波の入射角度と溶接
線までの距離を所定の値に設定し、肉厚方向に発生した
面状の欠陥を検出することを特徴とする面状欠陥の超音
波探傷方法。
5. In the tandem flaw detection method, which is a method for detecting planar defects such as weld cracks that occur in the thickness direction, two bevel probes, one transmitting and one receiving, are used for welding lines. Arranged on one side so as not to be collinear with the direction perpendicular to the welding line, set the incident angle of the ultrasonic wave to the welding line and the distance to the welding line to a predetermined value, and the surface condition generated in the thickness direction Ultrasonic flaw detection method for planar defects, which is characterized in that
【請求項6】 送信及び受信用の探触子において、送信
部と受信部を一体枠に固定した構造の探触子を用いて、
肉厚方向に発生した面状の欠陥を検出することを特徴と
する請求項5記載の面状欠陥の超音波探傷方法。
6. A probe for transmission and reception, wherein a probe having a structure in which a transmitter and a receiver are fixed to an integral frame is used.
The ultrasonic flaw detection method for a planar defect according to claim 5, wherein a planar defect generated in the thickness direction is detected.
【請求項7】 送信の探触子と受信の探触子の超音波の
送受信の方向を共に欠陥に向けて、欠陥からの音圧が高
く得られるように、溶接線に対する超音波の入射角度と
溶接線までの距離を調整し、肉厚方向に発生した面状の
欠陥を検出することを特徴とする請求項5記載の面状欠
陥の超音波探傷方法。
7. The angle of incidence of ultrasonic waves on the welding line so that both the transmitting and receiving directions of ultrasonic waves of the transmitting probe and the receiving probe are directed to the defect so that a high sound pressure can be obtained from the defect. The ultrasonic flaw detection method for a planar defect according to claim 5, wherein the planar defect generated in the thickness direction is detected by adjusting the distance to the welding line.
【請求項8】 欠陥からの音圧が高く得られるように、
受信側及び送信側、あるいはどちらか一方の探触子を溶
接線と直角方向あるいは超音波入射方向に走査し、肉厚
方向に発生した面状の欠陥を検出することを特徴とする
請求項5記載の面状欠陥の超音波探傷方法。
8. In order to obtain a high sound pressure from the defect,
6. The planar defect generated in the thickness direction is detected by scanning the probe on the receiving side and / or the transmitting side in a direction perpendicular to the welding line or in the ultrasonic wave incident direction. An ultrasonic flaw detection method for the surface defect described.
JP04089152A 1992-04-09 1992-04-09 Ultrasonic flaw detection method for planar defects Expired - Lifetime JP3140157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04089152A JP3140157B2 (en) 1992-04-09 1992-04-09 Ultrasonic flaw detection method for planar defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04089152A JP3140157B2 (en) 1992-04-09 1992-04-09 Ultrasonic flaw detection method for planar defects

Publications (2)

Publication Number Publication Date
JPH05288722A true JPH05288722A (en) 1993-11-02
JP3140157B2 JP3140157B2 (en) 2001-03-05

Family

ID=13962883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04089152A Expired - Lifetime JP3140157B2 (en) 1992-04-09 1992-04-09 Ultrasonic flaw detection method for planar defects

Country Status (1)

Country Link
JP (1) JP3140157B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201285B1 (en) 1997-07-04 2001-03-13 Kabushiki Kaisha Tokai Rika Denki Seisakusho Sensor with diaphragm sensor chip
US6380516B1 (en) 1999-08-11 2002-04-30 Mitsubishi Heavy Industries, Ltd. Connecting clamp, connecting apparatus and connecting method
JP2013019715A (en) * 2011-07-08 2013-01-31 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2014106130A (en) * 2012-11-28 2014-06-09 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
WO2020039850A1 (en) 2018-08-22 2020-02-27 国立大学法人東北大学 Method and device for evaluating bonding interface
JP2020056691A (en) * 2018-10-02 2020-04-09 東海旅客鉄道株式会社 Structure non-destructive test device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844824B1 (en) * 2014-09-02 2018-04-05 한국전력공사 Finger type root inspection apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201285B1 (en) 1997-07-04 2001-03-13 Kabushiki Kaisha Tokai Rika Denki Seisakusho Sensor with diaphragm sensor chip
US6380516B1 (en) 1999-08-11 2002-04-30 Mitsubishi Heavy Industries, Ltd. Connecting clamp, connecting apparatus and connecting method
US6423943B1 (en) 1999-08-11 2002-07-23 Mitsubishi Heavy Industries, Ltd. Connecting clamp, connecting apparatus and connecting method
US6550334B2 (en) 1999-08-11 2003-04-22 Mitsubishi Heavy Industries, Ltd. Ultrasonic detecting apparatus
JP2013019715A (en) * 2011-07-08 2013-01-31 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2014106130A (en) * 2012-11-28 2014-06-09 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
WO2020039850A1 (en) 2018-08-22 2020-02-27 国立大学法人東北大学 Method and device for evaluating bonding interface
US11898990B2 (en) 2018-08-22 2024-02-13 Shimane University Bonding interface evaluation method and bonding interface evaluation device
JP2020056691A (en) * 2018-10-02 2020-04-09 東海旅客鉄道株式会社 Structure non-destructive test device

Also Published As

Publication number Publication date
JP3140157B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
EP1927856B1 (en) Ultrasonic inspection method
KR100885832B1 (en) Evaluation method and device for spot welded portion by ultrasonic wave
KR101155423B1 (en) Tubular object ultrasonic test device and ultrasonic test method
US5431054A (en) Ultrasonic flaw detection device
CN108169331B (en) Sheet grid wing structure welding seam phased array ultrasonic detection device and detection method
CN105699492A (en) An ultrasonographic method used for weld seam detection
WO2007058391A1 (en) Pipe ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
CN105004793A (en) Ultrasonic testing method used for composite material foaming structures
US6125705A (en) Apparatus for the concurrent ultrasonic inspection of partially completed welds
CN107356670A (en) A kind of ultrasonic phase array weld defect detection method based on oblique incidence
CN104977356A (en) Composite material foam structure ultrasonic detection method based on reflection theory
JPH05288722A (en) Method for ultrasonic examination of sheet defect
JP2002062281A (en) Flaw depth measuring method and its device
CN110687205A (en) Ultrasonic longitudinal wave reflection method and diffraction time difference method combined detection method and TOFD probe applied to method
CN106383170B (en) Method for measuring width of lap weld by using transmitted wave of lamb wave
JP4175762B2 (en) Ultrasonic flaw detector
Long et al. Further development of a conformable phased array device for inspection over irregular surfaces
卜阳光 et al. Research on ultrasonic phased array multi-mode total focusing inspection technology for nozzle fillet welds
Nageswaran et al. Evaluation of the phased array transmit-receive longitudinal and time-of-flight diffraction techniques for inspection of a dissimilar weld
JPH05119025A (en) Flaw detection method of circumference welding part
JPH095304A (en) Ultrasonic flaw detection method in welded part between straight pipe and elbow
CN211086201U (en) Ultrasonic longitudinal wave reflection method and diffraction time difference method combined detection probe group
JP3456953B2 (en) Ultrasonic flaw detector
JPH0521011Y2 (en)
JPH1151911A (en) Line focus type ultrasonic flaw detecting method and device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12